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Abstract: We introduce a beam-hardening correction method for lab-based X-ray computed
tomography (CT) by modifying existing iterative tomographic reconstruction algorithms. Our
method simplifies the standard Alvarez-Macovski X-ray attenuation model (Physics inMedicine &
Biology, 5, 733 [1976]) and is compatible with conventional (i.e. single-spectrum) CT scans. The
sole modification involves a polychromatic projection operation which is equivalent to applying a
weighting that more closely matches the attenuation of polychromatic X-rays. Practicality is a
priority, so we only require information about the X-ray spectrum and some constants relating
to material properties. No other changes to the experimental setup or the iterative algorithms
are necessary. Using recontructions of simulations and several large experimental datasets, we
show that this method is able to remove or reduce cupping, streaking, and other artefacts from
X-ray beam hardening and improve the self-consistency of projected attenuation in CT. When
the assumptions made in the simplifications are valid, the reconstructed tomogram can even be
quantitative.

© 2020 Optical Society of America

1. Introduction

X-ray computed tomography (XCT) is a versatile tool in widespread use that produces 3D volume
information non-destructively [1, 2]. The 3D volume (or tomogram), which maps the spatial
distribution of the X-ray attenuation coefficients in the object, is reconstructed from the measured
set of 2D radiographs (or projections). However, the quality of XCT tomograms are often
degraded by artefacts, a major example being beam-hardening artefacts [3–5]. In lab-based
XCT, the X-rays are polychromatic, i.e. the X-ray beam contains X-ray photons of different
energies. The polychromatic X-rays produced by lab sources harden (i.e. their mean energy
becomes higher) as they pass through attenuating materials, because the soft (i.e. low-energy)
X-rays are preferentially attenuated [6]. Common reconstruction algorithms such as Filtered
back-projection [7] and the Simultaneous Iterative Reconstruction Technique (SIRT) [8] assume
no such change in the X-ray spectrum, since the mathematical model which underpin these
algorithms is only valid for monochromatic X-rays without scatter. It is therefore not surprising
that artefacts appear in the tomographic reconstructions for experiments which use polychromatic
X-rays. For example, in Fig. 1, two types of artefacts are visible: cupping raises the attenuation
around the edges of the object; streaking smears the attenuation values of objects into the region
between them.
The artefacts that appear in a tomogram due to X-ray beam hardening can limit its utility for

non-destructive evaluation and analysis. Ideally, each tomogram voxel should take the value of
the attenuation coefficient of the material in that voxel. However, beam-hardening alters the
attenuation coefficients so that features in the reconstruction no longer correspond to what is
present in the object. For example, in dental X-rays, the cupping effects of beam hardening
may be indistinguishable from the change in natural mineral concentration in teeth enamel [9].
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Fig. 1. Reconstruction of simulated data for square beams of aluminium (left) and
marble (right), both 0.2× 0.2mm in size. The simulated projection data were generated
using X-rays from a Tungsten target with 100keV accelerating voltage and no filtering.
The tomograms have been reconstructed with 10 iterations of (a) conventional ordered
subset SIRT; (b) ordered subset SIRT modified with our proposed polychromatic
method.

This effect is more pronounced in applications involving quantitative analysis or classification of
materials. For example, in geological samples, feldspar would be wrongly classified as quartz at
the edge of the sample due to cupping [10]. Removing beam-hardening artefacts is essential for
accurate analysis in these scenarios.
There are hardware and software approaches that deal with beam-hardening artefacts. The

principle hardware approach in the lab is filtering, where the X-ray beam is attenuated or
pre-hardened. This reduces the proportion of soft X-rays in the illuminating beam, which then
has less potential to harden as it passes through the sample [11]. However, filtering comes at the
cost of decreased flux and signal-to-noise ratio (SNR) in the raw measured data.
Linearisation is a simple and commonly used software correction method. This involves

remapping the measured attenuation of polychromatic X-rays into an equivalent attenuation
of monochromatic X-rays by linearising the total-attenuation/thickness relation of the material
[12–14]. Linearisation does not address the cause of beam hardening and only deals with the
symptoms, since it directly modifies the experimental data. If the object consists of a single
material, linearisation can accurately compensate for beam hardening and requires only one
calibration scan (typically with a wedge of the material to produce the linear relations, e.g. [15]).
The attenuation component can also be approximated by joining two lines together, their gradients
depend on the distance the beam has travelled in the object [16]. For multi-material objects, this
calibration, with additional Segmentation and estimation of the path-length, is required for each
material, since they all have unique attenuation-distance curves [17]. For two materials, this can
be avoided by assuming the lower attenuating material has zero attenuation [18]. Nevertheless,
it is common to choose a single curve to correct the entire dataset even if the correction is
only approximate (e.g. [13]). In general, linearisation is complicated and less effective for the
multi-material case since beam-hardening artefacts make both segmentation and path-length
estimation unreliable.

