279 research outputs found

    Focus on: New trends, challenges and perspectives on healthcare cognitive computing: from information extraction to healthcare analytics

    Get PDF
    The focus of this special issue is cognitive computing in healthcare, due to the ever-increasing interest it is gaining for both research purposes and clinical applications. Indeed, cognitive computing is a challenging technology in many fields of application (Banavar, 2016) such as, e.g., medicine, education or eco- nomics (Coccoli et al., 2016) especially for the management of huge quantities of information where cognitive computing techniques push applications based on the use of big data (Coccoli et al., 2017). An unprecedented amount of data is made available from a heterogeneous variety of sources and this is true also in the case of health data, which can be exploited in many ways by means of sophisticated cognitive computing solutions and related technologies, such as, e.g., information extraction, natural language processing, and analytics. Also, from the point of view of programming they set challenging issues (see, e.g., Coccoli et al., 2015). In fact, the amount of healthcare that is now available and, potentially useful to care teams, reached 150 Exabytes worldwide and about 80% of this huge volume of data is in an unstructured form, being thus somehow invisible to systems. Hence, it is clear that cognitive computing and data analytics are the two key factors we have for make use – at least partially – of such a big volume of data. This can lead to personalized health solutions and healthcare systems that are more reliable, effective and efficient also re- ducing their expenditures. Healthcare will have a big impact on industry and research. However, this field, which seems to be a new era for our society, requires many scientific endeavours. Just to name a few, you need to create a hybrid and secure cloud to guarantee the security and confidentiality of health data, especially when smartphones or similar devices are used with specific app (see, e.g., Mazurczyk & Caviglione, 2015). Beside the cloud, you also need to consider novel ar- chitectures and data platforms that shall be different from the existing ones,because 90% of health and biomedical data are images and also because 80% of health data in the world is not available on the Web. This special issue wants to review state-of-the-art of issues and solutions of cognitive computing, focusing also on the current challenges and perspecti- ves and includes a heterogeneous collection of papers covering the following topics: information extraction in healthcare applications, semantic analysis in medicine, data analytics in healthcare, machine learning and cognitive com- puting, data architecture for healthcare, data platform for healthcare, hybrid cloud for healthcare

    Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress

    Get PDF
    Objective: To perform a review of recent research in clinical data reuse or secondary use, and envision future advances in this field. Methods: The review is based on a large literature search in MEDLINE (through PubMed), conference proceedings, and the ACM Digital Library, focusing only on research published between 2005 and early 2016. Each selected publication was reviewed by the authors, and a structured analysis and summarization of its content was developed. Results: The initial search produced 359 publications, reduced after a manual examination of abstracts and full publications. The following aspects of clinical data reuse are discussed: motivations and challenges, privacy and ethical concerns, data integration and interoperability, data models and terminologies, unstructured data reuse, structured data mining, clinical practice and research integration, and examples of clinical data reuse (quality measurement and learning healthcare systems). Conclusion: Reuse of clinical data is a fast-growing field recognized as essential to realize the potentials for high quality healthcare, improved healthcare management, reduced healthcare costs, population health management, and effective clinical research

    Design of hearing aid shells by three dimensional laser scanning and mesh reconstruction

    Get PDF
    Hearing aid shells (or earmolds) must couple the hearing aid with the user's ear. Earmolds have to fit the subject's outer ear canal properly to ensure a good performance of the aid. Because of the great variability in the anatomical pattern of the ear, earmolds are custom made. At present, an impression of the subject's ear canal is taken and used to fabricate the silicon-made mold. The postimpression activities that typically are performed during the fabrication process modify the physical dimensions of the resulting earmold and thus affect the fit of the product. A novel system for 3-D laser scanning and mesh reconstruction of the surface of ear canal impressions is presented. The reconstructed impression can be digitally stored and passed directly to dedicated CAD 3-D printing machines to model the silicon earmold and thus achieve the best possible fit. The proposed system is based on a couple of cameras and a commercial laser for the surface digitization and on a straightforward algorithm, based on the deformation of a geometric model, for the reconstruction of the acquired surface. Measurements on objects of well-known geometric features and dimensions are performed to assess the accuracy and repeatability levels of this 3-D acquisition system. Robustness to noise of the proposed reconstruction algorithm is determined by simulations with a synthetic test surface. Finally, the first measurements (acquisition+reconstruction) of closed surfaces from ear canal impressions are reported

    Aplicação clínica da ressonância magnética em pacientes com traumatismo craniencefálico agudo

