31 research outputs found

    Some remarks on the determination of quantum states by measurements.

    Get PDF
    The problem of state determination of quantum systems by the probability distributions of some observables is considered. In particular, we review a question already asked by W. Pauli, namely, the determination of pure states of spinless particles by the distributions of position and momentum. In this context we give a new example of two wave functions differing by a piecewise constant phase having the same position and momentum distributions. ThePauli problem is investigated also under incorporation of special types of the Hamiltonian. Moreover, in case of spin-1 systems with three-dimensional Hilbert space, it is shown that the probabilities for the values of six suitably chosen spin components determine their state

    The structure of classical extensions of quantum probability theory

    Get PDF
    On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra–Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed

    Moment operators of the Cartesian margins of the phase space observables

    Full text link
    The theory of operator integrals is used to determine the moment operators of the Cartesian margins of the phase space observables generated by the mixtures of the number states. The moments of the xx-margin are polynomials of the position operator and those of the yy-margin are polynomials of the momentum operator.Comment: 14 page

    Semispectral measures as convolutions and their moment operators

    Full text link
    The moment operators of a semispectral measure having the structure of the convolution of a positive measure and a semispectral measure are studied, with paying attention to the natural domains of these unbounded operators. The results are then applied to conveniently determine the moment operators of the Cartesian margins of the phase space observables.Comment: 7 page

    Quantum particles from coarse grained classical probabilities in phase space

    Full text link
    Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.Comment: 19 page

    On the coexistence of position and momentum observables

    Full text link
    We investigate the problem of coexistence of position and momentum observables. We characterize those pairs of position and momentum observables which have a joint observable

    Optimal measurements in quantum mechanics

    Full text link
    Four common optimality criteria for measurements are formulated using relations in the set of observables, and their connections are clarified. As case studies, 1-0 observables, localization observables, and photon counting observables are considered.Comment: minor correction
    corecore