156 research outputs found

    An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial

    Full text link
    We demonstrate a new concept for reconfigurable nanophotonic devices exploiting ultrafast nonlinear control of shaped wavefronts in a multimode nanomaterial consisting of semiconductor nanowires. Femtosecond pulsed laser excitation of the nanowire mat is shown to provide an efficient nonlinear mechanism to control both destructive and constructive interference in a shaped wavefront. Modulations of up to 63% are induced by optical pumping, due to a combination of multimode dephasing and induced transient absorption. We show that part of the nonlinear phase dynamics can be inverted to provide a dynamical revival of the wavefront into an optimized spot with up to 18% increase of the peak to background ratio caused by pulsed laser excitation. The concepts of multimode nonlinear switching demonstrated here are generally extendable to other photonic and plasmonic systems and enable new avenues for ultrafast and reconfigurable nanophotonic devices.Comment: 18 pages, 6 figure

    Mesoscopic light transport by very strong collective multiple scattering in nanowire mats

    No full text
    Under the extreme condition of the scattering length being much shorter than the wavelength, light transport in random media is strongly modified by mesoscopic interference, and can even be halted in an effect known as Anderson localization. Anderson localization in three dimensions has recently been realized for acoustic waves and for cold atoms. Mats of disordered, high-refractive-index semiconductor nanowires are one of the strongest three-dimensional scattering materials for light, but localization has not been shown. Here, we use statistical methods originally developed for microwave waveguides to demonstrate that transport of light through nanowire mats is strongly correlated and governed by mesoscopic interference contributions. Our results confirm the contribution of only a few open modes to the transmission

    Observation of Intensity Statistics of Light Transmitted Through 3D Random Media

    Get PDF
    We experimentally observe the spatial intensity statistics of light transmitted through three-dimensional isotropic scattering media. The intensity distributions measured through layers consisting of zinc oxide nanoparticles differ significantly from the usual Rayleigh statistics associated with speckle, and instead are in agreement with the predictions of mesoscopic transport theory, taking into account the known material parameters of the samples. Consistent with the measured spatial intensity fluctuations, the total transmission fluctuates. The magnitude of the fluctuations in the total transmission is smaller than expected on the basis of quasi-one-dimensional (1D) transport theory, which indicates that quasi-1D theories cannot fully describe these open three-dimensional media.Comment: 4 pages 3 figure

    Impacts of Tamarisk Biocontrol (Diorhabda Elongata) on the Trophic Dynamics of Terrestrial Insects in Monotypic Tamarisk Stands

    Get PDF
    Combating tamarisk (Tamarix spp.), an exotic tree species that has invaded 1-1.6 million hectares of riparian land in the Midwestern United States, with the introduced leaf beetle Diorhabda elongata provides an opportunity to evaluate how the trophic spectra of terrestrial insects respond to a herbivorous biocontrol. To evaluate this restoration approach and the interaction biocontrol may have with terrestrial insect populations, I quantified trophic unit richness and abundance and common family abundance of resident insect populations while also measuring biocontrol abundance and status during the previous season (present or not present). These measurements were taken four times throughout one season in monotypic tamarisk at two locations in Grand County, Utah. Biocontrol abundance was lower when biocontrol had been present in the previous season. Predator, omnivore and herbivore richness and omnivore, Histeridae, Lygeaidae and Formicidae abundance showed a relationship with biocontrol abundance. When biocontrol had been present in the previous season, predator richness and, Histeridae abundance was higher while when biocontrol had not been present in the previous season herbivore richness and detritivore, Lygeaidae and Elateridae abundance was higher. The results suggest relationships exist between D.elongata and multiple members of the trophic spectra of terrestrial insects that changes when biocontrol have been present for more than one season. If D. elongata are adding connections and complexity to the trophic spectra through these relationships with terrestrial insects than the use of biocontrol in monotypic tamarisk stands may help preserve what is left of the trophic web in the invaded ecosystem. Understanding the side effects of a biocontrol on the trophic structure of an ecosystem is essential to land management. At the same time, this work provides a more thorough understanding of the effect of herbivorous biocontrol on the trophic ecology of disturbed ecosystems

    Optical transmission matrix as a probe of the photonic strength

    Get PDF
    We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the singular value density of the measured matrices and a random matrix model. By varying the free parameters of the model, the transport mean free path and effective refractive index, we retrieve the photonic interaction strength. From numerical simulations we conclude that TM statistics is hardly sensitive to surface effects, in contrast to enhanced backscattering or total transmission based methods.We acknowledge support from ERC grant 27948, NWOVici, STW, the Royal Society, and EPSRC through fellowship EP/J016918/1