Dual-energy CT methods have both software and hardware components. It involves taking two
completeXCT scans of the samplewith differentX-ray spectra and using the additional information
to solve for the two independent components of the material attenuation coefficients [19–21].
Because they incorporate polychromatic models in the reconstruction algorithm itself, they
deal with the cause of the issue. The Alvarez-Macovski (AM) model is the usual model for
X-ray attenuation in dual-energy XCT. It describes X-ray attenuation as the sum of photoelectric
effect and Compton (or inelastic) scattering [19]. The AM model approximates the attenuation



of low atomic number materials reasonably well, but is limited for heavier elements since it
does not account for the discontinuities in X-ray attenuation at material absorption edges. The
photoelectric absorption and Compton scattering changes differently with energy, but the two
scans provide sufficient information to solve for the magnitude of each effect and therefore
generate corrected tomographic reconstructions. Unfortunately, dual-energy methods require
either expensive energy-resolving detectors or longer acquisition time and dose.
Recent iterative software methods, such as [22, 23], try to incorporate a correction method

inside the iterative tomographic reconstruction algorithm. De Man et al. in [22] adapts the
AM two component model inside a maximum-likelihood for transmission tomography (ML-TR)
algorithm [24]. The resulting corrected reconstruction is a natural consequence of the physics,
and no more details need to be supplied. However, this method has a high computational
cost. Another method with similar high computational cost was presented by van Gompel
et al., which uses gradient based optimisation to segment the object into different materials,
and then fit the parameters of the AM two component AM model before carrying out each
iteration in the reconstruction algorithm [25]. If the materials are known, then the decomposition
and reconstruction can happen in one step, with no need for the AM model, for example [26].
However, this method is less suitable when the composition of the reconstruction is unknown.
Unsurprisingly, iterative methods incorporating beam-hardening correction have not yet entered
widespread use since iterative methods themselves have only recently become practical due to
increased computational power. The additional complexity introduced by the correction schemes
makes them even less accessible to general users of XCT. A common method to simplify the
attenuation model is to ignore Compton scattering and consider only the photoelectric absorption
mechanism of attenuation (e.g., [27]). Here we explore several other simplifications as well that
may be more appropriate in certain scenarios.

We present a beam-hardening correction method that integrates with any conventional iterative
tomographic reconstruction algorithm and still solves the cause of the issue. Given the X-
ray spectrum used in the experiment, we modify the forward-projection operation to yield a
polychromatic model of X-ray attenuation. Using this accurate forward model, we can more
closely approximate the actual attenuation process involved in experiments using polychromatic
X-rays and account for beam hardening. The results are tomograms that have reduced artefacts and,
when the assumptions are valid, voxel gray-scale values that match attenuation coefficients. Like
De Man et al. we incorporate simplifications of the AM model as the basis of our polychromatic
model [22]. However, our focus is to ensure it is practical to implement and deploy in production
environments.
The remainder of the paper proceeds as follows: In Sect. 2 we outline the general concept

of our proposed method, the various assumptions required and simplifications made to the AM
model. The implementation of the suite of methods developed are outlined in Sect. 2.3. The
performance is first demonstrated using simulated results in Sect. 3, then applied to several
experimental CT datasets in Sect. 4. Some concluding remarks are included in Sect. 5 along
with an outline of potential future research directions.

2. Developing a polychromatic projection operator to model X-ray beam hard-
ening

The root cause of beam hardening artefacts in XCT is the discrepancy between the monochromatic
X-ray model used in reconstruction and the physical polychromatic X-rays illuminating the sample.
Therefore we require an iterative reconstruction algorithm which models the polychromatic
projection process that occurs during the experiment.
In this section we assume general familiarity of XCT iterative reconstruction algorithms on

discrete data, and deal only with the modification we made to the projection operation. We start
with a model of polychromatic attenuation, and follow general conventions in notation [8,28–30].



Projected attenuation Ĥ (“ˆ” denoting simulated rather than measured quantities) is approximated
by the projection operator

Ĥ8,: =
∑
9

�8 9` 9 ,: , (1)

where ` 9 ,: is the energy-dependent linear attenuation coefficients for pixel 9 (in the reconstruc-
tion/volume space) at some discretised energy bin : , and �8 9 is the matrix representing the
projection operation.

The measured data �8,: is the detected illumination intensity at the 8th detector pixel at energy
bin : after it has passed through the object. Since the X-ray has a spectrum we let (: be the
normalised spectral intensity, and �8,0 the total incident illumination intensity across all energies.
The intensity of the X-ray beam in the :th energy bin that strikes detector pixel 8 without
the attenuating object would be (: �8,0. Consequently, we define the measured attenuation as
H8,: ≡ − log(�8,:/((: �8,0)).
The simulated projected attenuation can be used to predict the 8th simulated intensity transmitted

by the object. This is done by applying the the Beer-Lambert law at each energy bin : [31]

�̂8,: = (: �8,0 exp
(
−Ĥ8,:

)
. (2)

The spectral density (: can either be measured empirically or calculated from a model of
the spectrum. To compare the simulated and measured attenuations, we divide both sides of
equation (2) by �8,0 and take the logarithm. In conventional iterative reconstruction algorithms
a single energy bin is used to describe the CT scanning process. In this monochromatic case,
(: =

∑
: X(G, :0)H8,: = Ĥ8,:0 for some energy bin :0. In this paper we replace this approximation

with a polychromatic projection operator (equation (3)) that uses a more complete model which
sums across multiple energy bins

Ĥ8 ≡ − log

[∑
:

(: exp

(
−

∑
9

�8 9` 9 ,:

)]
. (3)

The polychromatic projection operator in equation 3 is potentially impractical, requiring
a projection operation at each energy bin, unless some approximation is used to simplify
the calculation of

∑
9 �8 9` 9 ,: . We also need the energy dependence of ` to generate the

attenuation coefficients ` 9 ,: at the : different energies. To overcome this we have employed the
Alvarez-Macovski model.