    Get PDF
    PURPOSE: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. METHOD: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. RESULTS: Statistical significant differences (McNemar test): ocurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. CONCLUSION: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI.PROPÓSITO: Avaliar a aplicação clínica da ressonância magnética (RM) em pacientes vítimas de traumatismo craniencefálico (TCE) agudo, na identificação do tipo, número, gravidade e correlação clínica-radiológica. MÉTODO: Foram estudados prospectivamente 55 pacientes vítimas de TCE agudo fechado (0-5 dias), por TC e RM, sendo 34 do sexo masculino e 21 do feminino. RESULTADOS: Houve diferença estatisticamente significante (teste McNemar): fraturas de crânio foram detectadas em 29,1% pacientes na TC e 3,6% pela RM; hematoma subdural 10,9% na TC e 36,4% pela RM; lesão axonal difusa (LAD) 1,8% pela TC e 50,9% na RM; contusões corticais 9,1% na TC e 41,8% pela RM, hemorragia subaracnóidea 18,2% na TC e 41,8% pela RM. CONCLUSÃO: A RM foi superior à TC na identificação da LAD, hemorragia subaracnóidea, contusões corticais e hematoma subdural agudo, porém inferior no diagnóstico de fraturas. A detecção de LAD pela RM foi associada com maior gravidade do TCE agudo

    Implementation of 3D Optical Scanning Technology for Automotive Applications

    Get PDF
    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters

    Cyclotides Isolated from an Ipecac Root Extract Antagonize the Corticotropin Releasing Factor Type 1 Receptor

    Get PDF
    Cyclotides are plant derived, cystine-knot stabilized peptides characterized by their natural abundance, sequence variability and structural plasticity. They are abundantly expressed in Rubiaceae, Psychotrieae in particular. Previously the cyclotide kalata B7 was identified to modulate the human oxytocin and vasopressin G protein-coupled receptors (GPCRs), providing molecular validation of the plants’ uterotonic properties and further establishing cyclotides as valuable source for GPCR ligand design. In this study we screened a cyclotide extract derived from the root powder of the South American medicinal plant ipecac (Carapichea ipecacuanha) for its GPCR modulating activity of the corticotropin-releasing factor type 1 receptor (CRF1R). We identified and characterized seven novel cyclotides. One cyclotide, caripe 8, isolated from the most active fraction, was further analyzed and found to antagonize the CRF1R. A nanomolar concentration of this cyclotide (260 nM) reduced CRF potency by ∼4.5-fold. In contrast, caripe 8 did not inhibit forskolin-, or vasopressin-stimulated cAMP responses at the vasopressin V2 receptor, suggesting a CRF1R-specific mode-of-action. These results in conjunction with our previous findings establish cyclotides as modulators of both classes A and B GPCRs. Given the diversity of cyclotides, our data point to other cyclotide-GPCR interactions as potentially important sources of drug-like molecules

    Metal artifact reduction in dental CT images using polar mathematical morphology

    Full text link
    Most dental implant planning systems use a 3D representation of the CT scan of the patient under study as it provides a more intuitive view of the human jaw. The presence of metallic objects in human jaws, such as amalgam or gold fillings, provokes several artifacts like streaking and beam hardening which makes the reconstruction process difficult. In order to reduce these artifacts, several methods have been proposed using the raw data, directly obtained from the tomographs, in different ways. However, in DICOM-based applications this information is not available, and thus the need of a new method that handles this task in the DICOM domain. The presented method performs a morphological filtering in the polar domain yielding output images less affected by artifacts (even in cases of multiple metallic objects) without causing significant smoothing of the anatomic structures, which allows a great improvement in the 3D reconstruction. The algorithm has been automated and compared to other image denoising methods with successful results. (C) 2010 Elsevier Ireland Ltd. All rights reserved.This work has been supported by the project MIRACLE (DPI2007-66782-C03-01-AR07) of Spanish Ministerio de Educacion y Ciencia.Naranjo Ornedo, V.; Llorens Rodríguez, R.; Alcañiz Raya, ML.; López-Mir, F. (2011). Metal artifact reduction in dental CT images using polar mathematical morphology. Computer Methods and Programs in Biomedicine. 102(1):64-74. https://doi.org/10.1016/j.cmpb.2010.11.009S6474102

    Tone burst-evoked otoacoustic emissions in neonates: normative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tone-burst otoacoustic emissions (TBOAEs) have not been routinely studied in pediatric populations, although tone burst stimuli have greater frequency specificity compared with click sound stimuli. The present study aimed (1) to determine an appropriate stimulus level for neonatal TBOAE measurements when the stimulus center frequency was 1 kHz, (2) to explore the characteristics of 1 kHz TBOAEs in a neonatal population.</p> <p>Methods</p> <p>A total of 395 normal neonates (745 ears) were recruited. The study consisted of two parts, reflecting the two study aims. Part I included 40 normal neonatal ears, and TBOAE measurement was performed at five stimulus levels in the range 60–80 dB peSPL, with 5 dB incremental steps. Part II investigated the characteristics of the 1 kHz TBOAE response in a large group of 705 neonatal ears, and provided clinical reference criteria based on these characteristics.</p> <p>Results</p> <p>The study provided a series of reference parameters for 1 kHz TBOAE measurement in neonates. Based on the results, a suggested stimulus level and reference criteria for 1 kHz TBOAE measures with neonates were established. In addition, time-frequency analysis of the data gave new insight into the energy distribution of the neonatal TBOAE response.</p> <p>Conclusion</p> <p>TBOAE measures may be a useful method for investigating cochlear function at specific frequency ranges in neonates. However, further studies of both TBOAE time-frequency analysis and measurements in newborns are needed.</p
    • …
    corecore