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Abstract: One of the most common ways to investigate changes in future rainfall extremes is to
use future rainfall data simulated by climate models with climate change scenarios. However,
the projected future design rainfall intensity varies greatly depending on which climate model is
applied. In this study, future rainfall Intensity–Duration–Frequency (IDF) curves are projected using
various combinations of climate models. Future Ensemble Average (FEA) is calculated using a total
of 16 design rainfall intensity ensembles, and uncertainty of FEA is quantified using the coefficient
of variation of ensembles. The FEA and its uncertainty vary widely depending on how the climate
model combination is constructed, and the uncertainty of the FEA depends heavily on the inclusion
of specific climate model combinations at each site. In other words, we found that unconditionally
using many ensemble members did not help to reduce the uncertainty of future IDF curves. Finally,
a method for constructing ensemble members that reduces the uncertainty of future IDF curves is
proposed, which will contribute to minimizing confusion among policy makers in developing climate
change adaptation policies.

Keywords: climate change; ensemble average; intensity–duration–frequency curves; rainfall
extremes; uncertainty

1. Introduction

Future extreme weather events due to climate change have been extensively studied since they
have potential impacts on human society and ecosystems [1]. In the IPCC Fifth Assessment Report [2],
the Representative Concentration Pathways (RCPs) were introduced to form climate change scenarios,
and in all of the greenhouse gas emission scenarios described in the report, surface air temperature
is expected to rise throughout the 21st century. In the future, it is also predicted that the frequency
and intensity of extreme rainfall events will increase very much in many parts of the world [3–6].
South Korea is located in the mid-latitude region, and projection results have been reported in most
mid-latitude regions that the intensity of rainfall extremes will intensify in the future [7]. In addition,
socioeconomic damages caused by rainfall extremes have been occurring all over the world [8–12].
Hurricane Harvey, which struck the southern US in August 2017, caused more than 80 deaths and is
estimated to be one of the costliest natural disasters in US history, according to financial analysts [13].
At Cedar Bayou Observatory in FM1942, about 40 km west of Houston, there was a rainfall depth of
1318 mm at 10:00 AM CST (Central Standard Time) on Thursday, 31 August [14], and the observed
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rainfall depth of 1043.4 mm over three days at Baytown is known to be over 1000 years of return
period [15]. At the Lawrence Berkeley Laboratory in the United States, the impact of climate change is
estimated to increase the Hurricane Harvey rainfall depth from at least 19% to 38% [16]. The landing
of Hurricane Irma in the southeastern United States in September 2017 caused further major damage
before recovery from the damage caused by Harvey. Thus, disasters resulting from rainfall extremes
are increasing due to climate change. Therefore, analyzing future rainfall extremes has become one of
the most important issues in preparing future society [17].

One of the most basic data used to set the design capacity of hydraulic structures for urban
drainage is the rainfall Intensity–Duration–Frequency (IDF) curve for the region [18–20]. The IDF
curve is a mathematical relationship between rainfall intensity, duration, and return period [21] and
is one of the most important inputs in the design of urban drainage systems to prepare for extreme
rainfall events [22]. However, there are many concerns that most existing drainage systems will not
be sufficient to accommodate future extreme rainfall events because they were designed using IDF
curves derived from past rainfall events [23,24]. Thus, temporal variations of extreme rainfall events
have received considerable attention in recent decades. In some studies, observations were used
to identify temporal variations in rainfall extreme events at local scale [25–27]. Also, many studies
have been conducted to estimate rainfall series or rainfall extremes using future climate information
derived from climate models driven by climate change scenarios. Creating high-resolution rainfall
information is important in analyzing the variation of rainfall extremes [28,29]. Several studies have
suggested ways to simulate future rainfall series with high resolution through weather generators
on the basis of climate projections [29–31]. Various applications and methodologies to update IDF
curves in a changing climate are presented and discussed in some recent studies [32–37]. However, the
data obtained from climate models are of course not deterministic estimates and there is considerable
uncertainty [38]. In recent years, uncertainty analysis and quantification techniques in data science
have been studied extensively [39–41], and various researches are also underway in the field of
hydrology to explore uncertainty. Hailegeorgis et al. [42] examined the uncertainty in terms of tendency,
homogeneity, distribution, and sampling of future IDF curves through the regional frequency analysis
using L-moment. Chandra et al. [43] studied the uncertainty of future IDF curves using Bayesian
analysis to quantify parameter uncertainties. Shrestha et al. [24] quantified the uncertainties inherent
in the rate of change of future design rainfall depth over the current design rainfall depth using data
from 9 GCMs (Global Climate Models). Fadhel et al. [44] confirmed that the uncertainty of the future
IDF curve could be very large depending on how the reference period of RCMs (Regional Climate
Models) was set. Hosseinzadehtalaei et al. [45] attempted to quantify the uncertainties contained in
the future IDF curve ensembles of 140 CMIP5 GCMs and performed a sensitivity analysis of future IDF
curves to GCMs/RCMs initial conditions and RCP scenarios. It is not easy to quantify uncertainties
numerically because future IDF curves are affected by various factors such as duration, return period,
and region as well as GCMs, RCMs, RCP scenarios, and bias correction techniques. Nonetheless,
since quantitative information on uncertainty can be used as a useful tool in establishing climate
change adaptation policies [46], the range of uncertainties included in the future IDF curve needs to
be investigated numerically [47]. The ensemble technique of future climate data has been used in a
number of papers [48,49].

Recent researches on the estimation of future rainfall extremes in Korea are as follows:
Choi et al. [20] derived future IDF curves from future precipitation data obtained from RCMs
using a scale-invariance technique, and Jeong et al. [50] performed frequency analysis of future rainfall
extremes using annual maximum rainfall time series using 8 GCMs. Kim et al. [51] used the RCM
precipitation data to estimate the future design rainfall depth and used it as input data for the runoff

model, and Kim et al. [52] estimated the future rainfall extremes using 13 GCMs and 6 RCMs, and
then evaluated the simulation performance of each model. As such studies on the estimation of future
design rainfall depth have progressed, uncertainties about climate change scenarios have naturally
attracted attention. Yoon and Cho [53] performed uncertainty analyzes of rainfall extremes through
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multiple model ensembles of 9 GCMs. Lee et al. [54] estimated the design rainfall depth using a
traditional bootstrap technique and evaluated the uncertainty of future design flood. In their study, the
range of estimated peak discharges was used as an evaluation criterion for uncertainty. Kim et al. [52]
used the variation of statistics error formulas to quantify the uncertainty of climate change scenarios
and selected low-uncertainty climate change scenarios. Uncertainty analysis of future design rainfall
depth conducted in Korea can be summarized as the range of rate of change of future design rainfall
depth or quantification of uncertainty using statistical error.

