298 research outputs found

    Emerging Opportunities of Radiotherapy Combined With Immunotherapy in the Era of Breast Cancer Heterogeneity

    Get PDF
    The association of radiotherapy and immunotherapy has recently emerged as an exciting combination that might improve outcomes in many solid tumor settings. In the context of breast cancer, this opportunity is promising and under investigation. Given the heterogeneity of breast cancer, it might be meaningful to study the association of radiotherapy and immunotherapy distinctly among the various breast cancer subtypes. The use of biomarkers, such as tumor infiltrating lymphocytes, which are also associated to breast cancer heterogeneity, might provide an opportunity for tailored studies. This review highlights current knowledge of the association of radiotherapy and immunotherapy in the setting of breast cancer and attempts to highlight the therapeutic opportunities among breast cancer heterogeneity

    Lung Function in Gypsies in Greece

    Get PDF
    The relationship between lung function and smoking and dietary habits was examined in 121 Gypsies (62 males, 59 females) who were 14-70 y of age and who lived in Greece. All were examined clinically, after which they all participated in spirometry tests. Half of the study group had abnormal (< 80% of predicted) forced vital capacity, 36.4% had abnormal (< 80% of predicted) forced expiratory volume in 1 sec, and 5% had serious lung function disturbances (forced vital capacity < 50% of predicted). Approximately 70% of subjects were smokers, and their diets were rich in alcohol and meat; they ate very few salads and oranges. Consequently, decreased lung function might be a major health problem in Gypsies in Greece. Organization of preventive health strategies should improve the overall health of this study group

    Stabilization of tetragonal/cubic phase in Fe doped Zirconia grown by atomic layer deposition

    Full text link
    Achieving high temperature ferromagnetism by doping transition metals thin films is seen as a viable approach to integrate spin-based elements in innovative spintronic devices. In this work we investigated the effect of Fe doping on structural properties of ZrO2 grown by atomic layer deposition (ALD) using Zr(TMHD)4 for Zr and Fe(TMHD)3 for Fe precursors and ozone as oxygen source. The temperature during the growth process was fixed at 350{\deg}C. The ALD process was tuned to obtain Fe doped ZrO2 films with uniform chemical composition, as seen by time of flight secondary ion mass spectrometry. The control of Fe content was effectively reached, by controlling the ALD precursor pulse ratio, as checked by X-ray photoemission spectroscopy (XPS) and spectroscopic ellipsometry. From XPS, Fe was found in Fe3+ chemical state, which maximizes the magnetization per atom. We also found, by grazing incidence X-ray diffraction, that the inclusion of Fe impurities in ZrO2 induces amorphization in thin ZrO2 films, while stabilizes the high temperature crystalline tetragonal/cubic phase after rapid thermal annealing at 600{\deg}C.Comment: 11 pages, 7 figures, 1 Tabl

    Influence of respiratory motion management technique on radiation pneumonitis risk with robotic stereotactic body radiation therapy.

    Get PDF
    Purpose/objectivesFor lung stereotactic body radiation therapy (SBRT), real-time tumor tracking (RTT) allows for less radiation to normal lung compared to the internal target volume (ITV) method of respiratory motion management. To quantify the advantage of RTT, we examined the difference in radiation pneumonitis risk between these two techniques using a normal tissue complication probability (NTCP) model.Materials/method20 lung SBRT treatment plans using RTT were replanned with the ITV method using respiratory motion information from a 4D-CT image acquired at the original simulation. Risk of symptomatic radiation pneumonitis was calculated for both plans using a previously derived NTCP model. Features available before treatment planning that identified significant increase in NTCP with ITV versus RTT plans were identified.ResultsPrescription dose to the planning target volume (PTV) ranged from 22 to 60 Gy in 1-5 fractions. The median tumor diameter was 3.5 cm (range 2.1-5.5 cm) with a median volume of 14.5 mL (range 3.6-59.9 mL). The median increase in PTV volume from RTT to ITV plans was 17.1 mL (range 3.5-72.4 mL), and the median increase in PTV/lung volume ratio was 0.46% (range 0.13-1.98%). Mean lung dose and percentage dose-volumes were significantly higher in ITV plans at all levels tested. The median NTCP was 5.1% for RTT plans and 8.9% for ITV plans, with a median difference of 1.9% (range 0.4-25.5%, pairwise P &lt; 0.001). Increases in NTCP between plans were best predicted by increases in PTV volume and PTV/lung volume ratio.ConclusionsThe use of RTT decreased the risk of radiation pneumonitis in all plans. However, for most patients the risk reduction was minimal. Differences in plan PTV volume and PTV/lung volume ratio may identify patients who would benefit from RTT technique before completing treatment planning

    Epitaxial 2D MoSe<sub>2</sub> (HfSe<sub>2</sub>) Semiconductor/2D TaSe<sub>2</sub> Metal van der Waals Heterostructures

    Get PDF
    Molecular beam epitaxy of 2D metal TaSe<sub>2</sub>/2D MoSe<sub>2</sub> (HfSe<sub>2</sub>) semiconductor heterostructures on epi-AlN(0001)/Si(111) substrates is reported. Electron diffraction reveals an in-plane orientation indicative of van der Waals epitaxy, whereas electronic band imaging supported by first-principles calculations and X-ray photoelectron spectroscopy indicate the presence of a dominant trigonal prismatic 2H-TaSe<sub>2</sub> phase and a minor contribution from octahedrally coordinated TaSe<sub>2</sub>, which is present in TaSe<sub>2</sub>/AlN and TaSe<sub>2</sub>/HfSe<sub>2</sub>/AlN but notably absent in the TaSe<sub>2</sub>/MoSe<sub>2</sub>/AlN, indicating superior structural quality of TaSe<sub>2</sub> grown on MoSe<sub>2</sub>. Apart from its structural and chemical compatibility with the selenide semiconductors, TaSe<sub>2</sub> has a workfunction of 5.5 eV as measured by ultraviolet photoelectron spectroscopy, which matches very well with the semiconductor workfunctions, implying that epi-TaSe<sub>2</sub> can be used for low-resistivity contacts to MoSe<sub>2</sub> and HfSe<sub>2</sub>
    corecore