
This is a repository copy of The structure of classical extensions of quantum probability 
theory.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/3754/

Version: Submitted Version

Article:

Busch, Paul orcid.org/0000-0002-2559-9721 and Stulpe, Werner (2008) The structure of 
classical extensions of quantum probability theory. Journal of Mathematical Physics. 
032104. pp. 1-22. ISSN 0022-2488 

https://doi.org/10.1063/1.2884581

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



promoting access to White Rose research papers 

   

White Rose Research Online 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 

 
 
This is an author produced version of a paper published in Journal of 
Mathematical Physics.  

 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/3754/ 
 

 
 
Published paper 
Busch, Paul and Stulpe, Werner (2008) The structure of classical extensions of 
quantum probability theory. Journal of Mathematical Physics, 49 (3). Art. No. 
032104.

 

eprints@whiterose.ac.uk 

 



The Structure of Classical Extensions of Quantum Probability

Theory

Werner Stulpe∗

Aachen University of Applied Sciences,
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Abstract

On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of

statistical models, we prove that every such classical extension is essentially given by the so-called

Misra-Bugajski reduction map. We consider how this map enables one to understand quantum
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I. INTRODUCTION

Every statistical (probabilistic) physical theory can be based on a set S of states, a set

E of effects, and a probability functional associating each state s ∈ S and each effect a ∈ E
with a real number 〈s, a〉 ∈ [0, 1], the latter being the probability for the outcome ‘yes’ of the

effect a in the state s [14, 15, 17, 24, 25]. We summarize these basic concepts of a statistical

theory by the pair 〈S, E〉; we call 〈S, E〉 a statistical model if the following properties are

satisfied [1, 2, 21, 22]. Since states can be mixed, S has to be closed under such mixtures,

and the probability functional must be affine in the states (mixture-preserving); moreover,

we assume that the states and the effects separate each other (i.e., 〈s1, a〉 = 〈s2, a〉 for all

a ∈ E implies s1 = s2, and 〈s, a1〉 = 〈s, a2〉 for all s ∈ S implies a1 = a2).

Given a statistical model 〈S1, E1〉, assume only a subset E2 ⊆ E1 is accessible. In general,

E2 no longer separates S1; call two states s, s̃ ∈ S1 equivalent if 〈s, a〉 = 〈s̃, a〉 for all a ∈ E2.

Let S2 be the set of the equivalence classes and define

〈[s], a〉 := 〈s, a〉 (1)

where [s] ∈ S2 and a ∈ E2. Then S2 is a new set of states and 〈S2, E2〉 a new statistical model;

〈S2, E2〉 is a reduction of 〈S1, E1〉, and 〈S1, E1〉 is an extension of 〈S2, E2〉. Let R : S1 → S2

be the canonical projection, i.e., R(s) := [s], and define the embedding map R′ : E2 → E1,

i.e., R′(a) := a. Then Eq. (1) can be written as

〈R(s), a〉 = 〈s, R′(a)〉.

Note that R is affine and surjective, whereas R′ is injective. We call R a reduction map.

Next let 〈S1, E1〉 and 〈S2, E2〉 be two arbitrary statistical models and R : S1 → S2 a

surjective affine mapping. Observe that s1 7→ 〈R(s1), a2〉 is an affine functional on S1 with

values in the interval [0, 1]; assume that, for each effect a2 ∈ E2, there exists an effect a1 ∈ E1

such that

〈R(s1), a2〉 = 〈s1, a1〉 (2)

holds for all s1 ∈ S1. Clearly, a1 is uniquely determined, and we can define a map R′ : E2 → E1

according to R′(a2) := a1. Then Eq. (2) reads

〈R(s1), a2〉 = 〈s1, R
′(a2)〉, (3)
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and one easily shows that R′ is injective. Moreover, we can call two states s1, s̃1 ∈ S1

equivalent if R(s1) = R(s̃1); for effects of the form R′(a2), such equivalent states s1 and

s̃1 give rise to the same probabilities. Because R is surjective, the states s2 ∈ S2 can be

identified with the equivalence classes [s1] = R−1({s2}) where s2 = Rs1. Because R′ is

injective, we can further identify the effects a2 ∈ E2 with the effects R′(a2), i.e., E2 can

be considered as a subset of E1. By means of these identifications, Eq. (3) coincides with

Eq. (1), and R takes the role of the canonical projection. Hence, the relation between the

two statistical models of this paragraph is the same as that between the two statistical

models of the preceding paragraph.

If 〈S1, E1〉 and 〈S2, E2〉 are two statistical models and R is a surjective affine mapping from

S1 onto S2 for which, in the sense just described, a mapping R′ exists, then we call 〈S2, E2〉
a reduction of 〈S1, E1〉, 〈S1, E1〉 an extension of 〈S2, E2〉, and R a reduction map. Since

statistical models can be embedded into dual pairs of vector spaces (one vector space being

a base-norm space and the other one an order-unit norm space, the pair forming a so-called

statistical duality [21, 24, 25, 31]), the reduction-extension concept for statistical models can

be reformulated in this general context. The reduction map R is then a surjective bounded

linear map, and R′ is the adjoint map of R which is linear, bounded, and injective. We do

not consider this reformulation in complete generality, instead we shall study a reduction-

extension concept specific to the subject of this paper which concerns the relation between

classical and quantum probability.

It is the aim of this paper to revisit a particular classical extension of quantum mechanics

defined by what we call the Misra-Bugajski reduction map [1, 6, 10, 16, 21, 26, 30], and to

show that this map is essentially the only possible reduction map from a classical statistical

model to the quantum statistical model, i.e., essentially the only possible way to obtain a

classical extension of quantum probability theory. To this end, we first define the notions of

quantum and classical statistical model. In doing so we also introduce most of the notations

used in the paper.

Let a complex separable Hilbert space H 6= {0} be given. We denote the real vector

space of the self-adjoint trace-class operators by Ts(H) and the convex set of the positive

trace-class operators of trace 1 by S(H); the operators of S(H) are the density operators

and describe the quantum states. The pair (Ts(H),S(H)) is a base-normed Banach space

with closed positive cone, the base norm being the trace norm. We denote the real vector
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space of all bounded self-adjoint operators by Bs(H) and the unit operator by I. The pair

(Bs(H), I) where Bs(H) is equipped with its order relation, is an order-unit normed Banach

space with closed positive cone, the norm being the usual operator norm. The elements of

the order-unit interval E(H) := [0, I] describe the quantum mechanical effects. As is well

known, Bs(H) can be considered as the dual space (Ts(H))′ where the duality is given by

the trace functional

(V,A) 7→ 〈V,A〉 := trV A,

V ∈ Ts(H), A ∈ Bs(H). The restriction of this bilinear functional to S(H) × E(H) is the

quantum probability functional; trWA is the probability for the outcome ‘yes’ of the effect

A ∈ E(H) in the state W ∈ S(H). Thus, 〈Ts(H),Bs(H)〉 is a dual pair of vector spaces (in

fact a statistical duality) and 〈S(H), E(H)〉 the quantum statistical model [11, 14, 22, 25].

Further we recall that the extreme points of the convex set S(H), i.e., the pure quan-

tum states, are the one-dimensional orthogonal projections P = Pϕ := |ϕ 〉〈ϕ|, ‖ϕ‖ = 1.

We denote the set of these extreme points, i.e., the extreme boundary, by ∂eS(H). The

extreme points of the convex set E(H) are all orthogonal projections, these are sometimes

called sharp effects whereas the other ones are called unsharp effects.—We also recall that

σ(Ts(H),Bs(H)) is the weak Banach-space topology of Ts(H), i.e., the coarsest topology

on Ts(H) in which the elements of Bs(H), considered as linear functionals on Ts(H), are

continuous.

For a general measurable space (Ω,Σ) where Ω is a nonempty set and Σ an arbitrary σ-

algebra of subsets of Ω, let MR(Ω,Σ) be the real vector space of the real-valued measures on

(Ω,Σ) (i.e., of the σ-additive real-valued set functions on Σ). We denote the convex subset

of the positive normalized measures by S(Ω,Σ); the elements of S(Ω,Σ) are probability

measures and describe classical states. The pair (MR(Ω,Σ),S(Ω,Σ)) is a base-normed

Banach space with closed positive cone, the base norm being the total-variation norm. By

FR(Ω,Σ) we denote the real vector space of the bounded Σ-measurable functions on Ω and

by χE the characteristic function of a set E ∈ Σ. The pair (FR(Ω,Σ), χΩ) together with the

order relation of FR(Ω,Σ) is an order-unit normed Banach space with closed positive cone,

the order-unit norm being the supremum norm. The elements of the order-unit interval

E(Ω,Σ) := [0, χΩ] describe the classical effects. By the bilinear functional given by the
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integral

(ν, f) 7→ 〈ν, f〉 :=

∫

Ω

fdν,

ν ∈ MR(Ω,Σ), f ∈ FR(Ω,Σ), the spaces MR(Ω,Σ) and FR(Ω,Σ) are placed in duality to

each other; in particular, FR(Ω,Σ) can be considered as a norm-closed subspace of the dual

space (MR(Ω,Σ))′ where in general the dual space is larger than FR(Ω,Σ). The restriction

of (ν, f) 7→ 〈ν, f〉 to S(Ω,Σ) × E(Ω,Σ) is the classical probability functional;
∫
fdν is

the probability for the outcome ‘yes’ of the effect f ∈ E(Ω,Σ) in the state µ ∈ S(Ω,Σ).

Again, 〈MR(Ω,Σ),FR(Ω,Σ)〉 is a dual pair of vector spaces (a statistical duality), whereas

〈S(Ω,Σ), E(Ω,Σ)〉 is the classical statistical model [8, 9, 15, 17, 18, 27, 29].