In this study, future IDF curves from various RCMs that can be applied to Korea are estimated and
their uncertainties are quantified. The future IDF curves for 16 future ensembles were estimated for each
of 60 Automated Synoptic Observing System (ASOS) sites operated by KMA (Korea Meteorological
Administration), and their ensemble average (i.e., ensemble averaged future IDF curve) was estimated.
We also tried to quantify the uncertainty of future IDF curves using the coefficient of variation of the
ensemble members used for the ensemble average. The rate of change of the future IDF curve for the
current IDF curve and uncertainty were analyzed by the basic elements (i.e., GCM/RCM/RCP) for
which future rainfall data were generated. In addition, the rate of change and uncertainty behavior for
return period and duration were explored.

2. Data and Methodology

2.1. Study Area

Korea is located in the temperate climate zone of the mid-latitude (34–43◦ N) geographical area,
and the four seasons of spring, summer, autumn, and winter are distinct. Since the three sides are
surrounded by the sea, the climate is affected by the ocean, and the land is dominated by mountainous
terrain. Therefore, high resolution climate models such as RCMs should be applied rather than low
resolution climate models such as GCMs. The variability of river flow is very high since the average
slope is relatively steep and the seasonal variation of precipitation is severe. The average annual
precipitation varies widely depending on the region, but it is about 1500 mm, and 60–70% of the annual
precipitation concentrates in the summer season. The geographical distribution of precipitation is
characterized by geographical factors such as latitude and topography, and by meteorological factors
such as atmospheric circulation and the arrangement of atmospheric pressure. In Korea, rainfall
extremes are concentrated locally in summer, and the damage from rainfall extremes is increasing due
to the effects of climate change.

2.2. Observed Data

Historical observed rainfall data for the period 1981–2010 measured in 60 weather stations across
Korea have been provided by KMA (see Figure 1) [55]. The rainfall data have been recorded in ASOS.
From this rainfall data, annual maximum rainfall intensities for 24 durations (1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24 h) were extracted.
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rainfall using the results of RCMs, which dynamically down-scale GCM results into East Asia 
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11), down-scaled in 12.5-km horizontal resolution into the East Asian region including the Korean 
peninsula from the results of GCMs, were used (see Figure 2). KOR-11 includes a total of 16 future 
climate ensembles from a combination of two GCMs including HadGEM2-AO (Hadley Centre Global 
Environmental Model version 2 coupled with the Atmosphere-Ocean, H2) and MPI-ESM-LR (Max 
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scale Model version 5; [59]), WRF(Weather Research and Forecasting model; [60]), RegCM4 (Regional 
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climate change scenarios. These models participated in the CORDEX-East Asia project [63]. Table 1 
summarizes the future climate data used in this study. 

Figure 1. Location of selected weather station in South Korea.

2.3. Climate Change Scenarios

GCMs are the most important tools for estimating future precipitation for climate change scenarios,
but they do not adequately simulate precipitation patterns on small spatial scales [56,57]. In order to
overcome these limitations of GCMs, it is desirable to examine the changes of future rainfall using
the results of RCMs, which dynamically down-scale GCM results into East Asia including Korea [58].
In this study, detailed climate change scenarios on the Korean peninsula (KOR-11), down-scaled in
12.5-km horizontal resolution into the East Asian region including the Korean peninsula from the
results of GCMs, were used (see Figure 2). KOR-11 includes a total of 16 future climate ensembles from
a combination of two GCMs including HadGEM2-AO (Hadley Centre Global Environmental Model
version 2 coupled with the Atmosphere-Ocean, H2) and MPI-ESM-LR (Max Planck Institute Earth
System Model-Low Resolution, ML) and four RCMs including MM5 (Meso-scale Model version 5; [59]),
WRF(Weather Research and Forecasting model; [60]), RegCM4 (Regional Climate Model version 4; [61]),
and RSM(Regional Spectral Model; [62]) under RCP 4.5 and 8.5 climate change scenarios. These models
participated in the CORDEX-East Asia project [63]. Table 1 summarizes the future climate data used in
this study.
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mapping, detected quantile mapping, change factor, and so on have been developed. First, as a result 
of temporarily estimating the future IDF curve using the above four bias-correction methods, there 
was little sensitivity of the future IDF curve to the bias correction method. Therefore, in this study, 
we corrected the bias using quantile mapping. Cannon et al. [65] warned that quantile mapping could 
inflate relative trends in extremes of precipitation, so we used a simple extrapolation technique 
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on the annual maximum time series extracted for each duration. 
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Figure 2. High resolution climate change scenario area on the Korea Peninsula.

Table 1. Information of future climate data. (GCMs: Global Climate Models; RCP: Representative
Concentration Pathway; RCMs: Regional Climate Models; MPI-ESM-LR: Max Planck Institute Earth
System Model-Low Resolution, ML; HadGEM2-AO: Hadley Centre Global Environment Model version
2 coupled with the Atmosphere-Ocean, H2; MM5: Meso-scale Model version 5; WRF: Weather Research
and Forecasting model; RegCM4: Regional Climate Model version 4; RSM: Regional Spectral Model).

GCMs RCP Scenarios RCMs Temporal Scale Temporal
Resolution

MPI-ESM-LR (ML) and
HadGEM2-AO (H2)

RCP 4.5 and RCP
8.5

MM5, WRF,
RegCM4, and RSM

1981–2010 (present)
2021–2050 (future) 3 h

2.4. Bias Correction

Compared to GCMs, RCMs simulate local climate characteristics more closely in practice, but
simulated precipitation still has many biases [64]. In addition, since RCMs are driven by using the
output of GCMs as boundary conditions, the biases in GCMs are systematically transferred to RCMs.
Hence, in order to utilize the results of RCMs in disaster prevention and adaptation policies for
climate change in water and environment business, a bias-correction process for outputs from RCMs
should be performed. A variety of bias-correction methods such as quantile mapping, quantile delta
mapping, detected quantile mapping, change factor, and so on have been developed. First, as a result
of temporarily estimating the future IDF curve using the above four bias-correction methods, there
was little sensitivity of the future IDF curve to the bias correction method. Therefore, in this study,
we corrected the bias using quantile mapping. Cannon et al. [65] warned that quantile mapping
could inflate relative trends in extremes of precipitation, so we used a simple extrapolation technique
proposed by Boé et al. [64] to prevent these problems in advance. The bias correction was performed
on the annual maximum time series extracted for each duration.

