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Abstract. We derive an optimal transmit waveform for filtered backprojection-

based synthetic-aperture imaging. The waveform is optimal in terms of min-
imising the mean square error (MSE) in the resulting image. Our optimization
is performed in two steps: First, we consider the minimum-mean-square-error
(MMSE) for an arbitrary but fixed waveform, and derive the corresponding
filter for the filtered backprojection reconstruction. Second, the MMSE is fur-
ther reduced by finding an optimal transmit waveform. The transmit waveform
is derived for stochastic models of the scattering objects of interest (targets),
other scattering objects (clutter), and additive noise. We express the wave-
form in terms of spatial spectra for the random fields associated with target
and clutter, and the spectrum for the noise process. This approach results in
a constraint that involves only the amplitude of the Fourier transform of the
transmit waveform. Therefore, considerable flexibility is left for incorporating
additional requirements, such as minimal variation of transmit amplitude and
phase-coding.

1. Introduction

There are two main waveform design approaches in the radar literature, namely
the ambiguity and variational-based approaches. In the first approach, a range-
Doppler echo model is used with matched-filter processing. The waveforms are
designed and combined in order to create an approximate Dirac-delta ambiguity
function [1, 25, 7, 19, 20, 5, 11, 10, 13, 4]. In the second approach, the scene is
assumed to be static and therefore the range-only echo model is considered. As in
the first approach, matched filtering is used as a foundation for joint design of both
receive processing and waveforms for target detection, identification and classifica-
tion [9, 2, 18, 8, 21]. In [2, 18, 8] target detection is considered and the waveforms
are designed by maximizing the signal-to-noise or signal-to-interference ratios. In
[2], a mutual information criterion is also used to design optimal waveforms for
target classification. In both of the aforementioned approaches a monostatic radar
system is considered.

In this paper we consider a synthetic-aperture radar (SAR) system over a static
scene and present a variational approach to the design of both waveforms and an
image reconstruction method for high range-resolution imaging in the presence of
clutter and noise. Our waveform design criterion is based on minimization of the
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MSE between the reconstructed image and scatterers of interest. While our method
falls into the category of variational approaches, to our knowledge, it is the first
attempt to design waveforms for synthetic-aperture imaging.

Our study commences with the physics-based model which takes into account the
antenna beam pattern, transmitted waveform and geometric spreading factors. We
assume that the scene is composed of two parts, namely the scatterers of interest
(target) and unwanted scatterers (clutter). Furthermore we assume the measured
backscattered waves are corrupted by additive noise.

In [27] we showed how statistical information about the target, noise and clutter
can be combined with microlocal analysis in order to develop filtered-backprojection-
type, edge-preserving, target-enhancing, clutter-and-noise-suppressing reconstruc-
tion algorithms for radar imaging. Following [27], we derive the
filtered-backprojection-type image formation process that minimizes the MSE be-
tween the reconstructed image and the original target for a given waveform. We
extend this approach by designing waveforms that further reduce the MSE.

The organization of the paper is as follows: In Section 2, we introduce the math-
ematical model and relevant notation. In Section 3, we develop the generalized
filtered backprojection algorithm for image formation and derive the corresponding
reconstruction filter that minimizes the MSE in the presence of clutter and noise.
In Section 4 we optimize the result with respect to the transmitted waveforms, in
order to further minimize the MSE. We conclude our discussion and summarize our
results in Section 5.

2. Forward model

In this section we present our model for the measured backscatter signal resulting
from the transmission of a given waveform. First, we will describe the deterministic
case. Subsequently, we will present the signal model including additive measurement
noise, and employ a stochastic model for the scatterers.

We model the antenna as a time-varying current density over an aperture. This
current density creates an electromagnetic field, denoted by uin, that emanates from
the antenna. We assume that uin propagates through dry air, and since dry air is a
homogeneous medium, Maxwell’s equations for the electromagnetic field decouple
into three scalar wave equations (one for each vector component). We will consider
each vector component of the electric field separately, which means that we ignore
polarizing effects. Therefore uin satisfies

(∇2 − c−2
0 ∂2

t )uin(t,x) = −jtr(t,x),(1)

where c0 is the speed of light in dry air, where jtr(t,x) is proportional to the effective
current density, and where t ∈ R is time and x ∈ R3 is spatial location. For the
sake of simplicity we will assume that every point on the antenna aperture emits
the waveform p(t) with unit energy, i.e.,

jtr(t,x) = p(t)Jtr(x),(2)

and

‖p‖2 =

∫
|p(t)|2 dt = 1.(3)
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From (1), we use the free-space Green’s function [22]

g0(t,x) =
δ(t − |x|/c0)

4π|x| =
1

4π|x|

∫
e−i2πω(t−|x|/c0)dω(4)

to obtain

uin(t,x) = (g0 ∗ jtr)(t,x) =

∫
e−i2πω(t−|x−y|/c0)