We remark that the Dirac measures δω, ω ∈ Ω, are extreme points of the convex set

S(Ω,Σ), but in general there are also other extreme points. The extreme points of the

convex set E(Ω,Σ) are the characteristic functions χE, E ∈ Σ, these are the sharp classical

effects (in the terminology of classical probability theory, the events), the other effects are

unsharp or fuzzy.—Finally, we recall that σ(MR(Ω,Σ),FR(Ω,Σ)) is the coarsest topology on

MR(Ω,Σ) in which the elements of FR(Ω,Σ), considered as linear functionals on MR(Ω,Σ),

are continuous.

Now assume that, for the two statistical models 〈S1, E1〉 = 〈S(Ω,Σ), E(Ω,Σ)〉 and

〈S2, E2〉 = 〈S(H), E(H)〉, a reduction map R : S(Ω,Σ) → S(H) is given. It is not hard

to show that the surjective affine mapping R can uniquely be extended to a surjective linear

map from MR(Ω,Σ) onto Ts(H) which we also call R; the linear map R is automatically

positive and bounded. According to Eq. (3) the injective mapping R′ : E(H) → E(Ω,Σ)

satisfies

tr (Rµ)A = 〈Rµ,A〉 = 〈µ,R′A〉 =

∫

Ω

R′Adµ (4)

for all µ ∈ S(Ω,Σ) and all A ∈ E(H); R′ is also affine. Moreover, from (4) it follows that

the adjoint map of R w.r.t. the dual pairs 〈MR(Ω,Σ),FR(Ω,Σ)〉 and 〈Ts(H),Bs(H)〉 exists,

this adjoint map R′ : Bs(H) → FR(Ω,Σ) is a unique linear extension of the affine mapping

R′ : E(H) → E(Ω,Σ) and is also injective.

The existence of the adjoint map R′ w.r.t. the considered dual pairs is equivalent to

R∗Bs(H) ⊆ FR(Ω,Σ) where R∗ : Bs(H) → (MR(Ω,Σ))′ is the Banach-space adjoint map

of R. According to general results in duality theory, the existence of the linear map R′ is

also equivalent to the σ(MR(Ω,Σ),FR(Ω,Σ))-σ(Ts(H),Bs(H)) continuity of R.—The crucial
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properties of the linear map R are summarized in the following definition.

Definition We call a linear map R : MR(Ω,Σ) → Ts(H) a reduction map if

(i) RS(Ω,Σ) = S(H);

(ii) R is σ(MR(Ω,Σ),FR(Ω,Σ))-σ(Ts(H),Bs(H))-continuous.

We will say that the linear map R (or its affine restriction) together with the dual map R′

constitutes a reduction of the classical statistical model 〈S(Ω,Σ), E(Ω,Σ)〉 to the quantum

statistical model 〈S(H), E(H)〉. In particular, we will say that R and R′ constitute a classical

extension of quantum mechanics.

The properties of R stated in this definition imply again that R is bounded, positive,

and surjective and that R′ exists and is injective. Furthermore, one easily shows that R′

is positive and that R′I = χΩ and R′E(H) ⊆ E(Ω,Σ). The restrictions of R and R′ to

S(Ω,Σ) and E(Ω,Σ), respectively, are affine; clearly, the restriction of R to S(Ω,Σ) is a

reduction map as defined previously in the context of two general statistical models 〈S1, E1〉
and 〈S2, E2〉.

It is not clear that classical extensions of quantum mechanics do exist, in fact, this may

be considered surprising. The typical example of a reduction map is the so-called Misra-

Bugajski map which we present in Section IV. In Section V we prove our result that every

reduction map giving a classical extension of quantum mechanics is essentially equivalent to

the Misra-Bugajski map. Thus, the Misra-Bugajski map is essentially unique and yields a

canonical classical extension of quantum mechanics.

Sections II and III provide prerequisite results on the topology and the Borel structure

of the projective Hilbert space which will be identified with the extreme boundary ∂eS(H)

of S(H). In Section VI some examples of reduction maps different from the Misra-Bugajski

map are presented. Finally, in Section VII the physical interpretation of the results of

Sections IV and V is discussed.

II. THE TOPOLOGY OF THE PROJECTIVE HILBERT SPACE

In this section we undertake a systematic review and comparison, sketched out in this

context previously by Bugajski [7], of the various topologies on the set of the pure quantum
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states or, alternatively, on the projective Hilbert space associated with a nontrivial separable

complex Hilbert space H 6= {0}.
Call two vectors of H∗ := H\{0} equivalent if they differ by a complex factor, and define

the projective Hilbert space P(H) to be the set of the corresponding equivalence classes

which are often called rays. Instead of H∗ one can consider only the unit sphere of H,

S := {ϕ ∈ H | ‖ϕ‖ = 1}. Then two unit vectors are called equivalent if they differ by a

phase factor, and the set of the corresponding equivalence classes, i.e., the set of the unit

rays, is denoted by S/S1 (in this context, S1 is understood as the set of all phase factors,

i.e., as the set of all complex numbers of modulus 1). Clearly, S/S1 can be identified with

the projective Hilbert space P(H). Furthermore, we can consider the elements of P(H) also

as the one-dimensional subspaces of H or, equivalently, as the one-dimensional orthogonal

projections P = Pϕ = |ϕ 〉〈ϕ|, ‖ϕ‖ = 1.

The set H∗ and the unit sphere S carry the topologies induced by the metric topology

of H. Using the canonical projections µ : H∗ → P(H), µ(ϕ) := [ϕ], and ν : S → S/S1,

ν(χ) := [χ]S, where [ϕ] is a ray and [χ]S a unit ray, we can equip the quotient sets P(H)

and S/S1 with their quotient topologies Tµ and Tν . Considering Tν , a set O ⊆ S/S1 is called

open if ν−1(O) is open.

Theorem 1 The set S/S1, equipped with the quotient topology Tν, is a second-countable

Hausdorff space, and ν is an open continuous mapping.

Proof. By definition of Tν , ν is continuous. To show that ν is open, let U be an open set

of S. From

ν−1(ν(U)) = ν−1({[χ]S |χ ∈ U}) =
⋃

λ∈S1

λU,

S1 = {λ ∈ C | |λ| = 1}, it follows that ν−1(ν(U)) ⊆ S is open. So ν(U) ⊆ S/S1 is open;

hence, ν is open.

Next consider two different unit rays [ϕ]S and [ψ]S where ϕ, ψ ∈ S and |〈ϕ|ψ〉| = 1 − ε,

0 < ε ≤ 1. Since the mapping χ 7→ |〈ϕ|χ〉|, χ ∈ S, is continuous, the sets

U1 :=
{
χ ∈ S

∣∣ |〈ϕ|χ〉| > 1 − ε
2

}
(5)

and

U2 :=
{
χ ∈ S

∣∣ |〈ϕ|χ〉| < 1 − ε
2

}
(6)
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are open neighborhoods of ϕ and ψ, respectively. Consequently, the sets O1 := ν(U1) and

O2 := ν(U2) are open neighborhoods of [ϕ]S and [ψ]S, respectively. Assume O1 ∩ O2 6= ∅.
Let [ξ]S ∈ O1 ∩ O2, then [ξ]S = ν(χ1) = ν(χ2) where χ1 ∈ U1 and χ2 ∈ U2. It follows that

χ1 and χ2 are equivalent, so |〈ϕ|χ1〉| = |〈ϕ|χ2〉|, in contradiction to χ1 ∈ U1 and χ2 ∈ U2.

Hence, O1 and O2 are disjoint, and Tν is separating.

Finally, let B = {Un |n ∈ N} be a countable base of the topology of S and define the

open sets On := ν(Un). We show that {On |n ∈ N} is a base of Tν . For O ∈ Tν , we have

that ν−1(O) is an open set of S and consequently ν−1(O) =
⋃
n∈M Un where Un ∈ B and

M ⊆ N. Since ν is surjective, it follows that

O = ν(ν−1(O)) = ν

(
⋃

n∈M

Un

)
=
⋃

n∈M

ν(Un) =
⋃

n∈M

On.

Hence, {On |n ∈ N} is a countable base of Tν . �

Analogously, it can be proved that the topology Tµ on P(H) is separating and second-

countable and that the canonical projection µ is open (and continuous by the definition of

Tµ). Moreover, one can show that the natural bijection β : P(H) → S/S1, β([ϕ]) :=
[

ϕ

‖ϕ‖

]
S
,

β−1([χ]S) = [χ], is a homeomorphism. Thus, identifying P(H) and S/S1 by β, the topologies

Tµ and Tν are the same.

The above definition of P(H) and S/S1 as well as of their quotient topologies is related to

a geometrical point of view. From an operator-theoretical point of view, it is more obvious

to identify P(H) with ∂eS(H), the extreme boundary of S(H), and to restrict one of the

various operator topologies to ∂eS(H). A further definition of a topology on ∂eS(H) is

suggested by the interpretation of the one-dimensional projections P ∈ ∂eS(H) as the pure

quantum states and by the requirement that the transition probabilities between two pure

states are continuous functions. Next we consider, taking account of ∂eS(H) ⊆ S(H) ⊂
Ts(H) ⊆ Bs(H), the metric topologies on ∂eS(H) induced by the trace-norm topology of

Ts(H), resp., by the norm toplogy of Bs(H). After that we introduce the weak topology on

∂eS(H) defined by the transition-probability functions as well as the restrictions of several

weak operator topologies to ∂eS(H). Finally, we shall prove the surprising result that all

the many toplogies on P(H) ∼= S/S1 ∼= ∂eS(H) are equivalent.

Theorem 2 Let Pϕ = |ϕ 〉〈ϕ| ∈ ∂eS(H) and Pψ = |ψ 〉〈ψ| ∈ ∂eS(H) where ‖ϕ‖ = ‖ψ‖ = 1.

Then
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(a)

ρn(Pϕ, Pψ) := ‖Pϕ − Pψ‖ =
√

1 − |〈ϕ|ψ〉|2 =
√

1 − trPϕPψ

where the norm ‖·‖ is the usual operator norm;

(b)

ρtr(Pϕ, Pψ) := ‖Pϕ − Pψ‖tr = 2 ‖Pϕ − Pψ‖ ,

in particular, the metrics ρn and ρtr on ∂eS(H) induced by the operator norm ‖·‖ and

the trace norm ‖·‖tr are equivalent;

(c)

‖Pϕ − Pψ‖ ≤ ‖ϕ− ψ‖ ,

in particular, the mapping ϕ 7→ Pϕ from S into ∂eS(H) is continuous, ∂eS(H) being

equipped with ρn or ρtr.

