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ABSTRACT

In micro-CT, X-rays are typically emitted from a “source spot” several microns wide. This paper
investigates two algorithms for correcting the resulting penumbral source-spot blurring. We test
Richardson-Lucy (R-L) and Conjugate Gradient (CG) methods (regularised and un-regularised), on
simulated projection data. The CG method enforces self-consistency in the sinogram, whilst the R-L
method independently deconvolves each radiograph. Both methods deliver a better reconstruction
than the standard filtered back-projection (FBP), at the cost of increased computation time.
Reconstructions from simulated data indicate that the CG method preserves fine details better than
the R-L method.

1. INTRODUCTION

X-ray computed tomography (CT) imaging is typically modelled using the Radon transform. For
simplicity, conventional CT reconstruction algorithms assume X-rays emanate from an infinitesimal
point (Natterer 2001). This assumption is valid when the source spot is relatively small compared to
the voxel size of the volume being reconstructed, but is increasingly violated as high-resolution micro-
CT moves towards voxels approximately the same size as the source spot. In these cases the non-
negligible size of the source (with respect to the voxel size) will lead to penumbral blurring in the
radiographs, resulting in blurring artefacts in conventional CT reconstructions. In this paper we model
the source as a sum of incoherent (i.e. non-interfering) point sources. To better isolate the effects of
source-spot blurring, we assume the linear attenuation coefficient of the sample to be approximately
independent of X-ray energy (i.e. we assume the incident beam is sufficiently filtered such that beam-
hardening is negligible). This simulated projection data is used to test the R-L and CG methods.

For large source-sample distances the imaging system is approximately linear shift invariant, and the
inverse problem reduces to 2D deconvolution of the radiographs, followed by standard CT
reconstruction (Paganin, 2006). We explored deconvolution algorithms, such as: Fourier
Deconvolution, Landweber’s algorithm (Landweber 1951), Super resolution (Hunt 1992), etc. The R-L
method was chosen as it is expected to be comparatively stable in the presence of high-frequency
noise (Lucy 1974).

The radiographs in a CT data set will contain some redundant data at low spatial frequencies, and
must be self-consistent (i.e., lie on the range space of the forward problem). In the absence of beam
hardening and refraction, the de-blurred radiographs will lie on the range space of the Radon
transform. Inconsistent radiographs will lead to artefacts in the 3D reconstruction: unlike R-L
deconvolution, CG reconstruction enforces self-consistency in the CT data set, and is valid for source-
sample distances small enough that blur can no longer be modelled as a 2D convolution of the
radiographs.

2. MODELLING THE EFFECT OF THE NON-POINT SOURCE

2.1. Source Blurring and Noise function

As stated above, blurring caused by non-point source is modelled by the convolution of the simulated
intensity with a source-spot kernel. For simulated data, the source-spot kernel is a normal distribution
with standard deviation of 2 pixels, truncated to be 9 pixels wide. Some Poisson noise is added to the
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radiograph to model noise:
Noisy radiograph = -In{Possion[10*2*15*exp(-Original radiograph)]/(10*2*15)}.

For real data, the source spot-kernel may be measured by analysing radiographs of a known phantom.
In our case we used a block of steel. A radiograph of the vertical edge of the block was taken, the line-
spread function was measured from the block edge, and the point-spread function of the source was
then calculated.

2.2. Richardson-Lucy (R-L)

The R-L method (Lucy 1974) is a maximum-likelihood statistical deconvolution algorithm. It maximises
the likelihood of producing the observed sinogram, given a point-spread function (PSF) and assuming
Poisson noise. Let the operator B represent convolution with the PSF, and B* be its adjoint. Let g, be
source-blurred radiograph, and gr be the deblurred radiograph. Using the TV-minimisation filter (Molina
1994) for regularisation, the i"" iteration of the regularised R-L algorithm is calculated as follows:

g = C(g/ B{gs/ [B*(g)}),

where C is the TV-minimisation filter with parameter 0 for the R-L method, and 0.0018 for the RL TV-
minimisation regularised method. In this work 16 iterations are used. This regularisation step is similar
to a prior that favours smooth radiographs. A volume reconstruction is obtained from the R-L deblurred
sinogram using the standard FBP algorithm.