4π|x− y| j̃tr(ω,y)dωdy.(5)

Here we have defined j̃tr(ω,x) and P (ω) as

j̃tr(ω,x) =

∫
jtr(t,x)ei2πtωdt = P (ω)Jtr(x),(6)

and

P (ω) =

∫
ei2πtωp(t) dt,(7)

respectively.
Next we assume that the antenna (or sensor array) is small compared to the

distance between the antenna and the scatterers. Thus we use the far-field approx-
imation (Fraunhofer approximation) to express the incident field as

uin(t,x,y) ≈
∫

e−i2πω(t−|x−y|/c0)

4π|x − y| P (ω,y)J̃tr(ω, x̂− y,y)dω,(8)

where the vector y denotes the center of the antenna, x̂ − y denotes a unit vector
in the same direction as x− y, and

J̃tr(ω, x̂ − y,y) = ei2πω/c0(x̂−y)·y

∫
e−i2πω/c0(x̂−y)·vJtr(v)dv.(9)

Note that in (8) we have introduced a y dependence on P which was not present in
(7). This facilitates the use of different waveforms at different antenna locations.

2.1. A model for the scattered field. When we place our antenna in an
environment with scatterers, the resulting field will differ from the incident field.
For our scalar model, the resulting field will be described by

(∇2 − c−2(x)∂2
t )u(t,x) = −jtr(t,x).(10)

where c(x) is the speed of light in the medium. We consider the field u to be
a sum of two parts; the incident field uin and the scattered field usc. Therefore,
substituting

u = uin + usc(11)

in (10) and using (1), we obtain

(∇2 − c−2
0 ∂2

t )usc(t,x) = V (x)∂2
t u(t,x),(12)

where the reflectivity density function V contains all the relevant information about
how the scattering medium differs from free space. The explicit relation between V
and the propagation speed is

V (x) =
1

c2(x)
− 1

c2
0

.(13)

A location x which is occupied by a target or by clutter thus corresponds to locations
where V (x) 6= 0. Discontinuities and other singularities of V correspond to edges
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and other structures which produce significant scattering from the object. It is
therefore these singularities that we would like to reconstruct as our image.

We employ the Born or single-scattering approximation [15, 16] to (12). In other
words we replace the full field u on the right side of (12) by the incident field uin.
Solving the resulting differential equation leads to

usc(t,x) ≈ −
∫

g0(t − τ,x − z)V (z)∂2
τ uin(τ, z)dτdz

= −
∫

V (z)

4π|x− z|∂
2
t uin(t − |x− z|/c0, z)dz.(14)

For the incident field (8), (14) becomes

usc(t,x,y) ≈
∫

e−i2πω(t−(|x−z|+|z−y|)/c0)

(4π)2|x − z||z − y|
× (2πω)2P (ω,y)J̃tr(ω, ẑ − y,y)V (z)dωdz.

(15)

2.2. A model for the ideal received signal. The field is measured by the
receiving antenna; the reception process results in a beam pattern for reception
J̃rc(ω, ẑ − x,x). Thus a model for the signal received at x from a source at y is

usc(t,x,y) ≈
∫

e−i2πω(t−(|x−z|+|z−y|)/c0)

(4π)2|x − z||z − y| (2πω)2

× P (ω,y)J̃tr(ω, ẑ− y,y)J̃rc(ω, ẑ− x,x)V (z)dωdz.

(16)

For common SAR applications, the transmitter and the receiver are colocated.
Hence we will set x = y. The ideal received signal then becomes

ũsc(t,y) ≈
∫

e−i2πω(t−2|y−z|/c0)P (ω,y)A(z,y, ω)V (z)dωdz,(17)

where

A(z,y, ω) =
(2πω)2J̃tr(ω, ẑ − y,y)J̃rc(ω, ẑ − y,y)

(4π)2|y − z|2 .(18)

So far all spatial variables have been vectors in R3. We now assume the earth’s
surface is located at the position given by z = ψ(x), where the function ψ : R2 → R3

is known. Throughout this document we will use a bold roman font and a bold italic
variation to distinguish between vectors in R3 and R2, respectively: x ∈ R3 and
x ∈ R2. Because electromagnetic waves are rapidly attenuated in the earth, we
assume that the scattering takes place in a thin region near the surface; hence we
also assume that the perturbation in wave speed c is of the form

V (z) = c−2(z) − c−2
0 = VG(z)δ(z −ψ(z)).(19)

Thus, we are going to image VG, which will be referred to as the ground reflectivity

function. In this situation, we replace the 3D volume integral in (17) by a 2D
surface integral. The received field at sensor location y and time t can therefore be
approximated by the expression [17]