The probability density function for quantile mapping is applied to the Generalized Extreme Value
(GEV) distribution, and the parameters of the GEV distribution are estimated using the probability
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weighted moment method. However, since the GEV distribution has a limited range of shape
parameters, the Gumbel distribution is applied instead when the GEV distribution is not suitable.

2.5. Scale-Invariance Method

Since the time resolution of a given future rainfall data is 3 h, temporal disaggregation is required
to obtain the design rainfall intensity for various durations. In this study, scale-invariance method
was applied. In case of future rainfall data of 24 h time resolution, the design rainfall intensity for the
duration of less than 24 h can be calculated as shown in Equation (1) by using the method proposed by
Choi et al. [58].

IT
d = (

d
24

)
−H
× IT

24, (1)

where IT
d is the design rainfall intensity for the return period T years and duration d hours, IT

24 is the
design rainfall intensity for the return period T years and duration 24 h, and H is the scale exponent.
The scale exponent used in Equation (1) applies a single scale exponent obtained when examining the
scale characteristics of the observed data. In other words, if future rainfall data of 24 h time resolution
is given, it is assumed that the data of interest has a single scale characteristic. However, in case of
future rainfall data of 3 h time resolution, various scale exponents can be applied for each duration
interval by making full use of the multiple scale characteristics of the data. That is, given the design
rainfall intensity IT

d1 of duration d1 hours and the design rainfall intensity IT
d2 of duration d2 hours

(For example, d1 = 3 h, d2 = 6 h), the scale exponent Hd1−d2 between duration d1 hours and duration d2

hours can be estimated as:

Hd1−d2 = −
ln (IT

d1/IT
d2)

ln (d1/d2)
, (2)

Using Equation (2), the design rainfall intensity of the duration d hours between duration d1 hours
and duration d2 hours (e.g., d = 4 h or 5 h) can be estimated as follows:

IT
d = (

d
d2

)
−Hd1−d2

× IT
d2, (3)

Equations (2) and (3) are used to calculate the scale exponents H3−6h, H6−9h, . . . , H21−24h, respectively,
and the design rainfall intensities for duration 4, 5, 7, 8, . . . , 19, 20, 22, 23 h. For more information, see
Kim et al. [66].

3. Uncertainty of Future IDF Curves

3.1. Bias-Correction Results

As a result, GEV distribution was applied to 35 out of 60 sites and Gumbel distribution was
applied to the remaining 25 sites. In order to examine the effect of bias-correction, the empirical
distribution of annual maximum rainfall intensity time series before and after the bias-correction at the
Seoul site is shown in Figure 3, and Table 2 shows the mean values of the annual maximum rainfall
intensity time series at the Seoul site before and after the bias-correction.
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Figure 3. Frequency distribution of annual maximum rainfall intensity for duration 12 h at the Seoul
site. The blue lines are empirical distributions of (a) un-bias-corrected and (b) bias-corrected annual
maximum rainfall intensity time series derived from various Global Climate Model (GCM)/Regional
Climate Model (RCM)/Representative Concentration Pathway (RCP) combinations, and the red line
represents the empirical distribution of the observed annual maximum rainfall intensity time series.

Table 2. Observed mean and multi-model mean for various durations at the Seoul site.

Duration (h) Observed Mean
(mm/h)

Multi-Model Mean
(Before Bias-Correction)

(mm/h)

Multi-Model Mean
(After Bias-Correction)

(mm/h)

3 27.88 19.13 (13.23–32.01) 27.87 (27.73–28.01)
6 19.47 14.29 (9.79–22.89) 19.46 (19.36–19.56)
12 12.62 9.58 (7.01–15.27) 12.64 (12.60–12.68)
24 7.71 5.94 (4.50–9.10) 7.71 (7.69–7.74)

Comparing the frequency distributions before and after the bias-correction, it can be seen that
the frequency distribution of the scattered GCM–RCM combination was bias-corrected similar to the
frequency distribution of the observed values. As shown in Table 2, the difference between the mean
of the observed annual maximum rainfall intensity time series and the mean of the corresponding
bias-corrected time series is less than 0.1 mm/h, and the deviations between the mean values of
annual maximum rainfall intensity series derived from all GCM–RCM combinations was also less than
0.5 mm/h. The tail of the distribution, which corresponds to rainfall extremes, also shows that the
bias-corrected distribution follows the observed distribution relatively well (see Figure 3).

It is noteworthy that climate change affects rainfall intensity as well as rainfall frequency.
If bias-correction is applied to the outputs from climate models, frequency information, especially in
rainfall extremes, may be lost. However, this information loss is not considered in this study.

3.2. Future IDF Curves

Gumbel distribution was applied as a probability density function to estimate the design rainfall
intensity. In Korea, the Gumbel distribution is used in principle to maintain the consistency of design
practices [67]. Figures 4–6 show the spatial distribution of design rainfall intensity derived from
observations and future design rainfall intensity derived from several GCM/RCM/RCP combinations.
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Figure 5. Design rainfall intensity for which RCM was applied (duration 3 h and return period
30 years). These figures show the spatial distribution of the design rainfall intensity estimated (a) from
ML-MM5-RCP 8.5 (2021–2050), (b) from ML-WRF-RCP 8.5 (2021–2050), (c) from ML-RegCM4-RCP 8.5
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Figure 4 shows the future design rainfall intensity obtained when the RCP scenario and the RCM
are the same (RCP 8.5-WRF) but the GCM is different. Figure 5 shows the future design rainfall intensity
obtained when the RCP scenario and GCM are the same (RCP 8.5-ML) but the RCM is different. Figure 6
shows the future design rainfall intensity obtained when GCM and RCM are the same (H2-MM5)
but RCP are different. Compared with the estimated design rainfall intensity (see Figure 4a) using
observational data, the future design rainfall intensity is likely to increase overall regardless of the
GCM/RCM/RCP combination, and a similar trend was found when applying the GCM/RCM/RCP
combinations other than the combinations in Figures 4–6. In fact, it would be reasonable to understand
that this trend (that is, increase in rainfall extremes) has already been determined from the output of
GCMs. In this study, two GCMs were used to dynamically force four RCMs. Therefore, the simulated
tendency in GCMs is systematically transferred to RCMs.

