44 research outputs found

    Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice

    Get PDF
    Proliferative cells expressing proteoglycan neuron-glia 2 (NG2) are considered to represent parenchymal precursor cells in the adult brain and are thought to differentiate primarily into oligodendrocytes. We have studied cell genesis in the adult amygdala and found that, up to 1 year after the labeling of proliferating cells with bromodeoxyuridine, most proliferating NG2 cells remain NG2 cells, and only a few slowly differentiate into mature oligodendrocytes, as assessed by the expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase. We have detected no signs of neurogenesis but have confirmed the expression of “neuronal” markers such as Doublecortin in NG2 cells. Nestin-expressing NG2 cells in the amygdala show electrophysiological properties known for oligodendrocyte precursor cells in the corpus callosum. Application of the glutamate agonist kainate elicits a “complex” response consisting of a rapid and long-lasting blockade of the resting K+ conductance, a transient cationic current, and a transient increase of an outwardly directed K+ conductance, suggesting the responsiveness of NG2 cells to excitation. Proliferation of NG2 cells increases in response to behavioral stimuli of activity, voluntary wheel running, and environmental enrichment. In addition to reducing the number of newborn microglia, behavioral activity results in a decrease in S100β-expressing newborn NG2 cells in the amygdala. Because S100β expression in NG2 cells ceases with oligodendrocyte maturation, this finding suggests that NG2 cells in the amygdala undergo activity-dependent functional alterations, without resulting in a measurable increase in new mature oligodendrocytes over the time period covered by the present study. The adult amygdala thus shows signs of mixed activity-dependent plasticity: reduced numbers of microglia and, presumably, an altered fate of NG2 cells

    Poor Response to Checkpoint Immunotherapy in Uveal Melanoma Highlights the Persistent Need for Innovative Regional Therapy Approaches to Manage Liver Metastases

    No full text
    Uveal melanoma is a cancer that develops from melanocytes in the posterior uveal tract. Metastatic uveal melanoma is an extremely rare disease that has a poor long-term prognosis, limited treatment options and a strong predilection for liver metastasis. Median overall survival has been reported to be 6 months and 1 year mortality of 80%. Traditional chemotherapy used in cutaneous melanoma is ineffective in uveal cases. Surgical resection and ablation is the preferred therapy for liver metastasis but is often not feasible due to extent of disease. In this review, we will explore treatment options for liver metastases from uveal melanoma, with a focus on isolated hepatic perfusion (IHP). IHP offers an aggressive regional therapy approach that can be used in bulky unresectable disease and allows high-dose chemotherapy with melphalan to be delivered directly to the liver without systemic effects. Long-term median overall survival has been reported to be as high as 27 months. We will also highlight the poor responses associated with checkpoint inhibitors, including an overview of the biological rationale driving this lack of immunotherapy effect for this disease. The persistent failure of traditional treatments and immunotherapy suggest an ongoing need for regional surgical approaches such as IHP in this disease
    corecore