(20) ũsc(t,y) =

∫∫
e−i2πω(t−2|ψ(x)−y|/c0)P (ω,y)A(x,y, ω)VG(x)dωdx,

where ω denotes the angular frequency. Here x ∈ R2, dx is the 2D surface measure,
and A(x,y, ω) is shorthand for A(ψ(x),y, ω).
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The idealized inverse problem is to determine VG from the knowledge of ũsc

for t ∈ (T1, T2) and for y over a curve γ in R3. We parameterize the curve γ as
γ := { γ(s) : smin < s < smax }. We now make the start-stop approximation,
i.e., we assume that the scene does not change during the time it takes for a single
transmit pulse to illuminate the scene. This allows us to write the data for the
idealized inverse problem in terms of the two parameters s (“slow time”) and t
(“fast time”):

d̃(t, s) = FP [VG](t, s),(21)

where

FP [VG](t, s) =

∫
e−i2πω[t−2|rs,x|/c0]AP (x, s, ω)VG(x) dωdx,(22)

where we have used the notation rs,x = ψ(x) − γ(s) and

AP (x, s, ω) = P (ω, s)A(x, s, ω).(23)

Here we have used the shorthand notation P (ω, s) and A(x, s, ω) for P (ω,γ(s)) and
A(x,γ(s), ω).

We will assume that the amplitude AP of (22) satisfies the following criterion:

(24) sup
(s,x)∈K

| ∂α
ω∂β

s ∂ρ1

x1
∂ρ2

x2
AP (x, s, ω) | ≤ C (1 + ω2)(2−|α|)/2,

where K is any compact subset of R×R2, and the constant C depends on K, α, β, ρ1,
and ρ2. This assumption is needed in order for various stationary phase calculations
hold, and ensures that the “forward” operator FP is a Fourier Integral Operator
[6, 23, 12]. Assumption (24) is valid, for example, when the transmit waveform
is a short pulse and the antenna is sufficiently broadband. We note that AP can
be complex; it can be used to model non-ideal antenna behavior such as phase
aberrations and frequency-dependent changes in the beam pattern. With minor
modifications it can also be used to model phased arrays.

We will consider the case where the reflectivity function is a random field, and
the measurement is contaminated by additive noise. In this regard we will modify
the model (21) in two ways. First, we assume that VG is composed of two parts

VG = T + C,(25)

where T corresponds to the target (scatterers of interest) and C to clutter (unwanted
scatterers). Second, we include additive noise n, which models thermal fluctuations
in the receiver. The data is in this case

d(t, s) = FP [T + C](t, s) + n(t, s).(26)

We assume that the noise is a zero-mean second-order stochastic process. Fur-
thermore, we assume that the noise is stationary in the fast time variable t, statis-
tically uncorrelated in the slow time variable s, and that the power spectral density
Sn is given by∫

ei2πωte−i2πω′t′E[n(t, s)n(t′, s′)]dtdt′ = Sn(ω, s)δ(ω − ω′)δ(s − s′).(27)

Similarly, we assume that the target T and clutter C are realizations of zero-
mean second-order random fields, and C and T are statistically independent, i.e.,

E[T (x)C(x′)] = 0. The zero-mean assumption about the target is needed for the
current analysis to result in a MMSE reconstruction method. If this assumption is
removed we will instead obtain a minimum-variance reconstruction [27].
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Let RT and RC denote the autocorrelation functions of T and C, respectively:

E[T (x)T (x′)] = RT (x,x′),(28)

E[C(x)C(x′)] = RC(x,x′).(29)

Then the power spectral densities S̃T and S̃C of T and C respectively, are defined
by

RT (x,x′) =

∫∫
e−i2πx·ζei2πx′·ζ′ S̃T (ζ, ζ′)dζdζ′(30)

RC(x,x′) =

∫∫
e−i2πx·ζei2πx′·ζ′ S̃C(ζ, ζ′)dζdζ′.(31)

3. Image Formation

In this section we present our image formation process. We will form the image
T̃ (z) by means of a filtered backprojection (FBP) [17, 27] operator BQ

T̃ (z) = BQ[d](z),(32)

where BQ is defined by

BQ[d](z) :=

∫∫
Q(z, s, ω)ei2πω[t−2|rs,z|/c0]d(t, s) dω dt ds,(33)

with Q being a filter to be determined below. The FBP-type image formation
methods are both computationally efficient and simple to implement. Furthermore,
FBP results in an image in which visible edges are preserved [17]. FBP type image
formation methods are therefore attractive from a practical point of view [24].

In order to determine the filter Q, we will examine the point-spread function
(PSF) which is obtained as the resulting integral kernel from inserting (22) into
(33). We see that BQ(FP [VG])(z) now is

BQ(FP [VG])(z) =

∫
ei2π(ω[t−2|rs,z|/c0]−ω′[t−2|rs,x|/c0])

× Q(z, s, ω)AP (x, s, ω′)VG(x)dx dω′dt dω ds.