Important points in Figures 4–6 are that different future design rainfall intensity is estimated
even if only one of the GCM/RCM/RCP combination is changed. This implies that there are many
uncertainties in future rainfall extremes obtained from climate models [68]. This implies that although
the mechanism of the local processes simulating rainfall extremes is the same (i.e., in the case of Figure 4
with the same RCM), when the boundary conditions driving the RCM are different (i.e., different
GCMs are applied), different future design rainfall intensity is estimated. Conversely, if the boundary
conditions driving the RCM are the same (i.e., in the case of Figure 5 with the same GCM), and if
the mechanism of the local processes simulating rainfall extremes are different (i.e., different RCMs
apply), it can be seen that the design rainfall intensity is estimated very differently. However, if the
GCM/RCM combination is the same and the RCP scenario is different (see Figure 6), it can be found
that the spatial distribution of estimated future design rainfall intensity is similar, although its value
is different. This means that if the boundary conditions for RCM implementation are the same and
the mechanism of the local process simulating rainfall extremes is the same, the quantitative change
of extreme precipitation to greenhouse gas emission concentration is significantly different but there
is not a relatively large difference in the spatial distribution of rainfall extremes. Also, as shown in
Figure 6, it is analyzed that it cannot be said that the future design rainfall intensity with RCP 8.5
scenario emitting more greenhouse gases (and thus projecting higher surface air temperature rise) is
necessarily greater than the future design rainfall intensity with RCP 4.5 scenario. On the whole, it is
found that the RCP 4.5 scenario tends to show a larger design rainfall intensity.
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However, if we look at the rate of change in design rainfall intensity by site, we can see that the
results are difficult to explain. A quantitative analysis of the rate of change for duration 3 h and return
period 30 years at the Busan site revealed −5.5% for ML-WRF-RCP 8.5 and 20.9% for H2-WRF-RCP
8.5 (see Figure 4). This is a very big difference, and even the sign is different. This deviation may
be attributed to the different GCMs. However, it is found that this is not true if the same GCM is
applied. In other words, even if both the GCM and RCP scenarios are the same (ML-RCP 8.5), it can be
found that different RCMs produce very large deviations in rate of change (17.6% for MM5, −5.5% for
WRF, 3.3% for RegCM4, and 37.6% for RSM, respectively, see Figure 5). This irregularity can still be
found even if both GCM and RCM are the same (H2-MM5). In other words, different RCP scenarios
can produce very large deviations in rate of change (−2.9% for RCP 8.5 and −17.5% for RCP 4.5, see
Figure 6). Similar results can be obtained for different sites, different durations, or different return
periods. In fact, such results that the reliability of the simulated (or estimated) future rainfall extremes
from climate models are not high is not surprising (see [69] for further discussion).

3.3. Rate of Change and Future Ensemble Average

In this study, 16 future design rainfall intensity ensembles (combination of 2 GCMs, 4 RCMs, and
2 RCPs) were estimated for various return periods T years and various durations d hours at various
sites. Their median for each return period T years and duration d hours is defined as Future Ensemble
Average (FEA) and the rate of change Rc(%) of future design rainfall intensity is defined as follows:

Rc =
FEA(T, d) −OBS(T, d)

OBS(T, d)
, (4)

where FEA(T,d) is the median of future design rainfall intensity ensembles of the return period T years
and the duration d hours, and OBS(T,d) is the estimated design rainfall intensity from the corresponding
observations. Figure 7 shows 16 future design rainfall intensity ensembles and their FEA at the Haenam
site. For reference, the rate of change of the future design rainfall intensity for the return period 30
years and duration 3 h estimated from 16 ensembles at the Haenam site was calculated to be 10.7%.
This means that the design rainfall intensity may increase by about 11% compared with the present.
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Figure 7. Ensembles of future design rainfall intensities and their Future Ensemble Averages (FEAs)
at the Haenam site (duration 3 h and return period 30 years). OBS is the design rainfall intensity
estimated from the observed annual rainfall intensity time series, Future Ensemble represents future
design rainfall intensity ensembles estimated from various GCM/RCM/RCP combinations, and FEA is
the ensemble average of Future ensembles.
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However, as shown in Figure 7, due to the large difference between estimated future rainfall
intensities depending on which GCM/RCM/RCP combination is applied, it is hard to say that the
reliability for an increase in design rainfall intensity of about 11% on FEA basis is sufficiently secured.
As shown in the boxplot of Figure 8a, the Inter-Quantile Range (IQR) of the rate of change contains the
portion where the rate of change is zero. This implies that the differences between the ensembles are
relatively larger than the rate of change of the FEA, which makes it difficult to see that future design
rainfall intensity increases significantly. Figure 8b shows the boxplot at the Geumsan site. Unlike the
Haenam site, the rate of change at the Geumsan site is relatively larger than the differences between
the ensembles. Therefore, the risk that the future design rainfall intensity will increase at the Geumsan
site can be more clearly presented to policymakers who establish climate change adaptation policies.
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3.4. Uncertainty Analysis of Future IDF Curves

As we have seen, the future design rainfall intensity will depend on which GCM/RCM/RCP
combination is applied, so the difference between ensemble members of future design rainfall intensity
can be defined as the uncertainty of future design rainfall intensity estimation. In this study, the
uncertainty of the future design rainfall intensity was defined as U = 0.6745 × CV(T, d) using the
coefficient of variation CV(T, d) of ensemble members applied to FEA. This means that the uncertainty
is defined as the Inter-Quantile Range (IQR) of ensemble members. For example, when analyzing
uncertainty using all GCM/RCM/RCP combinations, the coefficient of variation of 16 future ensembles
will be used. This allows quantification of uncertainties for various GCM/RCM/RCP combinations by
site, duration, and return period.

In this case, various analyses can be attempted by varying the method of constructing the ensemble
members included in the calculation of the FEA. The most commonly applied method is to calculate
the FEA considering all available ensemble members. That is, in this study, FEA can be calculated
using all 16 future ensembles, and corresponding rate of change and its uncertainty can be presented.
In addition, FEA can be calculated using 8 future ensembles for each GCM, and the rate of change and
its uncertainty corresponding to the applied GCM can be presented. In a similar manner, a rate of
change and its uncertainty corresponding to the RCM applied, or a rate of change and its uncertainty
corresponding to the applied RCP may be presented, respectively.

This section looks at the rate of change of future IDF curves for GCM/RCM/RCP combination
and the uncertainty involved. The FEA calculated using all 16 ensemble members and its uncertainty
are shown in Figure 9 The number of sites where the FEA is greater than the IQR of the ensembles
(i.e., 0.6745×CV(T, d)) is 28 out of a total of 60 sites. In other words, 47% of the analyzed sites can be
credibly presented to decision makers that future design rainfall intensity is likely to increase.
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Figure 9. Boxplot of rates of change for 16 future design rainfall intensity ensembles with return period
30 years and duration 3 h at all 60 sites in Korea.