2.3. Conjugate Gradient (CG)

As discussed in the introduction, a CT data set must be self-consistent to avoid artefacts in the 3D
reconstruction. The CG method presented here iterates between sinogram and volume space,
ensuring that the deblurred sinogram is self-consistent. The Conjugate Gradient method requires the
adjoint, of the forward imaging operator A=} (c;A;), where A; models projection from a point-source with
index j, and relative intensity c;. Note that this is a convolutlon over several incoherent sources not a
convolution of the radiographs. The adjoint operator A* can be shown to be: A*—Z(C,A ). The
Conjugate Gradient method is an algebraic solver with quadratic convergence (Katsaggelos 1991) that
minimises ||g,-Af;||.2. For the regularised iterative method:

£1=C(f +olp),

where C is the TV-minimisation filter with parameter 0 for the CG method, and 0.0002 for the CG TV-
minimisation regularised method. Here p' is the step direction and o' is the magnitude, both of which
are determined by the conjugate gradient method (Fletcher 1964). In this work 64 iterations are used.

3. SIMULATION RESULTS

We simulated CT imaging of a phantom image (see figure 1, left), adding noise to the radiographs as
per section 2.1. Reconstruction was then performed with FBP, R-L deconvolution followed by FBP, and
CG reconstruction (regularised and un-regularised). Results are shown in Figures 1 and 2. For
quantitative comparison of noise levels, we will use the square area with coordinates
(X,Y)=([31,50],[35,54]), which is near-constant in the original image. The standard deviation of pixel
values in this area is calculated, and normalised with respect to the standard, uncorrected FBP
reconstruction (see Table 1). Lower values indicate a smoother reconstruction. The sharpness
measure (i.e. the Laplacian) is used to quantify contrast in the various images (see Table 1). Ideally,
we desire a low-noise, high-contrast reconstruction. Relative signal to noise ratio (RSNR) is just
contrast divided by noise. The difference between each reconstruction and the original in the L2 norm
(L2FQ) is also calculated, although this tells us little about whether edges in the reconstruction are
correctly positioned.

Table 1 demonstrates that all deconvolution methods improved upon FBP, as measured by RSNR and
L2FO. CG produced a better image than RL according to both measures. Regularisation degrades the
fine detail in the Richardson-Lucy reconstruction (see the reduced contrast in Table 1), but does not
appear to do so for the Conjugate Gradient method (very little reduction in contrast, see Table 1).
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Since both regularised reconstructions have a similar amount of noise, we can conclude that the CG
method preserves more fine structure in the images than the R-L method. We expect this gap in
performance to widen as source-sample distance is reduced (violating the assumptions made by the
R-L reconstruction). Encouragingly, we note that both regularised reconstructions had similar noise
levels to the blurry FBP reconstruction, whilst exhibiting significant increases in contrast.
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Figure 1: Original image, Richardson-Lucy, Conjugate Gradient
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Figure 2: Filtered Back-projection, R/chardson-Lucy and Conjugate Gradient with regularisation

Reconstruction Noise relative to [Sharpness relative| Relative Signal to | L2 norm distance
FBP (Std. Dev.) |to FBP (Contrast) Noise Ratio from original
Original 0.138 1.975 14.3 0
FBP 1.000 1.000 1.00 0.0543
RL 1.509 1.633 1.08 0.0435
RL TV-Reg 1.179 1.380 1.16 0.0435
CG 1.251 1.484 1.18 0.0389
CG TV-Reg 1.154 1.409 1.22 0.0393

Table 1: Quantitative analysis of various method of reconstructions

In terms of computational time, Richardson-Lucy takes about twice the computational time of the
standard filtered back-projection, while Conjugate Gradient takes about 2.0*[number of lterations]
times the computational time of the standard filtered back-projection. The overwhelming majority of the
computation time in the CG algorithm is consumed by projection and backprojection operations, which

may be accelerated by a factor of ~40 using a GPGPU (Myers et al. 2011).

4, CONCLUSIONS

Both the Richardson-Lucy and Conjugate Gradient methods are able to partially correct for source-

spot blurring, for large source-sample distances, at the cost of increased computing

time. Preliminary

results from simulated data indicate that the regularised Conjugate Gradient method preserves fine
detail better than the R-L method, and we expect the results from the R-L method to degrade as

source-sample distance is decreased.
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