(34)

We perform the t and ω′ integrations in (34) to obtain

BQ(FP [VG])(z) =

∫
ei2π2ω[|rs,x|−|rs,z|]/c0Q(z, s, ω)AP (x, s, ω)VG(x) dx dω ds.

(35)

As in [17], we use the identity

h(x) − h(z) = (x− z) ·
∫ 1

0

∇h(z + λ(x− z))dλ(36)

with h(x) = (2ω/c0) |rs,x| to write the exponent of (36) as

2ω

c0
(|rs,x| − |rs,z|) =

2ω

c0
(x− z) · Ξ(s,x, z).(37)

For x = z this becomes

Ξ(s,x,x) = ∇h(x) = r̂s,x · Dψ(x),(38)
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where Dψ denotes the Jacobian matrix of derivatives with respect to x. Making
the Stolt change of variables

(s, ω) → ξ =
2ω

c0
Ξ(s,x, z),(39)

we transform (35) into

BQ(FP [VG])(z) =

∫
ei2π(x−z)·ξQ(z, ξ)AP (x, ξ)η(x, z, ξ)VG(x) dξ dx,(40)

where

η(x, z, ξ) = |∂(s, ω)/∂ξ|(41)

is the corresponding Jacobian determinant.
In [27], to determine Q, we examined the degree to which the image T̃ reproduces

the true T , or at least the best approximation to T we could hope to obtain from
our limited data. The best approximation to T is determined by the flight path
and the frequency band of the radar system. In particular, the best mean square
approximation TΩ to T is

TΩ(z) = IΩT (z) =

∫

Ωz

ei2π(x−z)·ξT (x) dξ dx

=

∫
ei2π(x−z)·ξIΩ(z, ξ)T (x) dξ dx,(42)

where IΩ(z, ξ) is the function that is 1 if ξ is in the set Ωz and zero otherwise.
Here the set Ωz is the set of ξ determined by the flight path and frequency band
obtained from the Stolt change of variables (39)

(43) Ωz = {ξ = 2(ω/c0)r̂s,z · Dψ(z) | smin ≤ s ≤ smax, ωmin ≤ ω ≤ ωmax}.
For further details on this set we refer to [26, 27].

We will now determine the filter QP which is optimal in the sense that it yields
an image with minimum MSE when compared to TΩ.

Let

E(z) = T̃ (z) − TΩ(z)

= BQ (FP [VG]) (z) − IΩT (z),(44)

be the error and

J (Q) =

∫
E|E(z)|2dz(45)

be the MSE. Then the optimal filter QP is defined such that

QP = argmin
Q

J (Q).(46)

In order to find QP explicitly, first we calculate J (Q)

J (Q) =

∫
E

[
|BQ (FP [VG]) (z) − IΩT (z)|2

]
dz

=

∫
E

[
|(BQFP − IΩ)T (z) + BQFP C(z) + BQn(z)|2

]
dz

= JT (Q) + JC(Q) + Jn(Q),(47)
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where IΩ is defined as in (42) and

JT (Q) =

∫
E

[
|(BQFP − IΩ)T (z)|2

]
dz(48)

JC(Q) =

∫
E

[
|BQFP C(z)|2

]
dz(49)

Jn(Q) =

∫
E

[
|BQn(z)|2

]
dz.(50)

The cross terms in (47) disappear because we are assuming that the target, clutter
and noise are all statistically independent, and clutter and noise have zero mean.

We now make the assumption that target and clutter are stationary random
fields, i.e.,

S̃T (ξ, ξ′) = ST (ξ)δ(ξ − ξ′)(51)

S̃C(ξ, ξ′) = SC(ξ)δ(ξ − ξ′).(52)

In this case the leading order terms of JT (Q), JC(Q) and Jn(Q) are given by

JT (Q) ∼
∫

|Q(z, ξ)AP (z, ξ)η(z, z, ξ) − IΩ(z, ξ)|2ST (ξ) dξ dz,(53)

JC(Q) ∼
∫

|Q(z, ξ)AP (z, ξ)η(z, z, ξ)|2SC(ξ) dξ dz,(54)

Jn(Q) ∼
∫

|Q(z, ξ)|2η(z, z, ξ)Sn(ξ) dξ dz.(55)

See Appendix B for details.
In Appendix B we also compute the variational derivative of (47) with respect

to Q as

J (Q + εQε) =
d

dε

∣∣∣∣
ε=0

JT (Q + εQε) +
d

dε

∣∣∣∣
ε=0

JC(Q + εQε) +
d

dε

∣∣∣∣
ε=0

Jn(Q + εQε)(56)

∼ 2Re

∫∫
Qε

[
AP η (QAP η[ST + SC ] − ST IΩ) + QηSn

]
dξdz.(57)