Proof. To prove (a) and (b), assume Pϕ 6= Pψ, otherwise the statements are trivial. Then

the range of Pϕ−Pψ is a two-dimensional subspace of H and is spanned by the two linearly

independent unit vectors ϕ and ψ. Since eigenvectors of Pϕ − Pψ belonging to eigenvalues

λ 6= 0 must lie in the range of Pϕ−Pψ, they can be written as χ = αϕ+ βψ. Therefore, the

eigenvalue problem (Pϕ − Pψ)χ = λχ, χ 6= 0, is equivalent to the two linear equations

(1 − λ)α+ 〈ϕ|ψ〉β = 0

−〈ψ|ϕ〉α− (1 + λ)β = 0

where α 6= 0 or β 6= 0. It follows that λ = ±
√

1 − |〈ϕ|ψ〉|2 =: λ1,2. Hence, Pϕ − Pψ has

the eigenvalues λ1, 0, and λ2. Now, from ‖Pϕ − Pψ‖ = max{|λ1|, |λ2|} and ‖Pϕ − Pψ‖tr =

|λ1| + |λ2|, we obtain the statements (a) and (b).—From

‖Pϕ − Pψ‖2 = 1 − |〈ϕ|ψ〉|2 = ‖ϕ− 〈ψ|ϕ〉ψ‖2 = ‖(I − Pψ)ϕ‖2

≤ ‖(I − Pψ)ϕ‖2 + ‖ψ − Pψϕ‖2

= ‖(I − Pψ)ϕ− (ψ − Pψϕ)‖2

= ‖ϕ− ψ‖2

we conclude statement (c). �

According to statement (b) of Theorem 2, the metrics ρn and ρtr give rise to the same

topology Tn = Ttr as well as to the same uniform structures.
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Theorem 3 Equipped with either of the two metrics ρn and ρtr, ∂eS(H) is separable and

complete.

Proof. As a metric subspace of the separable Hilbert space H, the unit sphere S is

separable. Therefore, by statement (c) of Theorem 2, the metric space (∂eS(H), ρn) is

separable and so is (∂eS(H), ρtr) (the latter, moreover, implies the trace-norm separability

of Ts(H)). Now let {Pn}n∈N be a Cauchy sequence in (∂eS(H), ρtr). Then there exists

an operator A ∈ Ts(H) such that ‖Pn − A‖tr → 0 as well as ‖Pn − A‖ → 0 as n → ∞
(remember that, on Ts(H), ‖·‖tr is stronger than ‖·‖). From

∥∥Pn − A2
∥∥ =

∥∥A2 − P 2
n

∥∥ ≤
∥∥A2 − APn

∥∥+
∥∥APn − P 2

n

∥∥

≤ ‖A‖ ‖A− Pn‖ + ‖A− Pn‖

→ 0

as n→ ∞ we obtain A = limn→∞ Pn = A2; moreover,

trA = trAI = lim
n→∞

trPnI = 1.

Hence, A is a one-dimensional orthogonal projection, i.e., A ∈ ∂eS(H). �

Next we equip ∂eS(H) with the topology T0 generated by the functions

P 7→ hQ(P ) := trPQ = |〈ϕ|ψ〉|2 (7)

where P = |ψ 〉〈ψ| ∈ ∂eS(H), Q = |ϕ 〉〈ϕ| ∈ ∂eS(H), and ‖ψ‖ = ‖ϕ‖ = 1. That is, T0 is

the coarsest topology on ∂eS(H) such that all the real-valued functions hQ are continuous.

Note that trPQ = |〈ϕ|ψ〉|2 can be interpreted as the transition probability between the two

pure states P and Q.

Lemma 1 The set ∂eS(H), equipped with the topology T0, is a second-countable Hausdorff

space. A countable base of T0 is given by the finite intersections of the open sets

Uklm := h−1
Qk

( ]
ql − 1

m
, ql +

1
m

[ )

=
{
P ∈ ∂eS(H)

∣∣ |trPQk − ql| < 1
m

} (8)

where {Qk}k∈N is a sequence of one-dimensional orthogonal projections being ρn-dense in

∂eS(H), {ql}l∈N is a sequence of numbers being dense in [0, 1] ⊆ R, and m ∈ N.
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Proof. Let P1 and P2 be any two different one-dimensional projections. Choosing Q = P1

in (7), we obtain hP1
(P1) = 1 6= hP1

(P2) = 1 − ε, 0 < ε ≤ 1. The sets

U1 :=
{
P ∈ ∂eS(H)

∣∣hP1
(P ) > 1 − ε

2

}

and

U2 :=
{
P ∈ ∂eS(H)

∣∣hP1
(P ) < 1 − ε

2

}

(cf. Eqs. (5) and (6)) are disjoint open neighborhoods of P1 and P2, respectively. So T0 is

separating.

For an open set O ⊆ R, h−1
Q (O) is T0-open. We next prove that

U := h−1
Q (O) =

⋃

Uklm⊆U

Uklm (9)

with Uklm according to (8). Let P ∈ U . Then there exists an ε > 0 such that the interval

]hQ(P ) − ε, hQ(P ) + ε[ is contained in O. Choose m0 ∈ N such that 1
m0

< ε
2
, and choose a

member ql0 of the sequence {ql}l∈N and a member Qk0 of {Qk}k∈N such that |trPQ− ql0| <
1

2m0
and ‖Qk0 −Q‖ < 1

2m0
. It follows that

|trPQk0 − ql0| ≤ |trPQk0 − trPQ| + |trPQ− ql0|

≤ ‖Qk0 −Q‖ + |trPQ− ql0 |

< 1
m0

which, by (8), means that P ∈ Uk0l0m0
. We further have to show that Uk0l0m0

⊆ U . To that

end, let P̃ ∈ Uk0l0m0
. Then, from

∣∣tr P̃Q− trPQ
∣∣ ≤

∣∣tr P̃Q− tr P̃Qk0

∣∣+
∣∣tr P̃Qk0 − ql0

∣∣+ |ql0 − trPQ|

where the first term on the right-hand side is again smaller than ‖Q−Qk0‖ and, by (8), the

second term is smaller than 1
m0

, it follows that

∣∣hQ(P̃ ) − hQ(P )
∣∣ =

∣∣tr P̃Q− trPQ
∣∣ ≤ 1

2m0
+ 1

m0
+ 1

2m0
= 2

m0
< ε.

This implies that hQ(P̃ ) ∈ ]hQ(P ) − ε, hQ(P ) + ε[ ⊆ O, i.e., P̃ ∈ h−1
Q (O) = U . Hence,

Uk0l0m0
⊆ U .

Summarizing, we have shown that, for P ∈ U , P ∈ Uk0l0m0
⊆ U . Hence, U ⊆

⋃
Uklm⊆U Uklm ⊆ U , and assertion (9) has been proved. The finite intersections of sets
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of the form U = h−1
Q (O) constitute a basis of the topology T0. Since every set U = h−1

Q (O)

is the union of sets Uklm, the intersections of finitely many sets U = h−1
Q (O) is the union of

finite intersections of sets Uklm. Thus, the finite intersections of the sets Uklm constitute a

countable base of T0. �

Later we shall see that the topological space (∂eS(H), T0) is homeomorphic to

(∂eS(H), Tn) as well as to (S/S1, Tν). So it is also clear by Theorem 3 or Theorem 1 that

(∂eS(H), T0) is a second-countable Hausdorff space. The reason for stating Lemma 1 is that

later we shall make explicit use of the particular countable base given there.

The weak operator topology on the space Bs(H) of the bounded self-adjoint operators on

H is the coarsest topology such that the linear functionals

A 7→ 〈ϕ|Aψ〉

where A ∈ Bs(H) and ϕ, ψ ∈ H, are continuous. It is sufficient to consider only the

functionals

A 7→ 〈ϕ|Aϕ〉 (10)

where ϕ ∈ H and ‖ϕ‖ = 1. The topology Tw induced on ∂eS(H) ⊂ Bs(H) by the weak

operator topology is the coarsest topology on ∂eS(H) such that the restrictions of the linear

functionals (10) to ∂eS(H) are continuous. Since these restrictions are given by

P 7→ 〈ϕ|Pϕ〉 = trPQ = hQ(P )

where P ∈ ∂eS(H) and Q := |ϕ 〉〈ϕ| ∈ ∂eS(H), the topology Tw on ∂eS(H) is, according to

(7), just our topology T0.

Now we compare the weak topology T0 with the metric topology Tn.

Theorem 4 The weak topology T0 on ∂eS(H) and the metric topology Tn on ∂eS(H) are

equal.

Proof. According to (7), a neighborhood base of P ∈ ∂eS(H) w.r.t. T0 is given by the
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open sets

U(P ;Q1, . . . , Qn; ε)

:=
n⋂

i=1

h−1
Qi

( ]hQi
(P ) − ε, hQi

(P ) + ε[ )

=
{
P̃ ∈ ∂eS(H)

∣∣ ∣∣hQi
(P̃ ) − hQi

(P )
∣∣ < ε for i = 1, . . . , n

}

=
{
P̃ ∈ ∂eS(H)

∣∣ ∣∣tr P̃Qi − trPQi

∣∣ < ε for i = 1, . . . , n
}

(11)

where Q1, . . . , Qn ∈ ∂eS(H) and ε > 0; a neighborhood base of P w.r.t. Tn is given by the

open balls

Kε(P ) :=
{
P̃ ∈ ∂eS(H)

∣∣ ∥∥P̃ − P
∥∥ < ε

}
. (12)

If
∥∥P̃ − P

∥∥< ε, then

∣∣tr P̃Qi − trPQi

∣∣ =
∣∣trQi(P̃ − P )

∣∣ ≤ ‖Qi‖tr

∥∥P̃ − P
∥∥ =

∥∥P̃ − P
∥∥ < ε;

hence, Kε(P ) ⊆ U(P ;Q1, . . . , Qn; ε). To show some converse inclusion, take account of

Theorem 2, part (a), and note that

∥∥P̃ − P
∥∥2

= 1 − tr P̃P =
∣∣tr P̃P − trPP

∣∣.

