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Molecular beam epitaxy of 2D metal TaSe2/2D MoSe2 (HfSe2) semiconductor 

heterostructures on epi-AlN(0001)/Si(111) substrates is reported. Electron diffraction 

reveals an in-plane orientation indicative of van der Waals epitaxy, while electronic band 

imaging supported by first principles calculations and x-ray photoelectron spectroscopy 

indicate the presence of a dominant prismatic 2H-TaSe2 phase and a minor contribution 

from octahedrally coordinated TaSe2 which is present in TaSe2/AlN and 

TaSe2/HfSe2/AlN but not detectable in the TaSe2/MoSe2/AlN, indicating superior 

structural quality of TaSe2 grown on MoSe2. The TaSe2 workfunction of 5.5 eV as 

measured by ultraviolet photoelectron spectroscopy matches very well the semiconductor 
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workfunctions implying that epi-TaSe2 can be used for low contact resistance to MoSe2 

and HfSe2 offering additionally chemical and structural compatibility with sharp 

interfaces.     

INTRODUCTION 

Atomically thin sheets of layered transition-metal dichalcogenides with the formula MX2 

(TMDs, M=Mo, W, V, Nb, Ta, Ti, Zr, Hf, Re and X=Se, S, Te) exhibit a wide variety of 

electronic properties, ranging from wide band-gap semiconductors to superconductors [1-

2]. The crystallographic structure of MX2 materials consists of covalently bound X-M-X 

sandwich layers, which are connected to each other by the weak so-called van der Waals 

(vdW) interaction. While most of the exciting properties of these materials have been 

demonstrated on small exfoliated flakes [3-5], the current trend is to synthesize them on 

large area substrates. Remarkable progress is reported by Metal Organic Chemical Vapor 

Deposition (MOCVD) [6] but molecular beam epitaxy (MBE) is an attractive alternative 

offering flexibility for a fast screening of TMDs. Van der Waals epitaxy using MBE has 

been pioneered by Koma and coworkers long time ago [7]. More recently, MBE growth 

[8-14] of MoSe2, HfSe2 and ZrSe2 reveal very good van der Waals epitaxy of atomically 

thin continuous and uniform films on suitable cm-scale crystalline substrates.  

Metallic 2D TMDs are studied less despite the fact that metal layers could have 

applications in nanoelectronics as TMDs device interconnects as well as in spintronics for 

use in spin Hall effect devices [15]. Tantalum diselenide (TaSe2) is a metallic TMD and 

very early studies report the epitaxy of ultrathin (8-15 ML) films of layered TaSe2 grown 

on Se-terminated GaAs(111) substrates by MBE, but characterization was limited to 

grazing incidence X-ray diffraction measurements (GIXRD) [16]. In another work 
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performed by the same team, TaSe2 thin films were epitaxially grown on MoS2, MoTe2 

and SnSe2 substrates, and two unidentified phases were obtained at different substrate 

temperatures [17].  

  In its bulk form, TaSe2 is among the most intensively studied TMDs [18] and is known 

to have several polytypes. The 2H-TaSe2 polytype [19] (Figure 1) is the most stable 

phase at room temperature in bulk and has a trigonal prismatic Se-Ta-Se coordination in 

the double layer TaSe2 unit cell. The octahedrally coordinated 1T-TaSe2 phase with a 

single layer TaSe2 unit cell (Figure 1), exhibits a nearly commensurate 

 13 13 13.89op R superstucture at RT. The effects of Charge Density Waves (CDW) 

present in 1T-TaSe2, apart from the Low energy electron diffraction (LEED) 

superstructure include a characteristic splitting of the Ta 4f X-ray photoelectron 

spectroscopy (XPS) spectra [20-21], as well as of the Ta valence dz
2

 band [22]. In 

addition, there exist the mixed 4Hb and 6R-TaSe2 polytypes, where both trigonal and 

octahedral coordinations occur alternatively in the c direction [18]. 