In order for (56) to be zero at QP for any Qε,

AP (QP AP η[ST + SC ] − ST IΩ) + SnQP = 0.(58)

Thus we obtain [26]

QP (z, ξ) =
IΩ(z, ξ)ST (ξ)AP (z, ξ)

|AP (z, ξ)|2η(z, z, ξ)[ST (ξ) + SC(ξ)] + Sn(ξ)
.(59)

Substituting (59) back into (53)-(55) and using (47) we get a high-frequency as-
ymptotic expression for the MMSE in the reconstructed image

J (QP ) ∼
∫

[|P (ξ)|2|A(z, ξ)|2η(z, z, ξ)SC(ξ) + Sn(ξ)]IΩ(z, ξ)ST (ξ)

|P (ξ)|2|A(z, ξ)|2η(z, z, ξ)[ST (ξ) + SC(ξ)] + Sn(ξ)
dξ dz.(60)

Here AP = P (ξ)A(z, ξ) has been written out explicitly.
In the ideal situation, where there is no clutter and no measurement noise, em-

ploying QP from (59) yields an accurate reconstruction in the sense that the as-
ymptotic expression for MMSE in (60) is zero. This is the filter presented in [17],
which provides an unbiased, and hence high-resolution reconstruction of the tar-
get. However, in the presence of clutter and noise, the reconstructed image will be
contaminated by clutter and filtered backprojected noise. In the case when target

Inverse Problems and Imaging Volume 1, No. 3 (2007), 577–592
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has zero mean, (59) gives the filter presented in [27] that minimizes the MSE. The
MMSE criterion results in a reconstruction which preserves the visible edges of the
target are preserved while optimally suppressing the edges due to clutter and noise.
However, it is a biased reconstruction, and achieves this suppression by introducing
loss of contrast [27].

4. Waveform Design

In Section 3 we presented a filtered-backprojection-type reconstruction method
that minimizes the MSE. By (60), the resulting error depends on the choice of the
transmitted waveform. We will now proceed to further minimize the reconstruction
error by designing an optimal transmit waveform. To this end we will minimize
the MMSE subject to the constraint that the total transmitted energy along the
flightpath is a constant M , i.e.,

∫
|P (ω, s)|2dω ds = M.(61)

First, we perform an inverse Stolt change of variables ξ → (s, ω) and re-write (60)

J (QP ) ∼
∫

[Λ(z, s, ω)SC(z, ω, s) + Sn(ω, s)]IΩ(z, ω, s)ST (z, ω, s)

Λ(z, s, ω)[ST (z, ω, s) + SC(z, ω, s)] + Sn(ω, s)

dω ds

η(z, ω, s)
dz,

(62)

where

Λ(z, s, ω) = |P (ω, s)|2|A(z, s, ω)|2η(z, ω, s).(63)

In order to determine the waveform which minimize the asymptotic MMSE, we
employ the method of Lagrange multipliers. To this end we define a cost functional
Jλ(P )

Jλ(P ) = J(QP ) + λ

(∫
|P (ω, s)|2dω ds − M

)
,(64)

which we then minimize with respect to P and λ. In order to keep the expressions
cleaner, we will now mostly drop writing out the arguments of each function.

To simplify the computation of the variational derivative we note that Jλ(P )

depends only on |P |2. We may therefore equivalently minimize Ĵλ(|P |2) with respect
to |P |2

Ĵλ(|P |2) = Jλ(P ).(65)

Let W = |P |2. By (65), the square root of the minimizer W of Ĵλ(W ) is also a

minimizer of Jλ(P ). Taking the variational derivative of Ĵλ(W ) with respect to W ,
we have

d

dε

∣∣∣∣
ε=0

Ĵλ(W + εWε) =

∫
Wε

−|A|2S2
T Sn

[W |A|2η[ST + SC ] + Sn]
2 dx dω ds + λ

∫
Wε dω ds.

(66)

In order for the right hand side of (66) to be zero for all Wε, we must have
∫ |A|2S2

T /Sn

[W |A|2η[ST + SC ]/Sn + 1]2
dx = λ.(67)
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Furthermore, since [W |A|2η[ST + SC ]/Sn + 1]2 ≥ 1, we conclude from (67) that

0 ≤ λ ≤
∫

|A|2S2
T dx/Sn.(68)

To gain some insight, we will consider two special cases; namely, a low-noise and
noise-dominated situation.