2.1. The Alvarez-Macovski model

The Alvarez-Macovski (AM) model significantly reduces the number of degrees of freedom in
the linear attenuation coefficients ` 9 ,: , and is our starting point for simplifying equation 3. The
AM model describes X-ray attenuation using the photoelectric effect, Φ, and Compton scattering,
Θ [19]. These components can be modelled as functions of atomic number (/), density (d) and
atomic weight (�) as follows:

` 9 ,: = Φ 9 ,: + Θ 9 ,:

=
/ 9

� 9
d 9

(
 Φ/

=−1
9 · 1

�<
:

+  Θ 5KN (�: )
)
. (4)

Here 5 # is the Klein-Nishina function, which is the scattering cross section (probability) of
X-ray photons by electrons, and is a result derived in quantum mechanics [32]. We usually
approximate //� by 0.5, and the exponents used are < = 3 and = = 4.2 as calibrated in [33].
 Φ and  Θ are constants of proportionality. Since the model does not capture absorption edge



transitions, the value of these constants depends on the spectrum used and the materials present.
We chose the values for  Φ and  Θ which minimise the spectrally-weighted, relative !2 residual
of the AM model from the National Institute of Standards and Technology XCOM attenuation
database (NIST-XCOM) [34] for each material present in the reconstruction. This is not possible
for reconstruction of objects containing unknown material, but since the values for most common
objects with atomic number up to tin (50) are 23-25 for  Φ and 0.3-0.49 for  Θ, we don’t
anticipate any major difficulty in selecting an optimal value that would suit most materials in this
range.
We observe that the Alvarez-Macovski equation does not account for absorption-edges of

materials, however, it is a useful attenuation model for most common materials for two reasons:
1) K-edges of common materials (including metals) fall below the typical energy range of imaging
spectra; 2) the general shape of the attenuation curve provided by the AM model is sufficient to
deliver substantially improved reconstruction quality even if it is not quantitative for some metals.

2.2. Proposed simplifications of the AM model

TheAMmodel has reduced energy dependence of X-ray attenuation ` 9 ,: down to two independent
variables: / 9 and d 9 . However, in single-energy imaging we only have a single equation per
voxel 9 , so a further assumption is required to reduce the model to a single variable. We propose
several simple assumptions for condensed matter:

U0/ + U1d + U2 = 0. (5)

The values taken by the coefficients U0, U1 and U2 determine which of the several assumptions
applies; each corresponds to a plausible physical scenario. We can obtain five basic simplifications
by setting the coefficients as follows:

I U2 = 0, U0 → 0, d → 0: ` comprised of Φ only

II U2 = 0, U1 → 0, / → 0: ` comprised of Θ only

III U2 = 0: / is proportional to d, i.e. / = 2d

IV U1 = 0: / is constant, i.e., / = /0

V U0 = 0: d is constant, i.e., d = d0

Scenarios I and II use only one component of the AMmodel. The first assumption, photoelectric
absorption only, is vastly more useful than the latter since 5KN is a slowly varying function
at X-ray energy ranges so Compton scattering usually makes a smaller contribution to BH.
Assumption I is very suitable for relatively high attenuation materials such as iron/steel where
the photoelectric attenuation equals Compton scatter only at around 100:4+ .

Scenario III assumes that for all the material, the density is proportional to the atomic number.
This is the most general assumption since the ratio, 2, of a large number of condensed matter
falls in 3 < 2 < 8.

Scenario IV assumes that all materials (void excepted) have the same atomic number. This may
be useful in more specific cases where, for example, for a single-mineral object with sub-voxel
resolution porosity, or when a contrast agent is used to help X-ray visibility of a fluid but does
not change the density of the fluid perceptibly.

Scenario V assumes that all materials (void excepted) have the same density. Many materials
share a similar density so this assumption is useful in scenarios such as mixtures of metals in
alloys, and for mineral analysis of homogeneous geological samples. This assumption is violated
by sub-resolution voids so is unlikely to be successful for porous samples with sub-resolution
porosity.