Figure 10 shows a boxplot of the rate of change for how ensemble members are constructed. In the
configuration of ensemble members classified by GCM as H2 and ML in the figure, the rate of change
and uncertainty of future design rainfall intensity were estimated by using 8 future ensembles for each
GCM. In the configuration of the ensembles classified by the RCP, the rate of change and uncertainty of
the future design rainfall intensity were estimated by using 8 future ensembles for each RCP as in the
configuration separated by GCM. Analyzing the rate of change and uncertainty of future design rainfall
intensity using ensemble members identified by RCM needs to be examined in a slightly different way.
Since there are 4 RCMs applied in this study, the rate of change and uncertainty of future design rainfall
intensity are calculated using only 4 ensemble members when analyzed by RCM. Since the number of
ensemble members for uncertainty analysis was considered to be insufficient, this study constructed
ensemble members excluding ensembles derived from one specific RCM (for example, MM5) among
all ensembles derived from all RCMs (for example, ex-MM5 in the figure). If the uncertainty in the
ensemble configuration where the MM5 is excluded is lower than the uncertainty in the configuration
in which all the RCMs are applied, this means that the uncertainty is greatly increased due to ensemble
members derived from MM5. Of course, such a method has the disadvantage that it cannot directly
represent the rate of change and uncertainty of RCM, but it can be indirectly grasped the contribution
of uncertainty by RCM.
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Figure 10. Boxplot of rates of change for ensemble member configurations with return period 30 years
and duration 3 h at the Uiseong site. The red dot means the median of the ensembles (i.e., FEA).
Boxplots are the results of estimating rate of change and uncertainty using a total of 9 configurations
including two GCM-based configurations (H2/ML), two RCP-based configurations (4.5/8.5), four
configurations except specific RCM (ex-MM5/ex-WRF/ex-RegCM4/ex-RSM), and the configuration with
all 16 GCM/RCM/RCP combination ensembles (ALL).

At the Uiseong site, ML showed clearly higher uncertainty than H2. The uncertainty of RCP 4.5 is
lower than that of RCP 8.5, but there is an outlier in the ensembles of RCP 4.5 (red + in Figure 10).
Therefore, the uncertainty of RCP 4.5 (U = 18.8%) becomes much larger than the uncertainty of RCP
8.5 (U = 10.9%) when the outlier is considered. In addition, the uncertainty was greatly reduced in
configurations except the ensembles derived using RSM, and no outlier was found. That is, at the
Uiseong site, it can be seen that the ensembles derived from the combinations containing ML/RSM/RCP
8.5 present future design rainfall intensities that are different from the ensembles derived from other
combinations. This fact implies that using many ensembles unconditionally is not necessarily an
absolute way to reduce uncertainty.

By using 8 future ensembles for each GCM, the rate of change and uncertainty of future design
rainfall intensity by GCM can be estimated. To see the difference between two different GCMs at the
same site, the FEA and its uncertainty U of the rate of change using each GCM-specific ensemble
members are shown in Figure 11. Overall, the rates of change derived from ML are calculated to be
larger than the rates of change derived from H2, and ML is larger than H2 in terms of differences
between ensemble members. However, since there are many sites where the rate of change calculated
from H2 is larger than the value from ML and the determinant coefficient of the linear regression line
is low as 0.1573, it is concluded that the future design rainfall intensity derived by applying ML is
not necessarily larger than future design rainfall intensity derived by H2. In the case of uncertainty,
there was little correlation between the two GCMs. In other words, it can be said that it is difficult to
see what GCM is applied to determine the difference in future design rainfall intensity. Although the
future design rainfall intensity is calculated differently depending on which GCM is applied, the GCMs
carried out up to the dynamics down-scale in Korea have only two of ML and H2. Therefore, it would
be the most feasible and realistic alternative to investigate changes in future design rainfall intensity
using all of the GCMs rather than excluding one GCM.
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Figure 11. Comparison of correlations for which GCM was applied (duration 3 h and return period
30 years) in terms of (a) rate of change, and (b) its uncertainty U. The red dashed line is the regression
line, and its regression formula and decision coefficients are shown at the bottom right of the
corresponding figure.

As with GCM, the rate of change and uncertainty of future design rainfall intensity for each RCP
can be estimated using 8 future ensembles for each RCP. Figure 12 shows the same figure in Figure 11,
except that RCP is applied as a control variable instead of GCM. Slightly different from the results in
GCM, there are some correlations between future design rainfall intensity of two RCP configurations.
It can be confirmed that the design rainfall intensity under the RCP 4.5 scenario tends to be larger than
the design rainfall intensity under the RCP 8.5 scenario, but it is observed that only 38 sites out of 60
sites (63%) follow this tendency. In other words, it can still be said that it is difficult to see what RCP
has been applied to determine future design rainfall intensity differences. Although future design
rainfall intensities are estimated differently depending on what RCP is applied, there are only two RCP
scenarios, 4.5 and 8.5, applied in this study. Therefore, it would be most feasible to investigate the
future design rainfall intensity using both RCP scenarios rather than looking at future extreme rainfall
by excluding one RCP scenario or separating the two scenarios. In terms of uncertainty, RCP 4.5 is
found to be larger than RCP 8.5, but it is still difficult to see any relationship between uncertainties in
the two scenarios. Also, it is possible to find sites with different directions in rate of change depending
on the scenario, but it is difficult to see that the sign change of the rate of change is meaningful because
the rate of change is relatively smaller than the uncertainty.

Atmosphere 2020, 11, x FOR PEER REVIEW 14 of 23 

 

 
Figure 11. Comparison of correlations for which GCM was applied (duration 3 h and return period 
30 years) in terms of (a) rate of change, and (b) its uncertainty 𝑈. The red dashed line is the regression 
line, and its regression formula and decision coefficients are shown at the bottom right of the 
corresponding figure. 

As with GCM, the rate of change and uncertainty of future design rainfall intensity for each RCP 
can be estimated using 8 future ensembles for each RCP. Figure 12 shows the same figure in Figure 
11, except that RCP is applied as a control variable instead of GCM. Slightly different from the results 
in GCM, there are some correlations between future design rainfall intensity of two RCP 
configurations. It can be confirmed that the design rainfall intensity under the RCP 4.5 scenario tends 
to be larger than the design rainfall intensity under the RCP 8.5 scenario, but it is observed that only 
38 sites out of 60 sites (63%) follow this tendency. In other words, it can still be said that it is difficult 
to see what RCP has been applied to determine future design rainfall intensity differences. Although 
future design rainfall intensities are estimated differently depending on what RCP is applied, there 
are only two RCP scenarios, 4.5 and 8.5, applied in this study. Therefore, it would be most feasible to 
investigate the future design rainfall intensity using both RCP scenarios rather than looking at future 
extreme rainfall by excluding one RCP scenario or separating the two scenarios. In terms of 
uncertainty, RCP 4.5 is found to be larger than RCP 8.5, but it is still difficult to see any relationship 
between uncertainties in the two scenarios. Also, it is possible to find sites with different directions 
in rate of change depending on the scenario, but it is difficult to see that the sign change of the rate 
of change is meaningful because the rate of change is relatively smaller than the uncertainty. 