Low-noise case: If there is no additive noise, we see already from (60) that the
waveform is not important since it simply drops from the expression for the MMSE

Jnoisefree(QP ) ∼
∫

SC(ξ)ST (ξ)

ST (ξ) + SC(ξ)
IΩ(z, ξ) dξ dz.(69)

Consider therefore instead the limiting case where the noise level goes to zero. We
can approximate (67) by

Sn

∫ |A|2S2
T

[W |A|2η[ST + SC ]]2
dx = λ.(70)

This can be solved in terms of W to obtain the solution

W ≈
√

Sn

λ

∫ |A|2S2
T

[|A|2η[ST + SC ]]2
dx.(71)

We see that the Lagrange multiplier λ turns out to be a parameter which is adjusted
to satisfy the power constraint. Therefore, λ is determined from

M =

∫
Wdωds =

∫ √
Sn

λ

∫ |A|2S2
T

[|A|2η[ST + SC ]]2
dxdωds.(72)

At frequencies with strong clutter scattering, the denominator of (71) is large,
which results in a waveform with low power at the clutter frequencies. On the other
hand, at frequencies at which the target scatters strongly, the numerator |A|2S2

T is
large, so the waveform has high power at the target frequencies.

Noise-dominant case: For the noise-dominant case we will assume that

W |A|2η[ST + SC ]/Sn << 1.(73)

This enables us to use a first-order series expansion of the fraction in (67) to obtain

λ ≈
∫ |A|2S2

T

Sn

[
1 − 2W |A|2η [ST + SC ]

Sn

]
dx.(74)

We therefore obtain an expression for W (ω, s) in the noise-dominant case

W ≈ Sn

(∫
|A|2S2

T dx− λSn

)

2
∫
|A|4ηS2

T [ST + SC ] dx
.(75)

Again, λ must be determined using the total power constraint. Obviously, we need
for λ <

∫
|A|2S2

T dx/Sn to hold in order to avoid negative values for W (ω, s), which
is positive by definition. This constraint on λ, however, coincides with the one
already noted in (68).

General case: The general case of (67) is unfortunately hard to solve analyti-
cally. However, we can gain some further insight into the solution by defining the

Inverse Problems and Imaging Volume 1, No. 3 (2007), 577–592



Waveform Design for SA Imaging 587

following quantities

φT (x, ω, s) =
|A|2S2

T∫
|A|2S2

T dx
(76)

φn(ω, s) =
Sn∫

|A|2S2
T dx

.(77)

We note that φT is a unit-mass weight function which emphasizes spatial regions
where the antenna beam pattern multiplied by the target spectrum is large, i.e.,

regions from which we expect strong contributions from the target. On the other
hand, φn represents a noise-to-signal ratio. Using definitions (76) and (77), we can
simplify (67) as follows

√
1

λφn

∫
φT

[|A|2η[ST + SC ] + Sn/W ]2
dx =

W

Sn
,(78)

with the requirement that 0 ≤ λ ≤ 1/φn. Thus we see that the important quantity
which we determine is not the amplitude squared, W, but the ratio between the
amplitude squared and the noise spectrum, W/Sn. We observe that by choosing
λ > 0 close to zero, the value of W (ω, s)/Sn(ω, s) can be made arbitrarily large. This
is the unconstrained solution which combats additive noise by transmitting a large
amount of energy. As λ increases, the magnitude of W/Sn decreases monotonically.
Thus, a solution can be found numerically by solving (78) for an initial value of λ
to obtain Wλ. The value of λ should then be gradually increased until the power
constraint ∫

Wλ(ω, s)dωds = M(79)

is satisfied. This will yield a solution for the amplitude squared of the transmit
waveform.

Summary: We recall that the temporal Fourier transform of the optimal wave-
form should therefore have amplitude |P | =

√
W . Our two explicit cases are there-

fore

|P (ω, s)|√
Sn(ω, s)

≈





√
1−λφn

2
R

φT |A|2η[ST +SC ] dx
, noise-dominated case

(
1

λφn

∫
φT

(|A|2η[ST +SC ])2
dx

) 1

4

, low-noise case
.(80)

We see for both that the ratio between transmit waveform amplitude and noise
spectrum involves dividing by a spatial weighted average of f = |A|2η(ST + SC).
In the noise-dominated case, we divide by a weighted arithmetic mean

∫
φT f . In

the low-noise case, we divide by a weighted harmonic mean
[∫

(φT /f2)
]−1

of f2. In
both cases, the weight φT emphasizes regions where the target scatters strongly.

The harmonic mean of a function will be more influenced by its smallest values
than the arithmetic mean. Dividing by the harmonic mean for the low-noise case will
thus ensure that more emphasis is placed on spectral components with little clutter
than in the noise-dominated case. This difference is further enhanced since in the
low-noise case we employ an average of (|A|2η[ST +SC ])2 instead of |A|2η[ST +SC ].

We also see that the noise-to-signal quantity λφn will determine the magnitude
of P as a function of ω when λ is set to satisfy the power constraint. It is reasonable
to expect a similar behaviour also for the general case.