    Optical transmission matrix as a probe of the photonic interaction strength

    Get PDF
    We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the singular value density of the measured matrices and a random matrix model. By varying the free parameters of the model, the transport mean free path and effective refractive index, we retrieve the photonic interaction strength. From numerical simulations we conclude that TM statistics is hardly sensitive to surface effects, in contrast to enhanced backscattering or total transmission based methods

    Optical transmission matrix as a probe of the photonic strength

    No full text
    We demonstrate that optical transmission matrices (TMs) provide a powerful tool to extract the photonic strength of disordered complex media, independent of surface effects. We measure the TM of a strongly scattering GaP nanowire medium and compare the singular value density of the measured TM to a random-matrix-based wave transport model. By varying the transport mean free path and effective refractive index in the model, we retrieve the photonic strength. From separate numerical simulations we conclude that the photonic strength derived from TM statistics is insensitive to the surface reflection at rear surface of the sample

    The TOMMY trial: a comparison of TOMosynthesis with digital MammographY in the UK NHS Breast Screening Programme--a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone.

    Get PDF
    BACKGROUND: Digital breast tomosynthesis (DBT) is a three-dimensional mammography technique with the potential to improve accuracy by improving differentiation between malignant and non-malignant lesions. OBJECTIVES: The objectives of the study were to compare the diagnostic accuracy of DBT in conjunction with two-dimensional (2D) mammography or synthetic 2D mammography, against standard 2D mammography and to determine if DBT improves the accuracy of detection of different types of lesions. STUDY POPULATION: Women (aged 47-73 years) recalled for further assessment after routine breast screening and women (aged 40-49 years) with moderate/high of risk of developing breast cancer attending annual mammography screening were recruited after giving written informed consent. INTERVENTION: All participants underwent a two-view 2D mammography of both breasts and two-view DBT imaging. Image-processing software generated a synthetic 2D mammogram from the DBT data sets. RETROSPECTIVE READING STUDY: In an independent blinded retrospective study, readers reviewed (1) 2D or (2) 2D + DBT or (3) synthetic 2D + DBT images for each case without access to original screening mammograms or prior examinations. Sensitivities and specificities were calculated for each reading arm and by subgroup analyses. RESULTS: Data were available for 7060 subjects comprising 6020 (1158 cancers) assessment cases and 1040 (two cancers) family history screening cases. Overall sensitivity was 87% [95% confidence interval (CI) 85% to 89%] for 2D only, 89% (95% CI 87% to 91%) for 2D + DBT and 88% (95% CI 86% to 90%) for synthetic 2D + DBT. The difference in sensitivity between 2D and 2D + DBT was of borderline significance (p = 0.07) and for synthetic 2D + DBT there was no significant difference (p = 0.6). Specificity was 58% (95% CI 56% to 60%) for 2D, 69% (95% CI 67% to 71%) for 2D + DBT and 71% (95% CI 69% to 73%) for synthetic 2D + DBT. Specificity was significantly higher in both DBT reading arms for all subgroups of age, density and dominant radiological feature (p < 0.001 all cases). In all reading arms, specificity tended to be lower for microcalcifications and higher for distortion/asymmetry. Comparing 2D + DBT to 2D alone, sensitivity was significantly higher: 93% versus 86% (p < 0.001) for invasive tumours of size 11-20 mm. Similarly, for breast density 50% or more, sensitivities were 93% versus 86% (p = 0.03); for grade 2 invasive tumours, sensitivities were 91% versus 87% (p = 0.01); where the dominant radiological feature was a mass, sensitivities were 92% and 89% (p = 0.04) For synthetic 2D + DBT, there was significantly (p = 0.006) higher sensitivity than 2D alone in invasive cancers of size 11-20 mm, with a sensitivity of 91%. CONCLUSIONS: The specificity of DBT and 2D was better than 2D alone but there was only marginal improvement in sensitivity. The performance of synthetic 2D appeared to be comparable to standard 2D. If these results were observed with screening cases, DBT and 2D mammography could benefit to the screening programme by reducing the number of women recalled unnecessarily, especially if a synthetic 2D mammogram were used to minimise radiation exposure. Further research is required into the feasibility of implementing DBT in a screening setting, prognostic modelling on outcomes and mortality, and comparison of 2D and synthetic 2D for different lesion types. STUDY REGISTRATION: Current Controlled Trials ISRCTN73467396. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 19, No. 4. See the HTA programme website for further project information.This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 19, No. 4. See the HTA programme website for further project information.Gilbert FJ, Tucker L, Gillan MGC, Willsher P, Cooke J, Duncan KA, et al. The TOMMY trial: a comparison of TOMosynthesis with digital MammographY in the UK NHS Breast Screening Programme – a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone. Health Technol Assess 2015;19(4). © Queen’s Printer and Controller of HMSO 2015. This work was produced by Gilbert et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK
    • …
    corecore