2.3. Implementation considerations

Our iterative algorithm reconstructs attenuation coefficients, ` 9 ,:0 , at a specific X-ray energy
�:0 (usually the mean energy of the spectrum). The attenuation coefficients for each assumption
(Photoelectric effect only `pe

9 ,:
; Compton scattering only `co

9 ,:
; density proportional to atomic

number `prop
9 ,:

; constant atomic number `ca
9 ,:

; constant density `cd
9 ,:

) are given by the following
simplification of the AM model:

`
pe
9 ,:
=

1
2
 Φd 9/

3.2
9 ·

1
�3
:

(6)

`co9 ,: =
1
2
 Θd 9 5KN (�: ) (7)

`
prop
9 ,:

=
/ 9

22

(
 Φ/

3.2
9 ·

1
�3
:

+  Θ 5KN (�: )
)

(8)

`ca9 ,: =
1
2
d 9

(
 Φ/

3.2
0 ·

1
�3
:

+  Θ 5KN (�: )
)

(9)

`cd9 ,: =
1
2
d0

(
 Φ/

3.2
9 ·

1
�3
:

+  Θ 5KN (�: )
)

(10)

These simplifications allow us to generate the projected attenuation at different energies �:
from a single tomogram of ` 9 ,:0 .

2.3.1. Photoelectric absorption only

For this assumption (simplification I), ` 9 ,:0 is projected, (i.e., Ĥ 9 ,:0 =
∑
9 08 9` 9 ,:0), and the

projected attenuation at the different energies �: are obtained by scaling:∑
9

08 9`
pe
9 ,:
=

∑
9

08 9
1
2
 Φd 9/

3.2
9 ·

1
�3
:

=
�3
:0

�3
:

·
∑
9

08 9
1
2
 Φd 9/

3.2
9 ·

1
�3
:0

=
�3
:0

�3
:

·
∑
9

08 9` 9 ,:0

2.3.2. Compton scattering only

This assumption (simplification II) is similar to the photoelectric effect only assumption: we carry
out one projection operation, and then scale according to the Klein-Nishina function 5 # (�: ).∑

9

08 9`
co
9 ,: =

5 # (:)
5 # (:0)

·
∑
9

08 9` 9 ,:0

2.3.3. / Proportional to d

For this assumption (simplification III), we first solve for / 9 from `
prop
9 ,:

using equation (8). This
can be performed in a variety of ways, including numerical methods such as Newton-Raphson.
Once the value of / 9 has been recovered, d 9 can be calculated from d 9 = / 9/2.
Once we have the values for both d 9 and / 9 , we can then project both d and / separately,

because each component of the X-ray attenuation model scales differently according to energy.



We must have two sparate projections in order to generate the different projected attenuations at
the : different energies:∑

9

08 9`
prop
9 ,:

=
∑
9

08 9
1
22

(
 Φ/

4.2
9 ·

1
�3
:

+  Θ/ 9 5KN (:)
)

=
1
22

(
 Φ

∑
9

08 9/
4.2
9 ·

1
�3
:

+  Θ
∑
9

08 9/ 9 5KN (�: )
)

=
�3
:0

�3
:

·
∑
9

08 9

(
1
22
 Φ/

4.2
9 ·

1
�3
:0

)
+

5KN (�: )
5KN (�:0 )

∑
9

08 9

(
1
22
 Θ/ 9 · 5KN (�:0 )

)
=
�3
:0

�3
:

∑
9

08 9`
pe
9 ,:0
+ 5KN (�: )
5KN (�:0 )

∑
9

08 9`
co
9 ,:0

2.3.4. Atomic number is constant

For this assumption (simplification IV), we solve equation (9) for d 9 given that atomic number
/0 is a constant:

d 9 =
2`ca

9 ,:

 Φ/
3.2
0 ·

1
�3
:

+  Θ 5KN (�: )
. (11)

Given /0, and knowing d 9 , we can then project the density and and scale it:∑
9

08 9`
ca
9 ,: =

�3
:0

�3
:

· 1
2
 Φ

∑
9

08 9 d 9/
3.2
0 ·

1
�3
:0

+

5KN (�: )
5KN (�:0 )

1
2
 Θ

∑
9

08 9 d 9 · 5KN (�:0 )

=
1
2

∑
9

08 9 d 9

(
 Φ/

3.2
0

�3
:0

�3
:

+  Θ
5KN (�: )
5KN (�:0 )

)
2.3.5. Density is constant

For this assumption (simplification V), we solve for / 9 using the equation:

/ 9 =
3.2

√
�3
:0

 Φ

(
2
d0
`cd
9 ,:
−  Θ 5KN (�: )

)
. (12)



Given d0, and knowing / 9 , we can project the two components of the AM model separately and
scale as follows: ∑

9

08 9`
cd
9 ,: =

�3
:0

�3
:

· 1
2
 Φ

∑
9

08 9 d0/
3.2
9 ·

1
�3
:0

+

5KN (�: )
5KN (�:0 )

1
2
 Θ

∑
9

08 9 j 9 d0 · 5KN (�:0 )

=
�3
:0

�3
:

∑
9

08 9`
pe
9 ,:0
+ 5KN (�: )
5KN (�:0 )

∑
9

08 9`
co
9 ,:0
.

Where j 9 is a characteristic function of the atomic number j 9 = 1 where / 9 ≥ 1, otherwise
j 9 = 0.

2.3.6. Discussion

We note that simplifications I and II only use one component of the AM model and thus require
only one forward projection for each iteration. Similarly, simplification IV also require only one
projection. Simplifications III and V use the full model, they are slower since they need two
forward projections per iteration.
Once we have generated the projected attenuations,

∑
9 08 9` 9 ,: , at the : different energies,

these are combined with the X-ray spectrum via equation (3) to give the measured polychromatic
projected attenuation Ĥ8 . The rest of the iterative reconstruction algorithm proceeds normally
with the monochromatic back-projection operation.