In consequence, by (11) and (12), U(P ;P ; ε2) = Kε(P ). Hence, T0 = Tn. �

It looks surprising that the topolgies T0 and Tn coincide. In fact, consider the sequence

{Pϕn
}n∈N where the vectors ϕn ∈ H constitute an orthonormal system. Then, w.r.t. the

weak operator topology, Pϕn
→ 0 as n → ∞ whereas

∥∥Pϕn
− Pϕn+1

∥∥ = 1 for all n ∈ N.

However, 0 6∈ ∂eS(H); so {Pϕn
}n∈N is convergent neither w.r.t. Tw = T0 nor w.r.t. Tn.

Finally, like in the case of the weak operator topology, there is a natural uniform structure

inducing T0. The uniform structures that are canonically related to T0 and Tn are different:

{Pϕn
}n∈N is a Cauchy sequence w.r.t. the uniform structure belonging to T0 but not w.r.t.

that belonging to Tn, i.e., w.r.t. the metric ρn.

We remark that besides T0 and Tw several further weak topologies can be defined on

∂eS(H). Let Cs(H) be the Banach space of the compact self-adjoint operators and remember

that (Cs(H))′ = Ts(H). So the weak Banach-space topologies of Cs(H), Ts(H), and Bs(H)

as well as the weak-* Banach-space topologies of Ts(H) and Bs(H) can be restricted to

∂eS(H), thus giving the topologies T1 := σ(Cs(H), Ts(H))∩∂eS(H), T2 := σ(Ts(H), Cs(H))∩
∂eS(H), T3 := σ(Ts(H),Bs(H)) ∩ ∂eS(H), T4 := σ(Bs(H), Ts(H)) ∩ ∂eS(H), and T5 :=
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σ(Bs(H), (Bs(H))′) ∩ ∂eS(H). Moreover, the strong operator topology induces a topology

Ts on ∂eS(H). From the obvious inclusions

Tw ⊆ T1 ⊆ T2 ⊆ T3 ⊆ Ttr,

T1 = T4 ⊆ T5 = T1,

and

Tw ⊆ Ts ⊆ Tn

as well as from the shown equality

T0 = Tw = Tn = Ttr

it follows that the topologies T1, . . . , T5 and Ts also coincide with T0.

Finally, we show that all the topologies on ∂eS(H) are equivalent to the quotient topolo-

gies Tµ and Tν on P(H), resp., S/S1.

Theorem 5 The mapping F : S/S1 → ∂eS(H), F ([ϕ]S := Pϕ where ϕ ∈ S, is a homeomor-

phism between the topological spaces (S/S1, Tν) and (∂eS(H), T0).

Proof. The mapping F is bijective. The map hQ ◦ F ◦ ν : S → R where hQ is any of

the functions given by Eq. (7) and ν is the canonical projection from S onto S/S1, reads

explicitly

(hQ ◦ F ◦ ν)(ϕ) = hQ(F ([ϕ]S)) = hQ(Pϕ) = trPϕQ = 〈ϕ|Qϕ〉;

therefore, hQ ◦ F ◦ ν is continuous. Consequently, for an open set O ⊆ R,

(hQ ◦ F ◦ ν)−1(O) = ν−1(F−1(h−1
Q (O)))

is an open set of S. By the definition of the quotient topology Tν , it follows that F−1(h−1
Q (O))

is an open set of S/S1. Since the sets h−1
Q (O), Q ∈ ∂eS(H), O ⊆ R open, generate the weak

topology T0, F
−1(U) is open for any open set U ∈ T0. Hence, F is continuous.

To show that F is an open mapping, let V ∈ Tν be an open subset of S/S1 and let

[ϕ0]S ∈ V . Since the canonical projection ν is continuous, there exists an ε > 0 such that

ν(Kε(ϕ0) ∩ S) ⊆ V (13)

where Kε(ϕ0) := {ϕ ∈ H | ‖ϕ− ϕ0‖ < ε}. Without loss of generality we assume that ε < 1.
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The topology T0 is generated by the functions hQ according to (7); T0 is also generated

by the functions P 7→ gQ(P ) :=
√
hQ(P ) =

√
trPQ. In consequence, the set

Uε := g−1
Q

( ]
1 − ε

2
, 1 + ε

2

[ )
∩ h−1

Q

( ]
1 − ε2

4
, 1 + ε2

4

[ )

where Q := Pϕ0
and ϕ0 and ε are specified in the preceding paragraph, is T0-open. Using

the identity

1 − |〈ϕ0|ϕ〉|2 = ‖ϕ− 〈ϕ0|ϕ〉ϕ0‖2

where ϕ ∈ H is also a unit vector, we obtain

Uε =
{
Pϕ ∈ ∂eS(H)

∣∣∣ |gQ(Pϕ) − 1| < ε
2

and |hQ(Pϕ) − 1| < ε2

4

}

=
{
Pϕ ∈ ∂eS(H)

∣∣∣
∣∣|〈ϕ0|ϕ〉| − 1

∣∣ < ε
2

and
∣∣|〈ϕ0|ϕ〉|2 − 1

∣∣ < ε2

4

}

=
{
Pϕ ∈ ∂eS(H)

∣∣ ∣∣|〈ϕ0|ϕ〉| − 1
∣∣ < ε

2
and ‖ϕ− 〈ϕ0|ϕ〉ϕ0‖ < ε

2

}
.

Now let Pϕ ∈ Uε. Since ε < 1, we have that 〈ϕ|ϕ0〉 6= 0. Defining the phase factor

λ := 〈ϕ|ϕ0〉
|〈ϕ|ϕ0〉|

, it follows that

‖λϕ− ϕ0‖ = ‖λϕ− λ〈ϕ0|ϕ〉ϕ0‖ + ‖λ〈ϕ0|ϕ〉ϕ0 − ϕ0‖

= ‖ϕ− 〈ϕ0|ϕ〉ϕ0‖ +
∥∥|〈ϕ0|ϕ〉|ϕ0 − ϕ0

∥∥

< ε
2

+ ε
2

= ε.

That is, Pϕ ∈ Uε implies that λϕ ∈ Kε(ϕ0); moreover, λϕ ∈ Kε(ϕ0) ∩ S.

Taking the result (13) into account, we conclude that, for Pϕ ∈ Uε, [ϕ]S = [λϕ]S =

ν(λϕ) ∈ V . Consequently, Pϕ = F ([ϕ]S) ∈ F (V ). Hence, Uε ⊆ F (V ). Since Uε is

an open neighborhood of Pϕ0
, Pϕ0

is an interior point of F (V ). So, for every [ϕ0]S ∈ V ,

F ([ϕ0]S) = Pϕ0
is an interior point of F (V ), and F (V ) is a T0-open set. Hence, the continuous

bijective map F is open and thus a homeomorphism. �

In the following, we identify the sets P(H), S/S1, and ∂eS(H) and call the identified

set the projective Hilbert space P(H). However, we preferably think about the elements of

P(H) as the one-dimensional orthogonal projections P = Pϕ. On P(H) then the quotient

topologies Tµ, Tν , the weak topologies T0, Tw, T1, . . . , T5, Ts, and the metric topologies

Tn, Ttr coincide. So we can say that P(H) carries a natural topology T ; (P(H), T ) is a

second-countable Hausdorff space.
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For our purposes, it is suitable to represent this topology T as T0, Tn, or Ttr. As already

discussed, the topologies T0, Tn, and Ttr are canonically related to uniform structures. With

respect to the uniform structure inducing T0, P(H) is not complete. The uniform structures

related to Tn and Ttr are the same since they are induced by the equivalent metrics ρn and

ρtr; (P(H), ρn) and (P(H), ρtr) are separable complete metric spaces. So T can be defined

by a complete separable metric, i.e., (P(H), T ) is a polish space.

III. THE MEASURABLE STRUCTURE OF P(H)

It is almost natural to define a measurable structure on the projective Hilbert space

P(H) by the σ-algebra Ξ = Ξ(T ) generated by the T -open sets, i.e., Ξ is the smallest σ-

algebra containing the open sets of the natural topology T . In this way (P(H),Ξ) becomes a

measurable space where the elements B ∈ Ξ are the Borel sets of P(H). However, since the

topology T is generated by the transition-probability functions hQ according to Eq. (7), it is

also obvious to define the measurable structure of P(H) by the σ-algebra Σ generated by the

functions hQ, i.e., Σ is the smallest σ-algebra such that all the functions hQ are measurable.

A result due to Misra (1974) [26, Lemma 3] clarifies the relation between Ξ and Σ. Before

stating that result, we recall the following simple lemma which we shall also use later.

Lemma 2 Let (M, T ) be any second-countable topological space, B ⊆ T a countable base,

and Ξ = Ξ(T ) the σ-algebra of the Borel sets of M . Then Ξ = Ξ(T ) = Ξ(B) where Ξ(B) is

the σ-algebra generated by B; B is a countable generator of Ξ.

Proof. Clearly, Ξ(B) ⊆ Ξ(T ). Since every open set U ∈ T is the countable union of sets

of B, it follows that U ∈ Ξ(B). Therefore, T ⊆ Ξ(B) and consequently Ξ(T ) = Ξ(B). �

Theorem 6 (Misra) The σ-algebra Ξ = Ξ(T ) of the Borel sets of the projective Hilbert

space P(H) and the σ-algbra Σ generated by the transition-probability functions hQ, Q ∈
P(H), are equal.