 
Figure 12. Comparison of correlations for which RCP was applied (duration 3 h and return period 30 
years) in terms of (a) rate of change, and (b) its uncertainty 𝑈. 

The rate of change and uncertainty of future design rainfall intensity for ensemble members 
identified by the RCM can be analyzed in a different way than in GCM and RCP. Table 3 shows the 
rate of change and its uncertainty when all 16 ensemble members are applied, and the rate of change 

Figure 12. Comparison of correlations for which RCP was applied (duration 3 h and return period
30 years) in terms of (a) rate of change, and (b) its uncertainty U.

The rate of change and uncertainty of future design rainfall intensity for ensemble members
identified by the RCM can be analyzed in a different way than in GCM and RCP. Table 3 shows the
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rate of change and its uncertainty when all 16 ensemble members are applied, and the rate of change
and its uncertainty when the ensemble members derived from a specific RCM are excluded. It can
be found that the average of the FEAs and the corresponding uncertainties of the rates of change at
all sites are approximately 11% and 11%, respectively, regardless of whether all RCMs are applied or
whether one RCM is excluded.

Table 3. Rate of change and its uncertainty for RCM combinations.

Site No. Site Name
All Scenarios

RCM

ex-MM5 ex-WRF ex-RegCM4 ex-RSM

Rc
1

(%)
U 2

(%)
Rc
(%) U (%) Rc

(%) U (%) Rc
(%) U (%) Rc

(%) U (%)

90 Sokcho 7.1 13.0 5.7 11.8 7.1 12.7 12.5 12.5 6.4 14.5
100 Daegwallyeong 26.4 8.1 22.3 8.4 26.6 9.0 26.8 5.0 21.8 8.9
101 Chuncheon 5.7 8.3 10.4 8.2 4.5 8.5 10.2 8.1 4.1 8.2
105 Gangneung 6.1 13.6 6.1 13.3 11.7 12.9 9.9 14.8 −1.9 12.9
108 Seoul 4.5 12.1 5.6 13.7 2.4 12.5 4.5 10.1 4.5 12.1
112 Incheon −0.2 14.9 1.3 16.6 −1.7 17.0 −0.2 6.6 −0.1 15.7
114 Wonju 14.7 9.8 12.8 10.1 14.7 8.2 15.2 10.4 14.7 10.7
119 Suwon −5.9 12.3 8.5 11.5 −6.8 8.0 1.5 13.5 −6.6 13.8
127 Chungju −0.5 13.7 7.9 13.8 −9.0 15.7 −7.2 10.8 6.1 13.0
129 Seosan 9.3 9.0 11.8 9.2 11.8 9.5 9.3 9.6 6.4 6.4
130 Uljin 11.7 14.0 13.5 10.5 9.4 15.6 8.9 14.2 11.7 15.7
131 Cheongju 7.7 13.2 9.9 13.7 7.7 12.6 5.8 13.8 6.7 12.2
133 Daejeon 5.6 10.9 5.6 12.0 7.1 10.4 5.6 11.9 2.3 8.1
135 Chupungyeong 12.8 11.0 23.3 10.9 7.9 8.9 12.8 12.0 20.8 10.9
138 Pohang 6.7 16.8 3.0 14.6 6.7 16.7 3.0 17.9 19.0 17.1
140 Gunsan 1.7 8.7 5.4 8.7 −1.1 9.7 −4.3 6.6 4.8 8.6
143 Daegu 13.7 13.3 6.0 13.3 10.2 13.4 23.0 13.5 13.7 12.8
146 Jeonju 16.5 11.8 26.6 9.1 13.2 13.5 16.5 11.7 11.5 11.8
152 Ulsan 22.5 10.5 17.2 10.8 30.1 11.2 34.7 9.3 15.6 9.7
156 Gwangju 19.2 11.0 21.4 11.8 17.2 8.4 12.2 11.9 21.4 11.0
159 Busan 3.7 9.9 3.7 9.6 3.7 10.7 15.9 9.5 3.0 9.5
162 Tongyeong 11.1 11.3 5.7 13.1 11.1 12.8 12.3 10.7 11.1 7.9
165 Mokpo −0.7 8.0 −4.5 7.6 2.9 8.2 −0.7 7.0 −0.7 8.8
168 Yeosu 5.0 14.5 5.7 15.8 5.0 15.2 4.0 16.6 4.1 8.5
170 Wando 9.5 12.7 4.8 10.9 9.8 14.0 10.5 11.7 20.4 13.0
184 Jeju 10.6 7.4 13.5 8.0 14.5 7.6 13.4 6.4 6.2 7.0
188 Seongsan 23.1 12.3 17.7 13.6 26.8 12.7 25.1 8.6 23.1 13.6
189 Seogwipo 11.7 9.7 14.6 9.6 14.8 9.8 9.2 10.6 7.6 7.5
192 Jinju 16.6 12.9 15.6 11.5 16.2 14.6 25.9 12.7 17.4 11.8
201 Ganghwa −8.1 12.3 −10 11.8 −1.6 10.8 −13.9 12.6 −1.6 12.8
202 Yangpyeong 6.4 8.1 5.2 8.0 6.4 9.1 7.0 8.6 4.6 5.8
203 Icheon 4.7 9.8 5.0 10.2 4.7 9.1 4.7 11.0 2.1 9.0
211 Inje 9.7 7.0 9.3 7.5 14.2 7.7 11.5 5.3 8.4 6.9
212 Hongcheon 4.0 5.8 4.0 5.8 4.6 6.8 4.1 5.2 3.6 5.4
221 Jecheon 9.1 9.0 10.3 8.0 4.4 10.1 7.5 7.3 9.1 10.2
226 Boeun 7.0 13.8 15.8 15.0 6.0 11.3 4.1 14.6 19.6 13.5
232 Cheonan 13.1 9.0 13.8 9.8 14.1 9.6 10.3 7.8 14.1 8.4
235 Boryeong 17.0 14.6 21.8 14.9 18.4 16.1 17.0 14.7 5.9 11.6
236 Buyeo 11.2 11.1 14.1 12.3 13.2 12.4 4.2 12.2 14.1 6.7
238 Geumsan 31.0 7.0 32.5 5.5 23.8 8.0 27.7 7.4 32.5 6.8
243 Buan 13.3 14.6 14.9 14.8 3.4 10.4 9.9 16.2 14.9 15.2
244 Imsil 18.4 10.1 27.2 9.4 11.0 9.3 12.6 10.6 25.0 10.1
245 Jeongeup 12.7 8.8 12.7 8.8 8.2 9.1 15.2 8.7 6.7 8.7
247 Namwon 24.3 11.0 24.3 11.1 22.0 12.6 25.9 12.2 22.2 7.4
256 Suncheon 8.6 9.5 6.7 11.0 10.5 9.5 10.5 10.8 8.6 6.4
260 Jangheung 16.4 5.3 15.9 6.0 16.4 5.1 18.3 5.1 16.0 5.3
261 Haenam 10.7 10.9 6.9 11.5 19.7 12.2 10.7 7.0 10.7 12.0
262 Goheung 6.7 15.4 6.7 17.2 −5.5 18.0 6.7 10.3 6.9 14.9
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Table 3. Cont.