If only one forward projection is used per iteration, our reconstruction method takes about
same time per iteration when compared to the conventional reconstruction, otherwise when two
forward projections are necessary, time per iteration is increased by about 40%.

The adjoint operator for polychromatic forward-projection, if it exists, is complex and requires
multiple back-projections. In the interest of speed and simplicity we assume that the residual
in the projection data is at energy �:0 and the backprojected update to the volume is also at
energy �:0 . We expect this compatibility to improve as the iterations proceed and therefore
our assumptions in section 2.3 remain valid. since we do not use an adjoint operation for the
back-projection, our method is not guaranteed to converge. However, we expect that it will
approach the same result as that when using with a polychromatic back-projection operator but
with a slower convergence rate.

The tomographic reconstruction is performed at a specific energy, �:0 . The selection of �:0

mainly affects the convergence per iteration of the iterative reconstruction algorithm. We suggest
�:0 be chosen as the weighted average of the spectral density; this is the energy which most
closely approximates the monochromatic backprojection operation. Due to the large change in
X-ray attenuation values with energy (See Fig. ??), our scheme becomes unstable with extreme
values of �:0 .

Since we are reconstructing the attenuation coefficients at a specific energy, we can use our
simplifications to solve the Alvarez-Macovski equation on the tomogram and extract the density
or atomic number information for each pixel, therefore when the assumptions are valid our
reconstruction is indeed quantitative.

3. Simulated demonstrations

These simulations are designed to test the accuracy of the AM model and the simplification
schemes across a range of different materials. We demonstrate both the qualitative aspects
in terms of the visibility of the streaks and cupping and the quantitative aspects in terms of



how well the reconstructed attenuation values match those from the NIST-XCOM attenuation
database [34].

3.1. Simulation Methods

3.1.1. Generating the Simulated Intensities

The simulated phantom of a 2D image is generated using the procedure described in Fig. 3.
The attenuation data for each material are taken from the NIST-XCOM database [34]. The
spectrum (Figure 2) is generated using a model that includes X-ray generation via Brehmstrahlung
(Kramer’s Law) and characteristic emission from a tungsten target; attenuation en route to
the detector; and detector efficiency [33]. We assume the spectrum was detected by a perfect
energy-integrating scintillation detector with the same speficications as the one used in the
experiments (See Section 4). Our model accounts for spectral response of the detector. However,
other effects such as partial detection and electronic noise are not included. The resolution of the
spectrum model is 1 keV.
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Fig. 2. The spectrum used in the simulation, as seen by the detector. Spectrum
was simulated from an X-ray source with a tungsten target, an accelerating voltage of
100keV and no additional filters. The detector is 700`m of CsI scintillator.

We have selected relatively common materials in the simulation and experiments so that
each material fulfills one of the assumptions in section 2.2; together these materials test every
assumption apart from the Compton scattering only assumption, which doesn’t beam-hardening
anyway. For the simulations, the first pair is used to test simplification IV and the second pair is
used to test simplification V.

The first sample (Sample 1) consists of a vaterite block and an aragonite block. The minerals
are CaCO3 with different crystalline packing and therefore different densities, but the same
effective atomic number. The blocks have a square cross-section with side length 1mm. The
second sample (Sample 2) consists of bone and a contrast dye. Again both materials have a square
cross-section with side length 1mm. The material properties of these samples are presented in
Table 1. The input sample data share the following properties: 2D images with resolution of



Characteristic

function

(material one)

Projected

characteristic

function

projectionAijXj,1

Projected

attenuation

functions

(per energy)

multiplyµk,1AijXj,1

Attenuation

(material one)

Characteristic

function

(material two)

Projected

characteristic

function

projectionAijXj,2

STEP 1

STEP 2

Projected

attenuation

functions

(per energy)

multiplyµk,2AijXj,2

STEP 3

Attenuation

(material two)

Total projected

attenuation

(per energy)
STEP 4

sumAijµj,k

X-ray spectrum

weigh

Simulated

polychromatic

projection
STEP 5

negative

exponential,

add noise

Pois [nSk exp (Aijµjk)]

Fig. 3. Generating the simulated phantom. 1. The location of each material is given
by a characteristic function (1 where the sample is present, 0 otherwise). 2. The
characteristic function is projected to give the unit projected attenuation. 3. Each
projected characteristic function is multiplied by the attenuation coefficient at each
X-ray energy, material density, and pixel pitch to obtain the total attenuation at each
energy for that material. 4. For each energy, the total attenuations for each material are
added together, then converted to transmission by applying the negative exponential.
This gives the transmission of the X-ray beam through all materials of the object at
each energy. 5. The transmission data at each energy are weighted by the photon-count
spectrum and Poisson noise (simulating photon shot-noise) is added to each energy bin
separately. The resulting data at each energy are scaled by photon energy and summed
to give the total transmitted intensity.



1000 × 1000 pixels with a pixel pitch of 0.2`m. The X-ray spectrum was simulated with an
accelerating voltage of 100keV and no additional filters.