An interesting observation is that only the amplitude, and not the phase, is
constrained for the Fourier transform of the optimal waveform. Therefore, we do
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not determine a single waveform, but rather obtain a class of waveforms which
satisfy this condition. We have considerable flexibility to impose additional design
criteria within this class, such as constant transmit amplitude. However, this is is
beyond the scope of our current investigation, and is left for future work.

5. Concluding remarks

In this paper we presented a waveform design method for synthetic-aperture
imaging, where we modeled the objects of interest as random fields. We determine
the optimal transmit waveform with respect to the MSE between the object of
interest and the reconstructed image subject to the total transmit power constraint
over a given flight path.

In [26], for fixed waveform, we derived a filtered-backprojection-type reconstruc-
tion method the filter of which was optimally designed to achieve the MMSE. The
MMSE, however, depends on the transmitted waveform. In the current work, we
designed the optimal waveform that further reduces the MMSE by appropriately
chosen waveforms.

Two important cases for the waveform design are computed analytically, namely
low-noise and noise-dominated measurements. This is summarized in (80). In both
these cases λ is a parameter which is adjusted to obtain a specific total transmit
power according to (61); Sn is the spectrum for the additive noise; the functions ST

and SC are spectral characterizations of the target and clutter distributions; and
φn defined in (77) is a noise-to-signal ratio. Furthermore, the quantities A and η
are related to the physical model of the antenna (18) and antenna trajectory (41),
and φT is a weight function φT defined in (76).

The geometric spreading factors included in the quantity A imply that |A| decays
rapidly as a function of the distance between the antenna and the scatterers. Many
applications will therefore be close to the noise-dominated case.

An interesting feature of our approach is that only the transmit waveform am-
plitude is constrained by the MMSE reconstruction criterion. In effect what we are
doing is determining an optimal frequency band for the transmit waveform. The
results appear somewhat surprising at first glance: they do not avoid frequency
bands with high levels of additive noise. In fact, in both the noise-dominant and
low-noise situation, the important quantity which is determined is |P |2/Sn, thus to
a certain extent emphasizing frequencies with a lot of additive noise. A comment
about this is therefore warranted.

First of all we should remember that the measurement noise will not be depen-
dent upon the transmit waveform. It will be present in the measurement regardless
of what is transmitted. The only way to filter out measurement noise is to filter
the measurements. However, the clutter signal will depend on the transmit wave-
form. It therefore makes sense to design the waveform in such a way as to stay
away from the clutter spectrum. Since our reconstruction criterion implicitly takes
image resolution into account, it will be beneficial to perform image reconstruction
using a broad bandwidth. The optimal pulse accomplishes this by distributing the
transmit power over the entire frequency band in such a way that the clutter signal
is suppressed whilst also maintaining an appropriate ratio between target signal and
additive noise. We therefore transmit more power on frequencies where there is a
lot of noise, and filter out the noise in the receive signal instead. The result can
be observed by inserting the waveform for the noise-dominant case of (80) into the
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expression for the asymptotic MMSE in (62) to obtain

J (QP ) ∼
∫

[
(1−λφn)

2
R

φT |A|2η[ST +SC ] dx
|A|2ηSC + 1

]
IΩST

(1−λφn)
2

R

φT |A|2η[ST +SC ] dx
|A|2η[ST + SC ] + 1

dω ds

η(z, ω, s)
dz.(81)

When compared to (62) for a general waveform, we see that the leading-order terms
containing Sn have been cancelled out. The remaining effect of the additive noise is
purely from the transmit power constraint in terms of the noise-to-signal-ratio φn.

The additional flexibility in waveform design provided in the phase can be ex-
ploited to introduce additional design criteria. For example, it might be desirable
to choose the phase in such a way that the transmit amplitude remains almost
constant over the transmit pulse, or employ phase-coding schemes. This will not,
however, have any effect on the resulting error measured by our design criterion
which is the MMSE. It is therefore not addressed in the current paper.
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Appendix A. The Stationary Phase Theorem

The stationary phase theorem [3, 12, 14] states that if a is a smooth function
of compact support on Rn, and φ has only non-degenerate critical points, then as
ω → ∞,

∫
ei2πωφ(x)a(x)dx =

∑

{x0:Dφ(x0)=0}

(
1

ω

)n/2

a(x0)
ei2πωφ(x0)ei(π/4)sgnD2φ(x0)

√
|detD2φ(x0)|

+ O(ω−n/2−1).

(82)

Here Dφ denotes the gradient of φ, D2φ denotes the Hessian, and sgn denotes the
signature of a matrix, i.e., the number of positive eigenvalues minus the number of
negative ones.

Appendix B. Computing JT (Q), JC(Q) and Jn(Q)

Writing BQFP as in (40) and IΩ as in (42),

(83) JT (Q) =

∫
ei2π(x−z)·ξ[Q(z, ξ)AP (x, ξ)η(x, z, ξ) − IΩ(z, ξ)]RT (x,x′)

× e−i2π(x′−z)·ξ′ [Q(z, ξ′)AP (x′, ξ′)η(x′, z, ξ′) − IΩ(z, ξ′)] dξ dx dξ′ dx′ dz.