Site No. Site Name
All Scenarios

RCM

ex-MM5 ex-WRF ex-RegCM4 ex-RSM

Rc
1

(%)
U 2

(%)
Rc
(%) U (%) Rc

(%) U (%) Rc
(%) U (%) Rc

(%) U (%)

272 Yeongju 1.9 14.3 5.4 15.6 3.8 14.6 1.9 16.1 −0.1 7.2
273 Mungyeong 13.6 9.3 15.1 10.0 12.1 6.9 10.0 10.5 15.2 8.8
277 Yeongdeok 7.8 14.6 7.8 15.6 7.8 12.5 6.2 16.3 10.4 13.8
278 Uiseong 25.4 14.8 21.9 17.1 30.8 15.2 30.8 15.4 21.2 5.6
279 Gumi 15.1 20.5 9.5 22.2 19.5 22.5 19.5 21.3 15.1 13.8
281 Yeongcheon 9.2 10.8 8.6 11.4 8.6 9.2 15.6 11.6 14.2 10.0
284 Geochang 14.7 13.0 12.7 11.5 35.1 12.6 23.6 12.9 13.5 14.0
285 Hapcheon 18.9 12.1 16.9 8.3 18.9 12.8 18.8 13.7 19.7 11.8
288 Miryang 10.1 10.7 12.1 10.6 2.0 10.6 12.1 10.7 5.4 10.7
289 Sancheong 18.9 10.2 10.5 6.6 18.9 10.4 21.1 11.5 21.1 10.8
294 Geoje 8.8 8.7 11.1 10.1 8.8 9.7 14.7 6.9 7.3 6.9
295 Namhae 12.9 9.0 12.9 8.7 15.4 9.3 15.0 10.1 10.9 7.8

Average 10.8 11.3 11.4 11.3 10.8 11.4 11.7 11.0 10.9 10.3
1 Rc is the FEA (Future Ensemble Average) of future design rainfall intensity, and 2 U is its uncertainty.

However, when we look at each site separately, we find interesting classification criteria. From a
relative comparison of FEA with its uncertainty, the change (increase or decrease) may be considered
significant if the FEA is greater than its uncertainty, or the change may be treated as meaningless if not.
Therefore, the meaning of the color shown in Table 3 can be summarized as follows:

1. Red: Sites that show a significant increase when applying all RCMs, i.e., sites where FEA calculated
by applying all RCMs is larger than its uncertainty. Future design rainfall intensity at these sites
is likely to be higher than current design rainfall intensity.

2. Green: In these sites, FEA increases significantly when all RCMs are applied, but when one
RCM is excluded, the increase in FEA is meaninglessly changed. Since uncertainty has increased
by excluding the RCM, it can be seen that the RCM labeled Green contributes to reducing the
uncertainty in future design rainfall intensity estimates. It can be seen that most of the sites
marked Green are sites with little difference between FEA and uncertainty among sites marked
Red. In Table 3, the RCMs marked Green are 2 sites for MM5, 6 sites for WRF, 3 sites for RegCM4,
and 2 sites for RSM. From this, it can be seen that the uncertainties of the three RCMs are relatively
larger than those of WRF.

3. Orange: These sites show a non-significant increase in FEA when all RCMs are applied, but FEA
changes to a significant increase if one specific RCM is excluded. As can be seen from the Uljin
site, since the FEA is larger than its uncertainty if the ensemble members derived from a particular
RCM (e.g., MM5) are excluded, the RCM marked with Orange contributes to increasing the
uncertainty. In Table 3, there are 5 sites in MM5, 3 sites in WRF, 6 sites in RegCM4, and 7 sites in
RCM indicated by Orange. Consistent with the analysis in 2), it can be seen that the uncertainties
of RCMs other than WRF are relatively larger. It is worth noting that RCMs can be identified
for each site with a high level of uncertainty rather than a comparison of indirect uncertainty
measures between RCMs. This can be used as a way to reduce the uncertainty in estimating
future design rainfall intensity, which will be discussed in more detail in the next section.

4. Blue: In this site, FEA shows a meaningless decrease when all RCMs are applied, but when one
specific RCM is excluded, FEA is converted to a significant decrease. There are 5 sites (blue text
in Table 3) in which the future design rainfall intensity is less than the current design rainfall
intensity, but none of them showed significant decrease when all RCMs were applied. However,
it can be seen that the Ganghwa site shows a significant decrease when RegCM4 is excluded.
In Korea, it has been reported that rainfall extremes will increase in the future in most studies, and
in this study, it is general that rate of change also increases in most sites. Therefore, the decrease
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in FEA indicates that the variance of the design rainfall intensity between ensemble members is
very large. From this point of view, a significant decrease at the Ganghwa site may need to be
treated more carefully in the future.

4. Discussion

So far, we have quantified the rate of change and uncertainty of future design rainfall intensity in
various ways. Through this, numerical presentation of rate of change and its uncertainty of future
design rainfall intensity at various sites throughout Korea will be a meaningful result. However, the
ultimate goal of the study of rainfall extremes in light of climate change will be how to include these
uncertainties in climate change adaptation policies. In this section, we use the results derived from
this study to deal with ways to reduce the uncertainty of the future design rainfall intensity and to
reasonably reflect the climate change adaptation policy.