Table 1. Physical properties of the materials used in simulations and experiments.
Density d, effective atomic number /eff [33], and their ratio.

Material d (g cm−3) /eff //d

Vaterite 2.54 15.34 6.04

Aragonite 2.93 15.34 5.24

Bone 1.90 18.0 9.53

Contrast 1.0 9.55 9.53

Titanium alloy 4.54 22 4.85

Aluminium 2.7 13 4.81

Marble 2.7 16 5.90

The sinograms are generated using a parallel beam geometry with 1000 angles uniformly
distributed over 180◦. We have used a 1D detector with 1000 elements/pixels per measurement
with a pixel pitch of 0.2`m, (matching the resolution of the sample images). Poisson noise was
added while converting the sinograms to measured intensity.

3.1.2. Reconstruction of the Simulated data

We modified the ML-TR iterative reconstruction algorithm presented in [24] to include the
proposed polychromatic projection operation. Iterative tomographic reconstructionwas performed
both with and without our modifications for comparison. Convergence was accelerated by
employing both ordered-subsets and multigrid methods: Ten iterations were performed at
one-quarter the original scale; the result is upsampled and used as a seed for six iterations
at half the original scale; the result is upsampled once again and seeds four iterations at full
resolution. If only one forward projection is used per iteration, our reconstruction method takes
about same time per iteration when compared to the conventional reconstruction, otherwise
when two forward projections are necessary, time per iteration is increased by about 40%. For
reconstruction that require the X-ray spectrum, the same spectrum which generated the sinogram
is used. This is partly due to convenience, and partly because the increase in spectral resolution
poses no significant computational costs in either obtaining the spectrum or the reconstruction.
Nevertheless, we tested the use of spectra with 2keV, 5keV or 10keV bins by summing together
spectral densities in adjacent 1keV bins. We observed less than 2% difference in the mean
reconstructed attenuation values when using 1KeV bins compared to 10KeV bins.

3.2. Simulation Results

The results of the tomographic reconstruction of sample 1 (vaterite and aragonite) using
simplification IV (constant atomic number) are shown in Fig. 4. The results for sample 2 (bone
and contrast dye) using simplification III (density is proportional to atomic number) are shown in
Fig. 5.



(a) Conventional recon (b) Profile (conventional)

(c) Proposed (polychromatic)
recon

(d) Profile (polychromatic)

Fig. 4. Reconstruction of simulated polychromatic projections of vaterite and aragonite
at 46keV. Top left mineral: vaterite; Lower right mineral: aragonite. The left hand
column shows the reconstructed image, the right hand column shows the line profile
through the blue line marked in the images. Row 1: conventional recon; Row 2:
proposed (polychromatic) recon (simplification IV). The expected attenuation (NIST-
XCOM attenuation values at 46keV) is given as the orange and green lines in the line
profile.

3.3. Simulation Analysis and Discussion

In the reconstructed image for the reconstruction of sample 1 (Fig. 4), beam-hardening artefacts
are reduced when the polychromatic spectrum is incorporated. In the reconstructed image (Fig. 4c
and Fig. 4a), the streaks between the two minerals are eliminated and there is much greater
consistency of the attenuation coefficient value within each material. In the profile plot, the
cupping effect (concavity of the curve in Fig. 4b) is completely eliminated in the reconstructed
data using the polychromatic spectrum (Fig. 4d). We also note that the values in the profile of
the corrected image match the NIST-XCOM attenuation coefficient values at the reconstruction
energy of 46keV; this NIST-XCOM data was used to generate the simulations. The profile for the
uncorrected reconstruction (Fig. 4b) on the other hand show no such resemblance. Our proposed
method is able to achieve quantitative reconstruction.
Similarly for the reconstruction of sample 2, we observe reduced artefacts directly from the

reconstructed image (Fig. 5c and Fig. 5a) in the form of reduced cupping and better defined
contour of the boxes. The degree of correction of this cupping is more prominent in the profile
plots (Fig. 5d and Fig. 5b). The attenuation coefficient of the two materials recovered at the
reconstruction energy of 46keV also correspond to the expected values in the NIST-XCOM
data. The contrast dye falls slightly below the expected value. This is due to the AM model
underestimating the attenuation due to the presence of an absorption edge in the NIST-XCOM
data.



(a) Conventional recon (b) Profile (conventional)

(c) Proposed (polychromatic)
recon

(d) Profile (polychromatic)

Fig. 5. Reconstruction of simulated polychromatic projections of bone and contrast
dye at 46keV. Top left material: water with contrast dye; Lower right material: bone.
The left hand column shows the reconstructed image, the right hand column shows the
line profile through the blue line marked in the images. Row 1: conventional recon;
Row 2: proposed (polychromatic) recon (simplification III). The expected attenuation
(NIST-XCOM attenuation values at 46keV) is given as the orange and green lines in the
line profile.