We apply the method of stationary phase (see Appendix A) to the ξ and z integrals
of (83). The phase is proportional to (x − z) · ξ − (x′ − z) · ξ′, so the critical

1Consequently, the US Government is authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the US Government.
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conditions are ξ = ξ′ and z = x′. Thus the contribution of the leading order term
of (83) is

(84) JT (Q) ∼
∫

ei2π(x−x′)·ξ[Q(x′, ξ)AP (x, ξ)η(x,x′, ξ) − IΩ(x′, ξ)]RT (x,x′)

× [Q(x′, ξ)AP (x′, ξ)η(x′,x′, ξ) − IΩ(x′, ξ)] dξ dx dx′.

Similarly,

JC(Q) ∼
∫

ei2π(x−x′)·ξQ(x′, ξ)AP (x, ξ)η(x,x′, ξ)RC(x,x′)

× Q(x′, ξ)AP (x′, ξ)η(x′,x′, ξ) dξ dx dx′.

(85)

We substitute (30) and (31) in (84) and (85)

JT (Q) ∼
∫

ei2π(x−x′)·ξe−i2πx·ζei2πx′·ζ′

× [Q(x′, ξ)AP (x, ξ)η(x,x′, ξ) − IΩ(x′, ξ)]S̃T (ζ, ζ′)

× [Q(x′, ξ)AP (x′, ξ)η(x′,x′, ξ) − IΩ(x′, ξ)] dζdζ′ dξ dx dx′,

(86)

JC(Q) ∼
∫

ei2π(x−x′)·ξe−i2πx·ζei2πx′·ζ′Q(x′, ξ)AP (x, ξ)η(x,x′, ξ)S̃C(ζ, ζ′)

× Q(x′, ξ)AP (x′, ξ)η(x′,x′, ξ) dζdζ′ dξ dx dx′,

(87)

and then apply the method of stationary phase to the x′ and ξ integrals. The phase
is proportional to x · (ξ− ζ) +x′ · (ζ′ − ξ), so the critical conditions are ξ = ζ′ and
x′ = x. The leading order terms of (48) and (49) are then

JT (Q) ∼
∫

e−i2πx·(ζ−ζ′)|Q(x, ζ′)AP (x, ζ′)η(x,x, ζ′) − IΩ(x, ξ)|2

× S̃T (ζ, ζ′)dζdζ′ dx,

(88)

JC(Q) ∼
∫

e−i2πx·(ζ−ζ′)|Q(x, ζ′)AP (x, ζ′)η(x,x, ζ′)|2S̃C(ζ, ζ′)dζdζ′ dx.(89)

Using (51) and (52) in (88) and (89) the results in (53) and (54) follows.
Since we assumed that noise is stationary in t and statistically uncorrelated in s,

we can insert (27) into (50) to obtain

Jn(Q) =

∫
Sn(ω, s)|Q(z, s, ω)|2 dω ds dz(90)

The Stolt change of variables then leads to the result stated in (55)
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From (88), (89) and (90), we compute the variational derivatives of JT , JC and
Jn to be

d

dε

∣∣∣∣
ε=0

JT (Q + εQε) ∼ 2Re

∫
e−i2πx·(ζ−ζ′)QεAP ηS̃T (ζ, ζ′)(QAP η − IΩ) dζ dζ′ dx

(91)

d

dε

∣∣∣∣
ε=0

JC(Q + εQε) ∼ 2Re

∫
e−i2πx·(ζ−ζ′)QεAP ηS̃C(ζ, ζ′)QAP η dζ dζ′ dx

(92)

d

dε

∣∣∣∣
ε=0

Jn(Q + εQε) ∼ 2Re

∫
QεQηSn dζ dx

(93)
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[12] A. Grigis and J. Sjöstrand, “Microlocal Analysis for Differential Operators: An Introduction,”

London Mathematical Society Lecture Note Series, Vol. 196. Cambridge University Press,
Cambridge, 1994.

[13] J. Guey and M. Bell, Diversity waveform sets for delay-doppler imaging, IEEE Transactions
on Information Theory, 44 (1998), 1504 – 1522.

[14] V. Guillemin and S. Sternberg, “Geometric Asymptotics,” American Math. Society, Provi-
dence, 1979.

[15] G. Herman, H. K. Tuy, K. Langenberg, and P. Sabatier, “Basic Methods of Tomography and
Inverse Problems,” Adam Hilger, Philadelphia, PA, 1988.

[16] K. Langenberg, M. Brandfass, K. Mayer, T. Kreutter, A. Brüll, P. Felinger, and D. Huo,
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