Proof. Since T is generated by the functions hQ, the latter are continuous and con-

sequently Ξ-measurable. Since Σ is the smallest σ-algebra such that the functions hQ are

measurable, it follows that Σ ⊆ Ξ.
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Now, by Lemma 1, T is second-countable, and a countable base B of T is given by the

finite intersections of the sets Uklm according to Eq. (8). Since Uklm ∈ Σ, it follows that

B ⊆ Σ. By Lemma 2, we conclude that Ξ = Ξ(B) ⊆ Σ. Hence, Ξ = Σ. �

We remark that our proof of Misra’s theorem is much easier than Misra’s proof from 1974.

The reason is that we explicitly used the countable base B of T consisting of Σ-measurable

sets.

Finally, consider the σ-algebra Ξ0 in P(H) that is generated by all T -continuous real-

valued functions on P(H), i.e., Ξ0 is the σ-algebra of the Baire sets of P(H). Obviously,

Σ ⊆ Ξ0 ⊆ Ξ; so Theorem 6 implies that Ξ0 = Ξ. This result is, according to a general

theorem, also a consequence of the fact that the topology T of P(H) is metrizable.

Summarizing, our result Σ = Ξ0 = Ξ manifests that the projective Hilbert space carries,

besides its natural topology T , also a very natural measurable structure Ξ.

IV. THE MISRA-BUGAJSKI REDUCTION MAP

The expression trWA where W ∈ S(H) is a density operator and A a self-adjoint oper-

ator, plays a central role in quantum mechanics. We are going to show how, for bounded

self-adjoint operators A ∈ Bs(H), this expression can be represented as an integral over

the projective Hilbert space P(H). This result was first obtained by Misra (1974) [26] and

independently by Ghirardi, Rimini and Weber (1976) [16], and an elementary construction

for the case of a two-dimensional Hilbert space was discussed by Holevo (1982) [21]. The sig-

nificance of the representation of quantum expectations on P(H) was elucidated in seminal

papers of Bugajski and Beltrametti [1, 6]. Further discussion can be found in [10, 30].

Theorem 7 For every probability measure µ on (P(H),Ξ), there exists a uniquely deter-

mined density operator Wµ ∈ S(H) such that, for all A ∈ Bs(H),

trWµA =

∫

P(H)

trPA µ(dP ).

Proof. Because of |tr (P − P0)A| ≤ ‖P − P0‖tr ‖A‖ where P, P0 ∈ P(H), the function

P 7→ trPA on P(H) is continuous w.r.t. the metric ρtr and in consequence T -continuous

and Ξ-measurable; in addition, because of |tr (PA| ≤ ‖A‖, the function is bounded. Hence,

the integral
∫
P(H)

trPA µ(dP ) exists for every probability measure µ on P(H). Moreover,
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the functional

A 7→ φ(A) :=

∫

P(H)

trPA µ(dP )

is linear, bounded, and positive. Let {An}n∈N be a sequence of bounded self-adjoint operators

satisfying 0 ≤ An ≤ An+1 ≤ I; {An}n∈N converges to some A ∈ Bs(H), A ≤ I, with respect

to the weak operator topology, for instance. It follows that, for all P ∈ P(H),

0 ≤ trPAn ≤ trPAn+1 ≤ 1

and, writing P = Pψ,

trPAn = 〈ψ|Anψ〉 → 〈ψ|Aψ〉 = trPA

as n→ ∞. By the monotone-convergence theorem we obtain

φ(An) =

∫

P(H)

trPAn µ(dP ) →
∫

P(H)

trPA µ(dP ) = φ(A),

i.e., the functional φ is normal. Since the normal functionals on Bs(H) can be represented

by trace-class operators, there exists an operator Wµ ∈ Ts(H) such that

φ(A) = trWµA =

∫

P(H)

trPA µ(dP ).

The operator Wµ is uniquely determined, self-adjoint, positive, and, because of trWµ =

φ(I) = 1, of trace 1, i.e., Wµ ∈ S(H). �

The next theorem summarizes the properties of the mapping µ 7→ Wµ. Remember that

the elements of P(H) are the extreme points of the convex set S(H).

Theorem 8 The mapping R : S(P(H),Ξ) → S(H), R(µ) = Wµ, where

S(P(H),Ξ) denotes the convex set of all probability measures on (P(H),Ξ), has the fol-

lowing properties:

(a) R is affine, i.e., for every convex linear combination µ = αµ1 + (1 − α)µ2 of µ1, µ2 ∈
S(P(H),Ξ), 0 ≤ α ≤ 1, we have Wµ = αWµ1

+ (1 − α)Wµ2
;

(b) R is surjective, but not injective (provided that dimH ≥ 2);

(c) R(µ) = P , P ∈ P(H), holds if and only if µ is equal to the Dirac measure δP ;

(d) R maps the Dirac measures on (P(H),Ξ) bijectively onto the pure quantum states

P ∈ P(H) and all other probability measures on (P(H),Ξ) “many-to-one” onto the

mixed quantum states W ∈ S(H).
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Proof. The first statement is trivial. To prove statement (b), consider any W ∈ S(H)

and a representation W =
∑∞

i=1 αiPi where αi ≥ 0,
∑∞

i=0 αi = 1, Pi ∈ P(H), and the

infinite sum converges in the trace norm. Define a probability measure µ ∈ S(P(H),Ξ)

by µ :=
∑∞

i=1 αiδPi
and note that the sum converges in the total-variation norm. Writing

trPA =: fA(P ) where A ∈ Bs(H) and fA ∈ FR(P(H),Ξ), it follows that

∫

P(H)

trPA µ(dP ) = 〈µ, fA〉 =

〈
∞∑

i=1

αiδPi
, fA

〉

=
∞∑

i=1

αi〈δPi
, fA〉

=
∞∑

i=1

αi

∫

P(H)

trPA δPi
(dP )

=
∞∑

i=1

αi trPiA

= trWA,

which implies W = Wµ = R(µ). Hence, R is surjective. Since every mixed quantum state

can be represented in many ways as an infinite convex linear combination of one-dimensional

orthogonal projections, not necessarily being mutually orthogonal (cf. [3, 25]), let

W =
∞∑

i=1

αiPi =
∞∑

i=1

βiQi, µ1 :=
∞∑

i=1

αiδPi
, µ2 :=

∞∑

i=1

βiδQi
,

where two different representations of any W ∈ S(H) \ P(H) have been chosen. Then

W = R(µ1) = R(µ2) holds, but µ1 6= µ2; that is, R is not injective.

Since R(δP ) = P is a trivial fact, we have, in order to prove (c), only to show that

R(µ) = P implies µ = δP . From R(µ) = P , resp., trPA =
∫
P(H)

trQA µ(dQ) we obtain,

setting A = P ,

1 =

∫

P(H)

trQP µ(dQ)

which can be rewritten as ∫

P(H)

(1 − trQP ) µ(dQ) = 0.

Because the integrand is nonnegative, it must vanish almost everywhere. It follows that

µ({Q ∈ P(H) | trQP = 1}) = 1
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or, equivalently, µ({P}) = 1. That is, the probability measure µ is concentrated at the point

P ∈ P(H) and consequently equal to the Dirac measure δP .

Statement (d) is a consequence of (c), (b), and the proof of the fact that R is not injective.

�

Consider now the unique linear extension R : MR(P(H),Ξ) → Ts(H) of the affine map-

ping R : S(P(H),Ξ) → S(H). The extended map R is determined by

tr (Rν)A =

∫

P(H)

trPA ν(dP ) (14)

where ν ∈ MR(P(H),Ξ) and A ∈ Bs(H). From

〈Rν,A〉 =

∫

P(H)

trPA ν(dP ) = 〈ν, fA〉

where fA(P ) = trPA it follows that the dual map R′ of R w.r.t. the considered dualities

〈MR(P(H),Ξ),FR(P(H),Ξ)〉 and 〈Ts(H),Bs(H)〉 exists and is given by R′A = fA. The

existence of R′ in this sense means that the range of the usual adjoint map R∗ : Bs(H) →
(MR(P(H),Ξ))′ is under FR(P(H),Ξ). According to the discussion in the introduction

and the definition there, R is a reduction map and 〈S(P(H),Ξ), E(P(H),Ξ)〉 a classical

extension of the quantum statistical model 〈S(H), E(H)〉. We call the reduction map R

given by (14) the Misra-Bugajski map. The affine mapping R was introduced by Misra in

1974 [26] who considered it as a new way of defining the notion of quantum state; it was the

late S. Bugajski who realized that this map determines a classical extension of the quantum

statistical duality and who initiated a research program to elucidate the physical significance

of this extension—see, e.g., [1, 6].

The adjoint R′ of the Misra-Bugajski map R associates the quantum mechanical effects

A ∈ E(H) with the classical effects R′A = fA ∈ E(P(H),Ξ). However, except for the trivial

cases A = 0 or A = I, such a function fA, fA(P ) = trPA, is never the characteristic function

χB of some set B ∈ Ξ; that is, the functions fA describe unsharp (fuzzy) effects.

V. THE REPRESENTATION OF CLASSICAL EXTENSIONS OF QUANTUM

MECHANICS

Now we are going to show that every classical extension of quantum mechanics is essen-

tially given by the Misra-Bugajski reduction map. This result was conjectured in [10], and

the proof given here takes up elements of a very rough sketch given there.
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Assume a classical extension on a measurable space (Ω,Σ) is given by the linear maps

R : MR(Ω,Σ) → Ts(H) and R′ : Bs(H) → FR(Ω,Σ). Then, for µ ∈ S(Ω,Σ) and A ∈ Bs(H),

we have

tr (Rµ)A = 〈Rµ,A〉 = 〈µ,R′A〉 =

∫

Ω

R′Adµ; (15)

setting µ = δω where δω denotes the Dirac measure of a point ω ∈ Ω, we obtain

(R′A)(ω) = tr (Rδω)A. (16)

Hence,

tr (Rµ)A =

∫

Ω

tr (Rδω)A µ(dω). (17)

To prove our main result, Theorem 10 below, we need several lemmata.

Lemma 3 For P ∈ P(H), the set {ω ∈ Ω |Rδω = P} is measurable. If P = Rµ, then

µ({ω ∈ Ω |Rδω = P}) = 1.

In particular, for every P ∈ P(H) there exists an ω ∈ Ω such that Rδω = P .