In this paper, we propose 2D metal TaSe2 as a metal contact to 2D semiconductors 

materials such as MoSe2 and HfSe2. It should be noted that for any viable 2D 

semiconductor TMD technology, good contacts are necessary, which are a big challenge 

at present. The motivation here is to grow the chemically compatible (both are selenide 

materials) 2D semiconductor layers and the 2D metal contact layers in a single epitaxial 

step maintaining the integrity of the interfaces. Moreover, the 2D diselenide metals have 

large workfunctions (>5 eV), matching the workfunctions of 2D diselenide 
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semiconductors better than other conventional element metals. Therefore, our approach 

here creates the prospect of 2D metal/semiconductor contacts with low contact resistivity. 

 EXPERIMENTAL SECTION 

The technologically important Al-face 200nm-AlN(0001)/Si(111) wafers prepared by 

MOCVD were used as the substrate materials. High purity refractory metals Ta, Mo and 

Hf were evaporated in the MBE chamber from e-gun and Se from effusion cell, 

respectively. We employ two-step growth; first TaSe2 is deposited at low temperature 

Tg~ 450 oC and high Se/Ta ratio ~15:1 to ensure sufficient incorporation of Se and 

avoidance of Se vacancy defects, followed by an in-situ post deposition annealing (PDA) 

in UHV at higher temperature (~ 650 oC) in order to improve crystallinity. Deposited 

samples were structurally and physically characterized by means of in-situ Reflection 

High Energy Electron Diffraction (RHEED), X-ray Photoelectron Spectroscopy (XPS), 

and Angle-Resolved Photoemission Spectroscopy (ARPES) techniques. XPS spectra 

were collected with a PHOIBOS 100 (SPECS) hemispherical analyzer, at a pass energy 

of 15 eV. The take-off angle was set at 37 relative to the sample surface. Gaussian-

Lorentzian shapes (Voigt functions) were used for deconvolution of the recorded spectra 

after standard Shirley background subtraction ARPES measurements were carried out 

using a 2D CCD detector and a He excitation source with He I radiation at 21.22 eV. The 

energy resolution of the system was better than 40 meV. Photoelectrons emitted by the 

samples are measured in the energy distribution curve (EDC) mode with a with polar 

angle step of 1°. The Density–Functional Theory (DFT) calculations were performed 

using the Vienna Ab Initio Simulation Package [23] and projector-augmented waves. The 

generalized-gradient approximation (GGA) [24] with Perdew–Burke–Ernzerhof (PBE) 
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[25] parameterization was used as exchange correlation functional. To include vdW 

corrections, the semi-empirical DFT-D3 Grimme’s method [26] was applied. Self-

consistent force optimizations were performed until the Hellmann-Feynman force 

between the atoms converged to 5x10-5 eV/Å. In order to minimize interlayer atomic 

interactions, a 22 Å vacuum was applied above the TaSe2 layer. The energy cutoff was 

set at 500 eV, while the Monkhorst-Pack scheme [24] with a k-point grid of 15x15x1 was 

chosen. Calculation of the band structure with and without SOC were performed. Using 

for these calculations k-mesh 31 k-point per symmetric line along KΓΜ direction.  

 

RESULTS AND DISCUSSION 

Epitaxial orientation probed by electron diffraction 

The RHEED patterns recorded along the perpendicular  011  azimuth for the MBE-

deposited TaSe2 samples, as well as for the AlN substrate are presented in Figure 2. The 

streaky RHEED patterns of 4 ML TaSe2 deposited on all AlN, HfSe2 and MoSe2 

templates indicate good surface atomic ordering of the deposited TaSe2 films. In 

particular for the HfSe2 and MoSe2 cases the RHEED patterns further point out to the 

formation of well oriented 2D metal/semiconductor epitaxial layers, indicative of vdW 

epitaxy. It is also evident that the use of the MoSe2 template yields improved crystallinity 

of the TaSe2 layer as compared to the HfSe2 template, a result that is in agreement with 