4. Experimental Demonstrations

4.1. Experimental Methods

Simple objects composed of different materials were imaged with the Heliscan XCT system
at ANU CTLab. This system uses a fine-focus geometry with a Hamamatsu micro-focus
X-ray source employing a tungsten target in transmission mode. Detectors used at the facility
are amorphous silicon Flat-Panels with a CsI scintillator. The detector specifics (pixel array
dimensions and pixel pitch, %) are given (per object) below. The sample manipulator can rotate
the object and translate the object along the rotation axis enabling circular, helical, and more
complex X-ray source trajectories about the sample. The detector is typical set at distances
300 < ! < 600mm from the X-ray source and magnification of !/' is achieved through the
cone-beam geometry with the rotation axis at distance 'mm.
The first object was composed of two rods: a 10.4mm diameter rod composed of marble

(CaCO3) and a 8.2mm diameter rod composed of Aluminium (Al). It was scanned at a distance
' = 40mm from the X-ray source, with the detector at ! = 316mm, using a spectrum generated
with a 120kV accelerating voltage and filtered by 0.1mm of Al. The detector utilised was a
Varian 4030 Flat Panel detector with a 2048 × 1536 pixel array and pixel pitch % = 139`m.

The second object was a column of Titanium alloy (Ti6Al6V) produced by an additive
manufacturing system. It has an approximate diameter of 0.2mm and a length of 1.1mm. It was
scanned at a distance ' = 1.0mm from the X-ray source, with the detector at ! = 601mm, using a
spectrum generated with a 100kV accelerating voltage and no filtering. The detector utilised was
a Perkin Elmer Flat Panel detector with a 2048 × 2048 pixel array and pixel pitch % = 200`m.



The scans were carried out using space-filling trajectories (as described in [35]) over the course
of several hours. Tomographic reconstruction was performed using 16 iterations of ordered
subset ML-TR within the Mango software suite developed at the CTLab [36, 37].
The forward projection operation in the Mango software was modified to incorporate a

polychromatic model using the simplifications given in section 2.2. This is the only substantial
change required for the iterative tomographic reconstruction software to account for beam
hardening. Note that this modification is suitable for any iterative algorithm that uses the same
projection operator, e.g., it was also successfully tested on the experimental data using a SIRT
algorithm.

4.2. Experimental Results

Horizontal slices through the tomographic volumes of aluminium (bottom) and marble (top) rods
reconstructed assuming monochromatic and polychromatic X rays are given in Fig. ??. Profiles
of the data are also provided. The modified reconstruction algorithm (Fig. 6c-6d) has assumed
constant density (simplification V) with d = 2.7g cm−3. We used the same X-ray spectrum model
from section 3.1.1 with 1keV bins. This is a simple spectrum model (as described in [33]) and
calibrated using measurements with a spectrum analyser (XR-100T-CdTe Amptek detector). The
measured spectra were remapped from a 1mm CdTe detector to assume a 700`m CsI scintillator
before model calibration.

(a) Conventional recon (b) Profile (conventional)

(c) Proposed (polychromatic)
recon

(d) Profile (polychromatic)

Fig. 6. Horizontal slices through the 3D tomographic reconstruction of experimental
data for marble and aluminium rods at 46keV. The left hand column shows the
reconstructed image, the right hand column shows the line profile through the blue line
marked in the images. Row 1: conventional recon; Row 2: proposed (polychromatic)
recon (simplification V). The expected attenuation (NIST-XCOM attenuation values at
46keV) is given as the orange and green lines in the line profile.

Horizontal slices through the tomographic volumes of the printed titanium column reconstructed
assuming monochromatic and polychromatic X rays are given in Fig. 7. Profiles of the data are
also provided. The modified reconstruction algorithm (Fig. 7c-7d) has assumed that attenuation
is dominated by photoelectric absorption (simplification I). The spectrum used has 1keV bins.



(a) Conventional recon (b) Profile (conventional)

(c) Proposed (polychromatic)
recon

(d) Profile (polychromatic)

Fig. 7. Horizontal slices through the 3D tomographic reconstruction of experimental
data for titanium alloy at 31keV. (a) and (c) show the reconstructed images, (b) and (d)
show the line profile through the blue line marked in the images. (a-b) conventional
recon; (c-d) proposed (polychromatic) recon using simplification I. The expected
attenuation (NIST-XCOM attenuation values at 31keV) is given as the orange and green
lines in the line profile.

4.3. Experimental Analysis and Discussion

We observe a clear improvement in the reconstructions that utilise beam-hardening correction.
For the marble and aluminium rods (Fig. 6), the constant density assumption (simplification
V) is used in the reconstruction. Here the difference between the tomogram reconstructed with
the proposed method (Fig. 6c) and the tomogram from conventional reconstruction (Fig. 6a) is
particularly striking. In the slice reconstructed with a monochromatic model, beam hardening
changes the attenuation values reconstructed and causes the attenuation of the two materials
blend together. Whereas in the slice reconstructed with a polychromatic model, the values for the
attenuation coefficient inside each material are more consistent; the two materials can now be
distinguished and segmented by setting thresholds (Fig. 6c). The streaking artefacts seen between
the two rods in the uncorrected tomogram are significantly reduced while still present in the
corrected tomogam. The attenuation coefficient of Al corresponded to the expected NIST-XCOM
values at the mean X-ray energy of 46keV, however, the attenuation for marble was lower than
expected. This could be due to porosity in the marble, inclusions of a lower atomic number, or a
poor fit of the AM attenuation model to that for marble.
For the titanium sample (Fig. 7), the correction method uses the photoelectric absorption

