101 research outputs found

    Correction of beam hardening artefacts in microtomography for samples imaged in containers

    No full text
    We explore the use of referenceless multi-material beam hardening correction methods, with an emphasis on maintaining data quality for real-world imaging of geologic materials with a view towards automation. In particular, we consider cases where the sample of interest is surrounded by a container of uniform material and propose a novel container-only pre-correction technique to allow automation of the segmentation process required for such correction methods. The effectiveness of the new technique is demonstrated using both simulated and experimental data

    Multi-frequency based location search algorithm of small electromagnetic inhomogeneities embedded in two-layered medium

    Full text link
    In this paper, we consider a problem for finding the locations of electromagnetic inhomogeneities completely embedded in homogeneous two layered medium. For this purpose, we present a filter function operated at several frequencies and design an algorithm for finding the locations of such inhomogeneities. It is based on the fact that the collected Multi-Static Response (MSR) matrix can be modeled via a rigorous asymptotic expansion formula of the scattering amplitude due to the presence of such inhomogeneities. In order to show the effectiveness, we compare the proposed algorithm with traditional MUltiple SIgnal Classification (MUSIC) algorithm and Kirchhoff migration. Various numerical results demonstrate that the proposed algorithm is robust with respect to random noise and yields more accurate location than the MUSIC algorithm and Kirchhoff migration.Comment: 21 pages, 25 figure

    A variational approach to waveform design for synthetic aperture imaging

    Get PDF
    Abstract. We derive an optimal transmit waveform for filtered backprojectionbased synthetic-aperture imaging. The waveform is optimal in terms of minimising the mean square error (MSE) in the resulting image. Our optimization is performed in two steps: First, we consider the minimum-mean-square-error (MMSE) for an arbitrary but fixed waveform, and derive the corresponding filter for the filtered backprojection reconstruction. Second, the MMSE is further reduced by finding an optimal transmit waveform. The transmit waveform is derived for stochastic models of the scattering objects of interest (targets), other scattering objects (clutter), and additive noise. We express the waveform in terms of spatial spectra for the random fields associated with target and clutter, and the spectrum for the noise process. This approach results in a constraint that involves only the amplitude of the Fourier transform of the transmit waveform. Therefore, considerable flexibility is left for incorporating additional requirements, such as minimal variation of transmit amplitude and phase-coding

    Techniques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT

    No full text
    This paper reports on recent advances at the micro-computed tomography facility at the Australian National University. Since 2000 this facility has been a significant centre for developments in imaging hardware and associated software for image reconstruction, image analysis and image-based modelling. In 2010 a new instrument was constructed that utilises theoretically-exact image reconstruction based on helical scanning trajectories, allowing higher cone angles and thus better utilisation of the available X-ray flux. We discuss the technical hurdles that needed to be overcome to allow imaging with cone angles in excess of 60°. We also present dynamic tomography algorithms that enable the changes between one moment and the next to be reconstructed from a sparse set of projections, allowing higher speed imaging of time-varying samples. Researchers at the facility have also created a sizeable distributed-memory image analysis toolkit with capabilities ranging from tomographic image reconstruction to 3D shape characterisation. We show results from image registration and present some of the new imaging and experimental techniques that it enables. Finally, we discuss the crucial question of image segmentation and evaluate some recently proposed techniques for automated segmentation

    Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains

    Get PDF
    Inverse bicontinuous cubic phases with two aqueous network domains separated by a smooth bilayer are firmly established as equilibrium phases in lipid/water systems. The purpose of this article is to highlight the generalisations of these bicontinuous geometries to polycontinuous geometries, which could be realised as lipid mesophases with three or more network-like aqueous domains separated by a branched bilayer. An analysis of structural homogeneity in terms of bilayer width variations reveals that ordered polycontinuous geometries are likely candidates for lipid mesophase structures, with similar chain packing characteristics to the inverse micellar phases (that once were believed not to exist due to high packing frustration). The average molecular shape required by global geometry to form these multi-network phases is quantified by the surfactant shape parameter, v/(al); we find that it adopts values close to those of the known lipid phases. We specifically analyse the 3etc(187 193) structure of hexagonal symmetry P63 /mcm with three aqueous domains, the 3dia(24 220) structure of cubic symmetry I 3d composed of three distorted diamond networks, the cubic chiral 4srs(24 208) with cubic symmetry P4232 and the achiral 4srs(5 133) structure of symmetry P42/nbc, each consisting of four intergrown undistorted copies of the srs net (the same net as in the QGII gyroid phase). Structural homogeneity is analysed by a medial surface approach assuming that the head-group interfaces are constant mean curvature surfaces. To facilitate future experimental identification, we provide simulated SAXS scattering patterns that, for the 4srs(24 208) and 3dia(24 220) structures, bear remarkable similarity to those of bicontinuous QGII-gyroid and QDII-diamond phases, with comparable lattice parameters and only a single peak that cannot be indexed to the well-established structures. While polycontinuous lipid phases have, to date, not been reported, the likelihood of their formation is further indicated by the reported observation of a solid tricontinuous mesoporous silicate structure, termed IBN-9, which formed in the presence of surfactants [Han et al., Nat. Chem., 2009, 1, 123]

    X-ray attenuation models to account for beam hardening in computed tomography

    Get PDF
    We introduce a beam-hardening correction method for lab-based X-ray computed tomography (CT) by modifying existing iterative tomographic reconstruction algorithms. Our method simplifies the standard Alvarez-Macovski X-ray attenuation model [Phys. Med. Biol. 21, 733 (1976)] and is compatible with conventional (i.e., singlespectrum) CT scans. The sole modification involves a polychromatic projection operation, which is equivalent to applying a weighting that more closely matches the attenuation of polychromatic X-rays. Practicality is a priority, so we only require information about the X-ray spectrum and some constants relating to material properties. No other changes to the experimental setup or the iterative algorithms are necessary. Using reconstructions of simulations and several large experimental datasets, we show that this method is able to remove or reduce cupping, streaking, and other artefacts from X-ray beam hardening and improve the self-consistency of projected attenuation in CT. When the assumptions made in the simplifications are valid, the reconstructed tomogram can even be quantitative.Australian Research Council (LP150101040); partner company FEI (now Thermo-Fisher) through Linkage (Project LP150101040)
    corecore