XPS data presented below. It should be noted at this point that there is a lattice mismatch 

(~ 10 %) between AlN and TaSe2 (aAlN=3.11 Å [11], aTaSe2=3.43 Å [27]), which explains 

the streak position mismatch in the RHEED patterns of bare and TaSe2-deposited AlN 
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surfaces (blue and red arrows, respectively). Since an (1x1) diffraction pattern, 

characteristic of hexagonal reciprocal space is observed, it is concluded that 2H-TaSe2 is 

the dominant phase on the surface. The possibility that the 1T-TaSe2 phase co-exists on 

the surface in large proportions could be excluded, since no superstructure characteristic 

[21] of 1T-TaSe2 CDW lattice distortions is observed in RHEED. 

 

Electronic Band Structure Imaging by ARPES 

The formation of a dominant 2H-TaSe2 phase in our MBE deposited samples is also 

being further supported by ARPES measurements. The electronic band imaging along 

high symmetry directions of the Brillouin zone of a 4 ML TaSe2/AlN is shown in Figure 

3(a), along with first principles calculations for both the 2H and 1T-TaSe2 phases 

(Figures 3(b) and (c)). It is seen that ARPES measurements reveal metallic bands which 

are in agreement with our DFT calculations assuming a stable 2H trigonal prismatic 

phase. In particular, a broad band attributed to Ta 5d orbitals [22], is seen to cross the 

Fermi level in the experimental valence band spectra. Immediately below this band there 

exist bands due to the Se 4p contributions [22]. As seen in Figure 3(c), for 1T-TaSe2 the 

Se 4p orbital are predicted to disperse linearly very close to the Ta 5d orbitals crossing at 

the -point near the Fermi level. In our experimental data, the Se and Ta orbitals are well 

separated, which is in agreement with the theoretical calculations of the 2H-TaSe2 phase 

(Figure 3(b)). 

 

Phase Formation Studied by X-Ray Photoelectron Spectroscopy  
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The aforementioned RHEED and ARPES results indicate that well oriented trigonal 

prismatic 2H-TaSe2 films can be epitaxially grown, on three different templates, namely 

AlN, MoSe2 and HfSe2. XPS measurements were employed at this point in order to 

investigate in more detail the phase composition, as well as the chemical stability of the 

2D metal TaSe2 with the AlN substrate as well as with the 2D semiconductors MoSe2 and 

HfSe2. The Ta bonding configuration of the 4 ML-thick TaSe2/AlN, TaSe2/HfSe2 and 

TaSe2/MoSe2 structures, was investigated from the core level photoemission Ta 4f and Se 

3d lines reported in Fig. 4 and 5, respectively. The Ta spectra were fitted using a doublet 

of Voigt functions corresponding to Ta 4f7/2 and Ta 4f4/2 components. Spin-orbit splitting 

and area ratio values of 1.91 eV and 4:3 were fixed for the fit. It should be noted at this 

point that in the case of pure 2H-TaSe2 phase, the Ta 4f lineshapes are highly 

asymmetric, with clear shoulders on the high binding energy side of the main peaks [28-

30]. These shoulders are typical of trigonal prismatic coordinated layers and they actually 

originate from excitations in the narrow conduction band [28]. It is inferred form Figure 

4(a), that the experimental Ta 4f spectrum of the TaSe2/MoSe2 sample resembles very 

well those recorded for a pure 2H-TaSe2 phase [29-30], and therefore we claim the MBE 

formation of a clean 2H-TaSe2 phase in the case where TaSe2 is grown on MoSe2. In 

detail, three Ta 4f components are presented in the case of TaSe2/MoSe2 sample, which 

were all assigned to the 2H-TaSe2 phase. The dominant peak at lower BE (23 eV) is 

associated with the main 2H-TaSe2 Ta 4f photoelectron contribution, whereas the two 