Proof. Let EP := {ω ∈ Ω |Rδω = P}. Since the statement Rδω = P is equivalent to

tr (Rδω)P = 1, it follows that

EP = {ω ∈ Ω | tr (Rδω)P = 1}.

Setting A = P in Eq. (16), we see that the function P 7→ tr (Rδω)P is measurable; therefore,

the set EP is measurable. Setting P = Rµ and A = P in Eq. (17), we obtain

∫

Ω

tr (Rδω)P µ(dω) = 1

which can be rewritten as ∫

Ω

(1 − tr (Rδω)P ) µ(dω) = 0.

Since the integrand is nonnegative, it must vanish almost everywhere. Hence,

µ(EP ) = µ({ω ∈ Ω | 1 − tr (Rδω)P = 0}) = 1.

Because R is surjective, every P ∈ P(H) is of the form P = Rµ. Then µ(EP ) = 1 implies

that EP is not empty. �
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Lemma 4 Let Pn ∈ P(H), n ∈ N, and assume that, for some W0 ∈ S(H),

lim
n→∞

trW0Pn = 1. (18)

Then there exists an element P ∈ P(H) such that limn→∞ ‖Pn − P‖ = 0; moreover, W0 = P .

Proof. For each n ∈ N, let ϕn be a unit vector in the range of Pn, and write Pn = Pϕn
. Since

‖ϕn‖ = 1, the weak compactness of the unit sphere of H entails that there is a subsequence

{ϕnj
}j∈N of {ϕn}n∈N converging weakly to some ψ ∈ H, ‖ψ‖ ≤ 1.

Let W be any element of S(H). We show that trWPϕnj
→ tr (W |ψ 〉〈ψ|) as j → ∞. The

density operator can be written as W =
∑∞

i=1 αiPχi
where αi ≥ 0,

∑∞
i=1 αi = 1, χi ∈ H,

and ‖χi‖ = 1. Choose ε > 0 and a number N0 ∈ N such that
∑∞

i=N0+1 αi <
ε
4
. Since the

sequence {ϕnj
}j∈N converges weakly to ψ, there is an integer J(ε) such that for all j ≥ J(ε)

and all i = 1, . . . , N0,

|〈χi|ϕnj
〉|2 − |〈χi|ψ〉|2 < ε

2
.

It follows that, for all j ≥ J(ε),

∣∣∣trWPϕnj
− tr (W |ψ 〉〈ψ|)

∣∣∣ =

∣∣∣∣∣

∞∑

i=1

αi|〈χi|ϕnj
〉|2 −

∞∑

i=1

αi|〈χi|ψ〉|2
∣∣∣∣∣

≤
∣∣∣∣∣

N0∑

i=1

αi
(
|〈χi|ϕnj

〉|2 − |〈χi|ψ〉|2
)
∣∣∣∣∣+ 2

∞∑

i=N0+1

αi

< ε
2

+ ε
2

= ε.

Hence,

lim
j→∞

trWPϕnj
= tr (W |ψ 〉〈ψ|). (19)

For W = W0, Eqs. (18) and (19) imply that

tr (W0|ψ 〉〈ψ|) = 1.

So ψ 6= 0; defining Ψ := ψ

‖ψ‖
, we obtain ‖ψ‖2 trW0PΨ = 1. It follows immediately that

‖ψ‖ = 1 and trW0PΨ = 1. Hence, trW0Pψ = 〈ψ|W0ψ〉 = 1, that is, W0 has the eigenvalue

1 with multiples of ψ as eigenvectors, i.e., W0 = Pψ =: P .

It remains to show that ‖Pn − P‖ → 0 as n→ ∞. From (18) and W0 = P it follows that

trPPn → 1 as n→ ∞. But this is, according to Theorem 2, part (a), equivalent to

‖Pn − P‖2 = 1 − trPPn → 0
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as n→ ∞. �

It can be shown that the norm convergence of a sequence {Pn}n∈N in P(H), Pn = Pϕn
,

to P = Pψ ∈ P(H) entails the existence of a subsequence {ϕnj
}j∈N of {ϕn}n∈N such that

limj→∞

∥∥ϕnj
− eiαψ

∥∥ = 0 with some α ∈ R. The example

ϕn := einπψ = (−1)nψ, ‖Pϕn
− Pψ‖ → 0 as n→ ∞

shows that convergence at the level of vectors can follow only for a subsequence. Concerning

the sequences {ϕn}n∈N and {ϕnj
}j∈N introduced at the beginning of the preceding proof,

it finally turns out that the subsequence {ϕnj
}j∈N is even norm-convergent (which is not

essential for the proof), however, the restriction of {ϕn}n∈N to a subsequence is essential.

Lemma 5 Let

Ω̃ := {ω ∈ Ω |Rδω ∈ P(H)} = {ω ∈ Ω | tr (Rδω)P = 1 for some P ∈ P(H)}.

Then Ω̃ is a measurable subset of Ω.

Proof. Let {Pm}m∈N be a ‖·‖-dense sequence in P(H) and let

Ωmn :=
{
ω ∈ Ω

∣∣ tr (Rδω)Pm > 1 − 1
n

}

where n ∈ N. We show that

Ω̃ =
⋂

n∈N

⋃

m∈N

Ωmn (20)

holds.

Let ω ∈ Ω̃ and Rδω = P , i.e., tr (Rδω)P = 1. For every n ∈ N there exists a member Pm

of the dense sequence satisfying ‖Pm − P‖ < 1
n
, in consequence,

1 − tr (Rδω)Pm = |tr (Rδω)Pm − tr (Rδω)P | ≤ ‖Rδω‖tr ‖Pm − P‖ < 1
n
;

that is, tr (Rδω)Pm > 1 − 1
n
. Hence, ω ∈ ⋂n∈N

⋃
m∈N

Ωmn.

Conversely, assume ω ∈ ⋂
n∈N

⋃
m∈N

Ωmn. Then for every n ∈ N there is an m ∈ N

with ω ∈ Ωmn. In other words, for every n ∈ N there exists at least one Pm such that

tr (Rδω)Pm > 1− 1
n
. Let Pmn

be such a Pm. Then it holds true that 1− 1
n
< tr (Rδω)Pmn

≤ 1,

which implies that

tr (Rδω)Pmn
→ 1
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as n → ∞. By virtue of Lemma 4, this entails Rδω = P ∈ P(H), that is, ω ∈ Ω̃. Thus,

Eq. (20) has been proved.

Due to the measurability of the functions ω 7→ (R′A)(ω) = tr (Rδω)A for A ∈ Bs(H), the

sets Ωmn are measurable; from Eq. (20) one then concludes that Ω̃ ∈ Σ. �

Next we shall redefine our reduction map R : MR(Ω,Σ) → FR(Ω,Σ) w.r.t. the measurable

space (Ω̃, Σ̃) where Σ̃ := Σ ∩ Ω̃ (since Ω̃ is measurable, we have that Σ̃ = {E ∈ Σ |E ⊆
Ω̃} ⊆ Σ). To that end, we introduce

N :=
{
ν ∈ MR(Ω,Σ)

∣∣ ν(E) = 0, E ∈ Σ, E ⊆ Ω \ Ω̃
}

and

SN :=
{
µ ∈ S(Ω,Σ)

∣∣µ(Ω \ Ω̃) = 0
}

=
{
µ ∈ S(Ω,Σ)

∣∣µ(Ω̃) = 1
}

= N ∩ S(Ω,Σ).

The set N is a norm-closed subspace of MR(Ω,Σ), and SN is a norm-closed face of S(Ω,Σ).

Moreover, (N ,SN ) is a base-normed Banach space with closed positive cone; we do not need

these results here. The spaces N and MR(Ω̃, Σ̃) are canonically related by the linear map

J : N → MR(Ω̃, Σ̃) defined by

ν 7→ ν̃ = Jν := ν|eΣ

where ν|eΣ denotes the restriction of ν to Σ̃; J is a linear isomorphism preserving norm and

order. The inverse J−1 is given by

ν̃ 7→ ν = J−1ν̃, ν(A) = ν̃(A ∩ Ω̃)

where A ∈ Σ. We shall only use that J is a linear isomorphism.—In the context of the

following theorem, δ̃ω denotes the restriction of the Dirac measure δω, defined on Σ and

concentrated at ω ∈ Ω̃, to Σ̃.

Theorem 9 Let a linear map R̃ : MR(Ω̃, Σ̃) → Ts(H) be defined according to R̃ν̃ := Rν

where Jν = ν̃, i.e., R̃ = RJ−1. Then

(i) R̃S(Ω̃, Σ̃) = S(H);

(ii) R̃ is σ(MR(Ω̃, Σ̃),FR(Ω̃, Σ̃))-σ(Ts(H),Bs(H))-continuous;

(iii)
{
R̃δ̃ω

∣∣ω ∈ Ω̃
}

= P(H).
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That is, R̃ is a reduction map with the additional property (iii).

Proof. We prove statement (iii) first. By the definition of Ω̃ in Lemma 5 it is clear that
{
Rδω

∣∣ω ∈ Ω̃
}
⊆ P(H). Let P ∈ P(H), then by virtue of Lemma 3 there exists an ω ∈ Ω

such that Rδω = P ; again by the definition of Ω̃, ω ∈ Ω̃. Hence,
{
Rδω

∣∣ω ∈ Ω̃
}
= P(H);

furthermore, Rδω = R̃δ̃ω for ω ∈ Ω̃.

We have R̃S(Ω̃, Σ̃) = RSN ⊆ RS(Ω,Σ) = S(H), thus R̃S(Ω̃, Σ̃) ⊆ S(H). Let W ∈
S(H), and write W =

∑∞
i=1 αiPi where αi ≥ 0,

∑∞
i=1 αi = 1, and Pi ∈ P(H). Defining

µ̃ :=
∑∞

i=1 αiδ̃ωi
where Pi = R̃δ̃ωi

and ωi ∈ Ω̃, we obtain a probability measure µ̃ ∈ S(Ω̃, Σ̃).