As shown in Table 3, it can be seen that unconditionally using many ensemble members does not
necessarily reduce uncertainty. If so, we will have to figure out which ensemble members to exclude.
GCMs and RCPs occupy 8 combinations out of a total of 16 combinations. In other words, excluding
one GCM or RCP from the FEA and its uncertainty estimation procedure means that half of the existing
ensemble members are lost. This was judged not to be a good way to look at the uncertain future.
Therefore, we focus on four RCMs in this study because 12 ensemble members can still be used, even if
one RCM is excluded.

As can be seen in Table 3, the number of red sites with a significant increase in FEA from ensembles
derived from applying all RCMs is 29, which means that future design rainfall intensity is significantly
higher at about 49% of the 60 sites. The remaining 31 sites are so uncertain that changes are not likely
to be significant. We believe that if we deviate from the usual belief that the same ensembles should be
applied to all sites, we can reduce the uncertainty of 31 sites individually. That is, by excluding the
ensembles derived from a particular RCM that significantly contribute to the uncertainty of a site, the
uncertainty contained in the FEA could be reduced. Since the more climate model combinations we can
use, the smaller the impact of a particular ensemble on the FEA, there is no argument that increasing
the number of climate model combinations is the most fundamental alternative to reducing uncertainty.
In reality, however, increasing the number of climate model combinations is very difficult, so excluding
specific ensemble from the ensembles available at the current level may be a more realistic alternative.
When one RCM is excluded, the number of orange sites that change to a significant increase is 13.
A total of 42 sites, combined with 29 red sites already showing a significant increase, can be designated
as sites with increased future design rainfall intensity. This accounts for 70% of all 60 sites. Figure 13
shows FEA using ensembles derived from all RCMs (Figure 13a) and FEA in configurations except for
ensembles derived from a specific RCM using the above method (Figure 13b).
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Figure 13. Significance of FEA of rates of change (duration 3 h and return period 30 years) (a) without
considering uncertainty, and (b) with considering uncertainty. The red circles mean sites where future
design rainfall intensity is higher than current design rainfall intensity, and the blue circles mean sites
that decrease. Significant changes are indicated by filled circles, and meaningless changes are marked
by empty circles. The diameter of the circle means the magnitude of the rate of change.

Figure 13a consists of 29 sites with significant increases, 26 sites with insignificant increases,
and 5 sites with no significant decreases. On the other hand, in Figure 13b, which is the result of
removing one particular RCM that causes large uncertainties, 13 sites were additionally identified
as sites that are expected to show a significant increase, and one site has been added to a site where
FEA is significantly decreased. In this way, since selective application of RCMs at each site effectively
utilizes the future climate data obtained from various climate models and at the same time reduces the
difference between the ensembles derived from various future climate data, it is expected that it will
provide more reasonable and persuasive results when establishing climate change adaptation policy.

Finally, the relationship between FEA and its uncertainty for duration and return period was
examined. First, to examine the future design rainfall intensity for duration, we plot boxplots of rates
of change by duration based on return period 30 years at the Seoul site (Figure 14a). The rate of change
for the duration was analyzed as not showing a specific pattern, but in short durations (for example,
3 h and 6 h), sites with some changes in the sign of the FEA were found. Overall, the uncertainty of
FEA in duration 3 h was larger than that of FEAs in other durations, although it was not included in
the paper. This is also confirmed by the fact that there are 3 outliers in duration 3 h at the Seoul site.
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Similar results for the return period are shown in Figure 14b. Overall, as the return period
increases, the future design rainfall intensity is likely to increase, but the uncertainty corresponding to
the FEA does not increase as much.

5. Conclusions

In this study, future IDF curves were estimated and corresponding uncertainties were quantified
using future rainfall data from various RCMs applicable to Korea. Future rainfall data were obtained
from combinations of two GCMs (MPI-ESM-LR and HadGEM2-AO) and four RCMs (MM5, WRF,
RegCM4, and RSM) based on two climate change scenarios (RCP 4.5 and 8.5). From the RCM simulation
data, data corresponding to ASOS 60 observation sites operated by KMA were extracted and the
annual maximum time series of the extracted data was bias-corrected using quantile mapping. Using
the derived future IDF curves, various FEAs of rates of change for design rainfall intensity and their
uncertainties were calculated for each site, return period, and duration.

Analyses of ensembles of rate of change derived from the same GCM showed that the future
design rainfall intensity derived from MPI-ESM-LR was estimated to be larger than that derived from
HadGEM2-AO, and the uncertainty was also larger in MPI-ESM-LR. Considering the ensembles of rate
of change derived under the same RCP climate change scenario, the future design rainfall intensity
derived from RCP 4.5 was estimated to be larger than that simulated from RCP 8.5, and the uncertainty
was also greater at RCP 4.5. However, whether the GCM or which RCP is applied does not determine
the difference in future design rainfall intensity, and very different results are obtained for each point.
Therefore, it would be meaningless to represent the future rate of change for GCM or for RCP as an
exact number. Given the realistic constraints of only two GCMs dynamically down-scaled on the
Korean Peninsula and available only on RCP 45 and 85 climate change scenarios, it was considered to
be the most feasible and realistic alternative to analyze the changes of future design rainfall intensity
using both GCMs and two RCPs rather than excluding one GCM or RCP.

As a result of estimating the rate of change and uncertainty of future design rainfall intensity
by constructing ensemble members excluding ensembles derived from one specific RCM among all
ensembles derived from all RCMs, using unconditionally many ensembles does not necessarily reduce
uncertainty. By excluding the ensembles derived from a particular RCM that contributed significantly
to site-specific uncertainties, the uncertainty involved in FEA could be reduced. Through this, it was
possible to identify a significant change in future design rainfall intensity at 43 out of 60 sites. In other
words, by selectively applying future ensembles derived from RCMs, we were able to effectively utilize
future climate data from various climate models, while at the same time mitigating the differences
between ensembles derived from various future climate data. This reduction in uncertainty is expected
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to contribute to providing clearer and more persuasive results to policymakers in developing climate
change adaptation policies.

As the return period increases, the rate of change of future design rainfall intensity increases,
but uncertainty does not appear to be significantly responsive to changes in return period. However,
as a result of analyzing FEA and its uncertainty of future design rainfall intensity for duration, the
uncertainty of future design rainfall intensity of short duration was relatively high. Therefore, it is
concluded that the future design rainfall intensity for durations below the temporal resolution of RCMs
is still limited.

This study focused on the uncertainties caused by GCMs and RCMs ensemble in future projections
of design rainfall depth. However, extreme value analysis involves very large uncertainties related
to the parameters of probability distributions resulting from small numbers of data. Due to the
uncertainties included in parameter estimation of the applied probability distribution, it may be
necessary to further discuss whether the differences between ensembles obtained from GCMs or RCMs
are statistically significant.
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