only assumption (simplification I). The relatively high atomic number of titanium means that
photoelectric absorption, Φ, is the main attenuation mechanism over the energy range of the
X-ray spectrum used (10-60keV). The Compton scattering component, Θ, is negligible in this
energy range, at 40keVΦ = 10Θ and it is not until 9̃5keV thatΦ = Θ. The excellent fit of the AM
attenuation model and this photoelectric absorption only simplification with the NIST-XCOM
data for Ti can be seen in Fig. 8a.The photoelectric component, given by the green line, matches
closely the actual attenuation given by the blue ‘+’ symbols.
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Fig. 8. (a) Comparison of the energy dependence of X-ray attenuation for Ti6Al4V
modelled by NIST-XCOM, Alvarez-Macovski, and proposed simplification I. (b)
conventional recon from projected attenuation after linearisation according to the
NIST-XCOM model. (c) profile through the blue line marked in image (b).

We observe the following in Fig. 7: (i) the cupping effect present in the slice of the conventional
reconstruction (Fig. 7a), has been substantially corrected by the proposed method using a
polychromatic model (Fig. 7c); (ii) the reconstructed attenuation coefficients are much closer to
the expected NIST-XCOM values for Ti6Al4V at the mean X-ray energy 31keV; and (iii) the
reconstructed attenuation coefficients in the internal voids are closer to background levels.
However, the result does not seem to have corrected the artefacts as well as expected and is

not quantitative. To confirm that the algorithm was performing as designed, we also carried out
conventional reconstruction on the projected attenuation data that were corrected by linearisation.
The linearisation curve was computed directly from the NIST-XCOM X-ray attenuation data for
Ti6Al4V. Both the reconstructed image (Fig. 8b) and the line profile (Fig. 7d) are similar to the
results using the proposed method. While there is uncertainty about the spectrum, we are fairly
confident about it due to the validation from the Amptek detector mentioned earlier. Although
the effects of X-ray scatter could explain these results, we see in the example raw experiment data
presented in Fig. 9, that X-ray counts beside the object are no higher than the clearfield counts.
This indicates no appreciable amount of X-rays scattered from the object are being detected.
Closer inspection of this raw experimental data reveals a bright, circular aberration in both the
clearfield (Fig. 9a) and radiograph (Fig. 9b). This is characteristic of a secondary source of
radiation emitted from transmission-type X-ray tubes. It is generated by electrons interacting
with the tube housing material [38]. This secondary radiation acts as a large source blurring the
system point-spread-function (PSF) and has an unknown spectrum. Line profiles included in Fig.
9c, show a broader PSF closer to the circular aberration (most easily seen comparing the circled
regions). The residual cupping effects seen in the results from the both the proposed method (Fig.
7d) and using linearisation (Fig. 8c) could be explained if the unknown spectrum is softer than
the spectrum assumed in reconstruction.

5. Conclusions and future research

We have produced a robust technique to model and account for X-ray beam-hardening in
tomographic reconstruction. The proposed method puts a polychromatic projection operator into
existing iterative reconstruction algorithms and is compatible with existing techniques which
speed up reconstruction such as ordered subsets and multi-grid. The polychromatic operator is
constructed from the Alvarez-Macovski (AM) X-ray attenuation model combined with a few
simple assumptions about the object’s material properties. The polychromatic operator has been
implemented and proved to be computationally feasible in reconstructions of large datasets on
the order of 100GVx used in materials science.

We have demonstrated by simulations and experiment that the method is capable of qualitatively



(a) Raw clearfield (b) Raw projection (c) Line profile near bottom

Fig. 9. Raw data taken from the Titanium scan. Figure 9a is the clearfield, Figure 9b
is the projection. The two line profiles are shown in Figures 9c. The second source
is visible as a increase in intensity in the bottom centre of both the clearfield and the
projection.

improving the tomographic reconstructions with beam hardening artefacts using knowledge of
the X-ray spectrum. Assuming more detailed material information is known (and the effects
of other non-ideal X-ray interactions, such as scatter and secondary radiation are minimal), a
quantitative reconstruction of the image can be attempted. The reconstructed X-ray attenuation
pixels/voxel values represent the exact attenuation value of the object at a specified energy.
We believe quantitative tomographic reconstruction is an important objective of XCT. From

the results herein, performance of the simplification schemes applied to the experimental data
did not reach the level of quantitative accuracy of the simulations; this is a matter deserving
further investigation. There are several possibilities, involving the accuracy of the spectrum,
the importance of the absorption edge contributions to the attenuation of the material (not
characterised by the AM model), and other non-ideal X-ray interactions with the object not
incorporated into the model such as X-ray scattering and the generation of X-ray flourescence.
The major obstacle in adopting this specific technique is the need to manually select an

appropriate assumption about object properties and then enter the required material information
to operate the AM model. It may be possible to automate the selection of the optimal assumption
and appropriate parameter values using trial reconstructions at lower resolutions; a suitable metric
must be developed to quantify performance in beam-hardening correction and is the subject of
on-going research.
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