It follows that

R̃µ̃ =
∞∑

i=1

αiR̃δ̃ωi
=

∞∑

i=1

αiPi = W ;

for this conclusion we have used that the sums converge in the respective norms and R̃ is

norm-continuous, the latter due to the linearity of R̃ and the property R̃S(Ω̃, Σ̃) ⊆ S(H)

already shown above. Hence, R̃S(Ω̃, Σ̃) = S(H).

Taking account of ν = J−1ν̃ ∈ N for ν̃ ∈ MR(Ω̃, Σ̃) and using the abbreviation fA := R′A

where A ∈ Bs(H), we obtain that

〈R̃ν̃, A〉 = tr (R̃ν̃)A = tr (Rν)A

=

∫

Ω

R′Adν =

∫

Ω

fAχeΩ dν

=

∫

eΩ

fA dν =

∫

eΩ

fA|eΩ dν̃

= 〈ν̃, fA|eΩ〉

= 〈ν̃, R̃′A〉;

that is, the map R̃′ : Bs(H) → FR(Ω̃, Σ̃) being dual to R̃ w.r.t. the dualities 〈Ts(H),Bs(H)〉
and 〈MR(Ω̃, Σ̃),FR(Ω̃, Σ̃)〉 exists. �

In the sequel we omit the tilde notation and understand by R : MR(Ω,Σ) → Ts(H) a

linear map with the properties (i)-(iii) of Theorem 9. We have again that

tr (Rµ)A =

∫

Ω

R′Adµ =

∫

Ω

tr (Rδω)A µ(dω) (21)

holds for all µ ∈ S(Ω,Σ) and A ∈ Bs(H) (cf. Eqs. (15)-(17)). Moreover, now the equality

P(H) = {Rδω|ω ∈ Ω} (22)

is satisfied.
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Lemma 6 Let T be the natural topology of P(H) and Ξ = Ξ(T ) the σ-algebra of the Borel

sets of P(H). The mapping i : Ω → P(H) defined by i(ω) := Rδω is Σ-Ξ-measurable.

Proof. The topology T is generated by the functions hQ defined by Eq. (7). According

to

hQ(i(ω)) = tr i(ω)Q = tr (Rδω)Q = (R′Q)(ω)

where Eq. (16) has been taken into account, the functions hQ ◦ i are Σ-measurable.

Let O ⊆ R be an open set. Then

U := h−1
Q (O) ∈ T . (23)

From the measurability of the functions hQ ◦ i it follows that

i−1(U) = i−1(h−1
Q (O)) = (hQ ◦ i)−1(O) ∈ Σ;

that is, for all U of the form (23) we have

i−1(U) ∈ Σ. (24)

According to Lemma 1, for a sequence {Qk}k∈N being dense in P(H), a sequence {ql}l∈N of

numbers being dense in [0, 1], and m ∈ N, the finite intersections of the sets

Uklm = h−1
Qk

( ]
ql − 1

m
, ql +

1
m

[ )

form a countable basis B of the topology T of P(H). From this and from (24) we obtain

that

i−1(U) ∈ Σ

for all U ∈ B.

In virtue of Lemma 2, the countable basis B of T is a (countable) generator of Ξ(T ).

Since i−1(U) ∈ Σ for all sets U of a generator of Ξ = Ξ(T ), the mapping i is Σ-Ξ-measurable.

�

By virtue of Eq. (22), i is a surjective measurable mapping.

Theorem 10 Any reduction map R with the property {Rδω|ω ∈ Ω} = P(H) can be repre-

sented according to

tr (Rµ)A =

∫

Ω

trPA (µ ◦ i−1)(dP ) (25)

where µ ∈ S(Ω,Σ), A ∈ Bs(H), i : Ω → P(H) is the mapping ω 7→ i(ω) = Rδω, and µ ◦ i−1

the image measure.
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Proof. The claim follows from (21), Lemma 6, and the transformation theorem for

integrals:

tr (Rµ)A =

∫

Ω

tr (Rδω)A µ(dω) =

∫

Ω

tr i(ω)A µ(dω)

=

∫

Ω

trPA (µ ◦ i−1)(dP ). �

Given any reduction map R : MR(Ω,Σ) → Ts(H), every density operator W ∈ S(H) is

the image of some probability measure µ ∈ S(Ω,Σ), i.e., W = Rµ. Theorem 10 now states

that, after removing the redundant ω ∈ Ω for which Rδω 6∈ P(H), W is the weak integral

Rµ =

∫

P(H)

P (µ ◦ i−1)(dP ) (26)

of the elements P ∈ P(H) (i.e., of the identity map of P(H)) w.r.t. the probability measure

µ ∈ S(P(H),Ξ). The classical sample space (Ω,Σ) can be replaced by the phase space

(P(H),Ξ) (for the interpretation of P(H) as a phase space, see Section VII), Eqs. (25) and

(26) show the central role of P(H). Comparing Eq. (25) with Eq. (14), the latter specifying

the Misra-Bugajski map RMB, we obtain

Rµ = RMB(µ ◦ i−1). (27)

If the surjective measurable map i also transforms the measurable sets of Σ into measurable

sets of Ξ, then every probability measure µ′ ∈ S(P(H),Ξ) is of the form µ′ = µ ◦ i−1. In

this case R can be replaced by RMB; in the case where not every µ′ is of the form µ ◦ i−1,

R can be restated as some restriction of RMB. Summarizing, every classical extension of

quantum mechanics is essentially given by the Misra-Bugajski reduction map; therefore,

RMB is distinguished under all reduction maps.

However, the examples presented in the next section show that the mapping i is necessary

for the statement of Theorem 10 even if Ω = P(H).

VI. EXAMPLES

The following examples of reduction maps are also of interest by themselves.
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Example 1 Let K be an infinite-dimensional closed subspace of the Hilbert space H, V :

H → H a partial isometry satisfying VK = H and VK⊥ = {0}, and let P(K) := {P ∈
P(H) |P = Pϕ, ‖ϕ‖ = 1, ϕ ∈ K} (P(K) can be identified with the projective Hilbert space

associated with the Hilbert space K). Using the general information given in the paragraph

after the proof of Lemma 4, one easily proves that P(K) is a norm-closed subset of P(H);

therefore, P(K) is Ξ-measurable, and the following integral in (28) makes sense. In fact,

according to

trWµA =

∫

P(K)

trV PV ∗A µ(dP ) (28)

where A ∈ Bs(H), for each probability measure µ ∈ S(P(H),Ξ) concentrated on P(K),

i.e., µ(P(K)) = 1, a density operator Wµ ∈ S(H) is defined. We can identify the set of

these probability measures with S(P(K),ΞK) where ΞK := Ξ ∩ P(K) = {B ∈ Ξ |B ⊆
P(K)} ⊆ Ξ. Moreover, the affine mapping µ 7→ Wµ can be extended to a reduction map

R : MR(P(K),ΞK) → Ts(H); R maps the Dirac measures of S(P(K),ΞK) bijectively onto

P(H), namely, RδP = V PV ∗, P ∈ P(K).

Setting (Ω,Σ) := (P(K),ΞK), it follows from Lemma 3 that, for Q ∈ P(H) and any

µ ∈ S(P(K),ΞK), Rµ = Q if and only if µ = δP with P = V ∗QV . Furthermore, we have

for the set Ω̃ introduced in Lemma 5 and for the mapping i : Ω̃ → P(H) of Lemma 6

that Ω̃ = Ω and i(P ) = RδP = V PV ∗. In particular, if K = H (where H need not be

infinite-dimensional) and V is a unitary operator, then Ω = P(H) = Ω̃ and i(P ) = V PV ∗.

Example 2 Letting K, V , and P(K) as in the preceding example, then for each probability

measure µ ∈ S(P(H),Ξ) a density operator Wµ ∈ S(H) is defined according to

trWµA =

∫

P(K)

trV PV ∗A µ(dP ) +

∫

P(H)\P(K)

trPA µ(dP ) (29)

where A ∈ Bs(H) and P(H) \ P(K) is the set-theoretical complement of P(K). Note that

µ is a probability measure on P(H) whereas in the preceding example µ is a probability

measure on P(K). The affine mapping µ 7→ Wµ given by (29) can be extended to a reduction

map R : MR(P(H),Ξ) → Ts(H); R maps the Dirac measures of S(P(H),Ξ) onto P(H),

partially two-to-one:

RδP =




V PV ∗ if P ∈ P(K)

P if P ∈ P(H) \ P(K).
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In fact, from RδP = Q it follows that P = V ∗QV if Q ∈ P(K), and P = V ∗QV or P = Q if

Q ∈ P(H)\P(K). By Lemma 3, Rµ = Q for any µ ∈ S(P(H),Ξ) is equivalent to µ = δV ∗QV

if Q ∈ P(K), resp., to µ = αδV ∗QV + (1 − α)δQ, 0 ≤ α ≤ 1, if Q ∈ P(H) \ P(K).

Setting (Ω,Σ) := (P(H),Ξ), we obtain Ω̃ = Ω and i : Ω̃ → P(H), i(P ) = RδP =

χP(K)(P )V PV ∗ + χP(H)\P(K)(P )P where χP(K), for instance, is the characteristic function

of the set P(K).

Example 3 Now let K be an infinite-dimensional closed subspace of H with an infinite

dimensional orthocomplement K⊥ and let V1 and V2 be partial isometries satisfying

V1K = H, V1K⊥ = {0}

V2K⊥ = H, V2K = {0}.