remaining peaks at higher BE (23.6 eV and 24.2 eV) were necessary in order to 

reproduce the aforementioned conduction band peak. On the contrary, the Ta 4f 

lineshapes of the TaSe2/HfSe2 (Fig. 4(b) and TaSe2/AlN (Figure 4(c)) structures appear to 
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be distorted compared to the TaSe2/MoSe2 case (Figure 4(a)). The analysis of Ta 4f XPS 

core levels indicates that other metastable polytype phases may be present in the 

materials albeit in reduced proportions compared to the dominant 2H phase. In particular, 

deconvolution of these peaks reveals two additional well separated (~0.6 eV) doublet 

contributions, which are shifted to higher binding energies by ~ 0.6 eV with respect to the 

position of the main 2H-TaSe2 peak. It should be noted here that the binding energy of 

the additional peaks is almost coincident with the energy of the peak assigned to the 

conduction band excitation. The formation of minor amounts of the octahedrally 

coordinated 1T phase could be justified on the basis of XPS spectra since two CDW-

induced additional peaks, exhibiting a core level shift of ~0.65 eV are evidenced, 

corresponding to inequivalent Ta sites in the 1T-TaSe2 structure [21]. The possibility that 

the additional lower intensity peaks in the Ta4f spectra are due to Se deficiency [31] may 

be safely excluded since, in this case, a chemical shift to lower binding energies is 

expected rather than higher energies. Figure 5(a) presents the Se 3d spin doublet (3d5/2 

and 3d3/2) for the MBE-deposited TaSe2 samples. A fixed spin-orbit splitting and area 

ratio of 0.86 eV and 2:3, respectively were used for the fit. The distinct Se chemical 

environments in the TaSe2/MoSe2 sample were assigned mainly to the presence of Se-Ta, 

Se-Mo bonds, as expected, as well to only minor Se-Se bonds. Again, an extra peak is 

being introduced in the Se3d spectra of the TaSe2/AlN and TaSe2/HfSe2 samples, 

attributed to the formation of a minor TaSe2 phase other that the 2H. Overall, XPS 

measurements combined with RHEED and ARPES data indicate that a pure 2H-TaSe2 

phase is formed on MoSe2 while a mixed phase with a dominant 2H-TaSe2 component is 

formed on AlN or HfSe2 substrates.  
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Workfunction measurements and band lineups 

Obtaining low resistivity metal contacts on 2D semiconductors is a challenge [32]. To 

reduce the contact resistance, an appropriate 2D metal with a workfunction that creates a 

low Schottky barrier height with the 2D semiconductor must be chosen. From the low 

energy electron cut-off in in-situ UPS, shown in Figure 6(a), a work function of 5.4-5.5 

eV is deduced for TaSe2 which matches quite well the workfunction of HfSe2 (5.5 eV) 

[12] and is close to the value of 5.1 eV measured for MoSe2 [11]. The band alignment 

diagrams between the different layers are shown in Figure 5(b). It is seen that in the case 

of TaSe2/HfSe2 the Fermi levels perfectly line-up according to the electron affinity rule 

while in the case of TaSe2/ MoSe2 heterostructure there is only a small deviation, 

indicating that TaSe2 could form low barrier/low resistivity contacts with HfSe2 and 

MoSe2 2D semiconductors.  

 

DISCUSSION AND CONCLUSIONS 

In this work we showed that TaSe2 and TaSe2 /MoSe2 (HfSe2) heterostructures can be 

grown by MBE on AlN(0001)/Si(111) substrates with good structural quality at verified 

by RHEED and ARPES electronic band imaging. The material shows a dominant 

prismatic 2H-TaSe2 component which is also the most stable polytype at room 

temperature in bulk.  There is evidence though by XPS that TaSe2 directly grown on the 

AlN substrate contains a minor polytype component with different Ta-Se bonding as 

expected for example in octahedrally coordinated TaSe2. The best candidate for the 

minority phase is the 1T-TaSe2 with octahedral coordination, but the lack of evidence for 

such a phase in ARPES or RHEED data is of concern. The most plausible explanation is 
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that the 1T phase, if present, is in very small quantities on the surface beyond the 

detection limit of the latter two techniques which are extremely surface sensitive. 

Alternatively, the assumed octrahedrally coordinated TaSe2 may come from small 

amounts of 6R or 4Hb phases co-existing with the dominant 2H-TaSe2. The former 

phases (6R and 4Hb) consist of alternating layers with octahedral and prismatic 

coordination [18]. Given that the Ta 4f spectrum of the 4Hb phase consists of 

contributions from both the octahedrally coordinated and prismatic layers [33], the 

presence of 4Hb minority is compatible with our XPS data. The possible presence of 4Hb 

minority raises the question about possible observation of superstructure spots in RHEED 

due to CDW-associated lattice distortions. It has been shown before [34] that 

superstructure spots in 4Hb indeed could be observed at RT but with lower intensity 

compared to a pure 1T phase, which could explain in part the lack of evidence for such 

superstructures in our RHEED data. It is also concluded here, that TaSe2 quality degrades 

when it is grown on HfSe2/AlN, judging from an increased polytype minority phase 

detected from XPS and fuzzier RHEED spectrum. In contrast, TaSe2 structural quality 

improves when it is grown on MoSe2/AlN reducing to a pure 2H phase material and 

better crystalline quality compared to TaSe2/HfSe2/AlN as evidenced from XPS and 

RHEED. These results indicate that TaSe2 is better compatible with MoSe2 rather than 

HfSe2. Nevertheless, the workfunctions match very well in the case of TaSe2/HfSe2 

heterostructure (both measured at 5.5 eV) suggesting an optimal 2D metal/2D 

semiconductor junction, although the TaSe2/MoSe2 is not far from optimum too. To 

verify low contact resistivity though requires additional development for the fabrication 

of simple devices by employing selective etching of the metal layers with respect to the 
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2D metal underneath and proper mesa isolation of the devices by etching which is beyond 

the scope of this work. 
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Figure 1. The crystallographic structure of the two most common 2H and 1T-TaSe2 

polytypes. The Se-Ta-Se coordination is trigonal prismatic in the 2H structure and 

octahedral in the 1T structure. 
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Figure 2. (a) RHEED diffraction patterns of the 4 ML MBE-deposited TaSe2 films on 

different templates (AlN, HfSe2 and MoSe2) obtained along the  110  azimuth of the bare 

AlN(0001) surface, showing good quality epitaxial growth with excellent alignment of 

the 2D metal with the substrate. Blue and red arrows indicate the diffraction streaks of 

AlN(0001) and TaSe2 superstructures, respectively. 
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Figure 3. Band structure imaging by in-situ ARPES of 4 ML-TaSe2/AlN (top) and DFT 

bandstructure calculations for 2H (middle) and 1T (bottom) TaSe2 phases. Experimental 

data agree well with the formation of the trigonal prismatic 2H-TaSe2 phase. 
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Figure 4. Deconvolution of the Ta 4f doublets of the 4-ML thin TaSe2 films grown 

epitaxially on (a) MoSe2, (b) HfSe2 and (c) AlN templates, showing the formation of a 

pure (a)/dominant (b) and (c) 2H-TaSe2 phase in all cases. 
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Figure 5. Deconvolution of the Se 3d doublets of the 4-ML thin TaSe2 films grown 

epitaxially on (a) MoSe2, (b) HfSe2 and (c) AlN templates, showing the formation of a 

pure (a)/dominant (b) and (c) 2H-TaSe2 phase in all cases. 
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Figure 6. (a) Low energy cut off for TaSe2, HfSe2 and MoSe2 samples, as determined 

from UPS measurements, (b) Schematic of the HfSe2/TaSe2 and MoSe2/TaSe2 band 

alignments as derived from UPS measurements, showing workfunction matching 

according to the electron affinity rule. 
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