Then each probability measure µ ∈ S(P(H),Ξ) determines a density operator Wµ ∈ S(H)

according to

trWµA =

∫

P(H)

tr (V1PV
∗
1 + V2PV

∗
2 )A µ(dP ) (30)

where A ∈ Bs(H). The affine mapping µ 7→ Wµ given by (30) again extends to a reduction

map R : MR(P(H),Ξ) → Ts(H); R maps the Dirac measures of S(P(H),Ξ) onto the

quantum states

RδP = V1PV
∗
1 + V2PV

∗
2 = |V1ϕ 〉〈V1ϕ| + |V2ϕ 〉〈V2ϕ|

= ‖χ1‖2 P χ1
‖χ1‖

+ ‖χ2‖2 P χ2
‖χ2‖

where P = Pϕ, χ1 := V1ϕ, χ2 := V2ϕ, and ‖χ1‖2 + ‖χ2‖2 = 1. In general, the states RδP are

mixed; RδP ∈ P(H) is equivalent to P = Pϕ with ϕ = aϕ1 + bϕ2, ϕ1 ∈ K, ϕ2 ∈ K⊥, ‖ϕ1‖ =

‖ϕ2‖ = 1, a, b ∈ C, |a|2 + |b|2 = 1, and V1ϕ1 = V2ϕ2. In particular, for each Q ∈ P(H), there

is one unit vector ϕ1 ∈ K and one unit vector ϕ2 ∈ K⊥ such that RδPϕ1
= RδPϕ2

= Q, ϕ1 and

ϕ2 are uniquely determined up to phase factors. Let KQ be the two-dimensional subspace of

H that is spanned by ϕ1 and ϕ2 and let P(KQ) := {P ∈ P(H) |P = Pϕ, ‖ϕ‖ = 1, ϕ ∈ KQ}.
Then RδP = Q if and only if P ∈ P(KQ), and by Lemma 3, Rµ = Q for any µ ∈ S(P(H),Ξ)

if and only if µ is concentrated on P(KQ), i.e., µ(P(KQ)) = 1.

It follows that KQ1
∩ KQ2

= {0} as well as P(KQ1
) ∩ P(KQ2

) = ∅ for Q1 6= Q2 and

that
⋃
Q∈P(H) KQ 6= H as well as

⋃
Q∈P(H) P(KQ) 6= P(H). Writing (Ω,Σ) := (P(H),Ξ), we

obtain Ω̃ = {P ∈ P(H) |P ∈ P(KQ) for some Q ∈ P(H)} =
⋃
Q∈P(H) P(KQ), Ω̃ 6= Ω, and

i : Ω̃ → P(H), i(P ) = RδP = V1PV
∗
1 + V2PV

∗
2 .
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VII. PHYSICAL INTERPRETATION

Interpreting the bounded self-adjoint operators on H as quantum observables with real

values, the expectation value of A ∈ Bs(H) in the state W ∈ S(H) is given by trWA. Anal-

ogously, if Ω is a classical phase space with the Borel structure Σ, the states are described by

the probability measures on Ω and the observables by the (bounded) measurable functions

on Ω; the expectation value of a classical observable f ∈ FR(Ω,Σ) in the state µ ∈ S(Ω,Σ)

is
∫
fdµ. According to Theorems 7 and 8, each W ∈ S(H) is of the form W = Rµ = Wµ, µ

being some probablity measure on Ω = P(H). That is, for every W ∈ S(H) there exists a

probability measure µ ∈ S(P(H),Ξ) such that for all A ∈ Bs(H), A = A∗,

trWA =

∫

P(H)

fAdµ (31)

holds where fA is the function P 7→ fA(P ) = trPA on P(H). Viewing the projective Hilbert

space as a classical phase space, this result means that the quantum states can be seen as

classical states and the quantum observables as classical ones where the expectation values

can be expressed in classical terms. However, the injective map A 7→ fA is not surjective,

as is easily seen. That is, not all classical observables on P(H) represent quantum ones,

which is related to the fact that the quantum states W correspond to the equivalence classes

R−1({W}) of classical states, each member of an equivalence class giving the same quantum

mechanical expectation values.

Taking up the notion of quantum statistical model reviewed in the introduction, the result

(31) can, much more fundamentally, be interpreted in terms of probabilities if the operators

A are specified to be effects; in that case, trWA is interpreted to be the probability for the

occurrence of ‘yes’ of the effect A in the state W . Eq. (31) then states that the quantum

mechanical effects A ∈ E(H) can classically be described by measurable functions taking

values between the numbers 0 and 1, i.e., by the classical effects fA ∈ E(P(H),Ξ). In

the context of classical probability theory, such effects can be interpreted as “unsharp”

measurements of events, these being the classical analogs of the quantum mechanical effects

and extending probability theory to operational or fuzzy probability theory (cf. [8, 17, 18, 29]).

Again, the map A 7→ fA, 0 ≤ A ≤ 1, into the measurable functions f on P(H), 0 ≤ f ≤ 1,

is injective, but not surjective. In particular, the orthogonal projections, describing the

ideal quantum mechanical yes–no measurements, are not mapped onto the characteristic
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functions, except for the trivial cases; the “sharp” classical events do not correspond to any

quantum mechanical effects.

In general, quantum observables with values in some space M , (M,Υ) being a measurable

space, are operationally described by positive operator-valued measures (POVMs) F : Υ →
Bs(H), b 7→ F (b), 0 ≤ F (b) ≤ 1;

b 7→ trWF (b)

is the probability distribution of the observable F in the state W ∈ S(H). The analogous

classical concept is that of fuzzy random variables which generalizes the usual concept of

random variables (cf. [9, 18, 27, 29]). Given a classical sample or phase space (Ω,Σ) and a

space (M,Υ) of possible measurement results, a fuzzy random variable is a Markov kernel

K : Ω × Υ → [0, 1], i.e., for each b ∈ Υ, K( . , b) is a measurable function on Ω and, for each

ω ∈ Ω, K(ω, . ) is a probability measure on Υ;

b 7→
∫

Ω

K(ω, b)µ(dω)

is the probability distribution of the observable, resp., fuzzy random variable K in the state

µ ∈ M(Ω). Now, in the case of a POVM F on (M,Υ), Eq. (31) can be rewritten according

to

trWF (b) =

∫

P(H)

K(P, b)µ(dP ) (32)

where the Markov kernel K : P(H) × Υ → [0, 1] is defined by K(P, b) := trPF (b). That is,

every quantum observable can be represented by a classical observable; however, there are

many more fuzzy random variables K : P(H) × Υ → [0, 1] than POVMs F : Υ → Bs(H).

Summarizing, the statistical scheme of quantum mechanics can be reformulated in classi-

cal terms by virtue of the Misra-Bugajski map. This reformulation is complete in the sense

that all quantum states and quantum effects are represented as probability measures and

functions on the phase space P(H), respectively; however, not all classically possible observ-

ables are quantum ones. Quantum mechanics can thus be understood as a fuzzy probability

theory on P(H) with a selection rule for the observables; briefly, quantum mechanics is a

reduced fuzzy probability theory. Moreover, the projective Hilbert space is a differentiable

manifold carrying a natural symplectic structure which allows one to reformulate quantum

dynamics in terms of Hamiltonian mechanics (cf. [4, 5, 12, 13, 19, 23]). Hence, quantum

mechanics can be interpreted to be a reduced classical statistical mechanics on the phase

space P(H).
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As already observed by Bugajski in 1991, the classical embedding of quantum mechanics

induced by the Misra-Bugajski map contains all ingredients of a hidden-variables, or onto-

logical, model of quantum mechanics. In fact, there is a phase space whose points may be

taken to play the role of ontic states describing the hypothetical underlying reality of the

quantum system. Next, there is the set of probability measures µ over the phase space,

which can be interpreted as epistemic states describing the lack of information about the

actual ontic state in a preparation of the system represented by µ. Finally, there is the

correspondence (31) between quantum and classical expectation values which determines

the correspondences µ 7→ Wµ and A 7→ fA between the quantum states and observables on

the one hand and the classical epistemic states and functions on phase space on the other

hand.

This ontological model is noncontextual with respect to measurements since to every

quantum effect probabilities are assigned that are independent of the observables to which

this effect may belong. However, the model does display contextuality with respect to

preparations, in the sense defined by Spekkens [28]: two preparations that are statistically

indistinguishable and hence represented by one and the same density operator W are gen-

erally represented by different probability measures µ and µ′ on the phase space P(H) such

that W = Wµ = Wµ′ . This was demonstrated in the proof of Theorem 8, part (b).

The function P 7→ K(P, b) appearing in (32) can be interpreted as the probability for the

outcome of a measurement of the observable F to lie in the set b, given that the ontic state

of the system is P . This is to say that the present ontological model constitutes a so-called

stochastic or non-deterministic hidden-variables model.

An ontological model of quantum mechanics can be said to ascribe reality to the pure

quantum states if any change in a pure state must be associated with a corresponding change

in the ontic state of the system [28]. The Misra-Bugajski map satisfies this condition since

the correspondence between pure quantum states and point measures is given by a map

δP 7→ RδP = P .

In [20], Hardy has given a proof of the fact that any ontological model that reproduces the

quantum mechanical expectations must carry a large amount of “quantum ontological excess

baggage”; more precisely, it is shown that even for a finite-dimensional quantum system, any

ontological model that accounts for all quantum probabilities is based on a classical phase

space with infinitely many points, so that the epistemic states form an infinite-dimensional
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simplex.

The requirements Hardy stipulates of an ontological model of quantum mechanics are

essentially those of our definition of a reduction map R. If one accepts, in addition, the

seemingly innocent requirement that the adjoint map R∗ associates bounded quantum ob-

servables with bounded measurable functions on phase space, then Theorem 10 asserts that,

after removing redundant points from the phase space, R is related to the Misra-Bugajski

map via the map i according to (25) and (27), so that essentially all ontological models

arise from some classical reduction map as defined in the present paper. The uncountable

infinity of point measures in the set of epistemic states is now an immediate consequence of

Theorem 10.

It is evident that preparation contextuality is necessary for any classical reduction map.

As Examples 2 and 3 show, the correspondence δP 7→ RδP may be many-to-one, and there

may be point measures (hence ontic states) that are mapped to mixed quantum states.

The ontological model induced by the Misra-Bugajski map is thus essentially distinguished

(modulo similarity) by a minimality or nonredundancy property in the sense that a bijec-

tive correspondence is established between the pure quantum states and the points of the

associated classical phase space. As Example 1 shows, this correspondence identifies Dirac

measures with pure quantum states up to a similarity transformation.
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