83 research outputs found

    Reflection of hydrogen and deuterium atoms from the beryllium, carbon, tungsten surfaces

    Get PDF
    Particle reflection coefficients for scattering of hydrogen and deuterium atoms from amorphous beryllium, carbon and tungsten were obtained, which are of interest for thermonuclear reactor physics. For the case of deuterium scattering from tungsten the data were also calculated for polycrystalline and crystalline target. The calculations were carried out by two methods: by modeling the trajectories of the incident particles and by using the binary collision approximation. Interaction potentials between hydrogen and helium atoms and the selected materials were calculated in the scope of the density function theory using program DMol for choosing wave functions. The dependence of the reflection coefficient RN on the potential well depth was found. The results demonstrate a good agreement with the available experimental values.Peer reviewe

    Two new bright Ae stars

    Full text link
    Two newly identified Ae stars, nu Cyg and kappa UMa, were discovered in the course of the Magnetic Survey of Bright MS stars (Monin et al. 2002). We pre sent their Halpha profiles along with measurements of their equivalent width and parameters of emission features. Emission in the Halpha line of nu Cyg is variable on a time scale of 3 years. kappa UMa exhibits weak emission which is rather stable. The emission is thought to arise from a circumstellar disk, and we have estimated the size of that disk.Both new emission stars are IRAS sources. Their IR color excesses are consistent with those of classical Ae stars. Thus, nu Cyg and kappa UMa appear not to belong to the class of Herbig Ae/Be stars. We argue that the frequency of Ae stars may be underestimated due to the difficulty of detection of weak emission in some A stars.Comment: 6 pages,3 figures, submitted to A&

    Low-Surface-Brightness Galaxies in the Sloan Digital Sky Survey. I. Search Method and Test Sample

    Full text link
    In this paper we present results of a pilot study to use imaging data from the Sloan Digital Sky Survey (SDSS) to search for low-surface-brightness (LSB) galaxies. For our pilot study we use a test sample of 92 galaxies from the catalog of Impey et al. (1996) distributed over 93 SDSS fields of the Early Data Release (EDR). Many galaxies from the test sample are either LSB or dwarf galaxies. To deal with the SDSS data most effectively a new photometry software was created, which is described in this paper. We present the results of the selection algorithms applied to these 93 EDR fields. Two galaxies from the Impey et al. test sample are very likely artifacts, as confirmed by follow-up imaging. With our algorithms, we were able to recover 87 of the 90 remaining test sample galaxies, implying a detection rate of ∼\sim96.5%. The three missed galaxies fall too close to very bright stars or galaxies. In addition, 42 new galaxies with parameters similar to the test sample objects were found in these EDR fields (i.e., ∼\sim47% additional galaxies). We present the main photometric parameters of all identified galaxies and carry out first statistical comparisons. We tested the quality of our photometry by comparing the magnitudes for our test sample galaxies and other bright galaxies with values from the literature. All these tests yielded consistent results. We briefly discuss a few unusual galaxies found in our pilot study, including an LSB galaxy with a two-component disk and ten new giant LSB galaxies.Comment: 36 pages, 16 figures, accepted for publication by AJ, some figures were bitmapped to reduce the siz

    Discovery of Eight New Extremely Metal--Poor Galaxies in the Sloan Digital Sky Survey

    Full text link
    We report the discovery of eight new extremely metal-poor galaxies (XMPGs; 12+log(O/H) < 7.65) and the recovery of four previously known or suspected XMPGs (IZw18, HS0822+3542, HS0837+4717 and A1116+517) using Sloan Digital Sky Survey (SDSS) spectroscopy. These new objects were identified after an analysis of 250,000 galaxy spectra within an area of ~3000 deg^2 on the sky. Our oxygen abundance determinations have an accuracy of ≀\le 0.1 dex and are based on the temperature-sensitive [O {\sc iii}] Ξ»\lambda4363 \AA line and on the direct calculation of the electron temperature. We briefly discuss a new method of oxygen abundance determinations using the [O {\sc ii}] Ξ»\lambda7319,7330 \AA\ lines, which is particularly useful for SDSS emission-line spectra with redshifts ≀\le~0.024 since the [O {\sc ii}] Ξ»\lambda3727 \AA emission line falls outside of the SDSS wavelength range. We detect XMPGs with redshifts ranging from 0.0005 to 0.0443 and MgM_g luminosities from βˆ’-12\fm4 to βˆ’-18\fm6. Our eight new XMPGs increase the number of known metal-deficient galaxies by approximately one quarter. The estimated surface density of XMPGs is 0.004 degβˆ’2^{-2} for rr ≀\le 17\fm77.Comment: To appear in August 20 issue of ApJ Letters, 6 pages, 2 figure

    The metallicities of UM151, UM408 and A1228+12 revisited

    Full text link
    We present the results of new spectrophotometry and heavy element abundance determinations for 3 dwarf galaxies UM151, UM408 and A1228+12 (RMB132). These galaxies have been claimed in the literature to have very low metallicities, corresponding to log(O/H)+12 < 7.65, that are in the metallicity range of some candidate local young galaxies. We present higher S/N data for these three galaxies. UM151 and UM408 have significantly larger metallicities: log(O/H)+12 = 8.5 and 7.93, respectively. For A1228+12 our new log(O/H)+12 = 7.73 is close to that recalculated from earlier data (7.68). Thus, the rederived metallicities allow us to remove these objects from the list of galaxies with Z < 1/20 Z_Sun.Comment: LaTeX, 8 pages with 3 Postscript figures, A&A in pres

    Study of DDO 68: nearest candidate for a young galaxy?

    Full text link
    We present the results of optical spectroscopy and imaging with the SAO 6m telescope for the dwarf galaxy DDO 68 (UGC 5340 = VV 542), falling into the region of very low density of luminous (L > L*) galaxies (Lynx-Cancer void). Its deep images in V,R bands and in the narrow H-alpha-filter show that the galaxy has the very irregular morphology, with a long curved tail on the South and a ring-like structure at the Northern edge. The latter consists of 5 separate regions, in three of which we could measure O/H by the classical T_e method. Their weighted mean oxygen abundance corresponds to 12+log(O/H)=7.21+-0.03, coincident within uncertainties with those for IZw18. The (V-R) colour of DDO 68 is rather blue all over the galaxy, indicating the youth of its stellar populations. Comparing the (V-R)_0 colour of the underlying exponential disk of 0.12+-0.04 with the PEGASE.2 models for the evolving stellar clusters, we give the first estimate of the ages of the oldest stellar population, which needs confirmation by the other colours and the photometry of resolved stars. These ages are in the range of 200-900 Myr for continuous star formation law, and 100-115 Myr for the instantaneous starburst. We discuss the properties and the possible youth of this nearby object (2.3 times closer than the famous young galaxy IZw18) in the context of its atypical environment.Comment: 13 pages, including 7 tables and 3 postscript figures. Accepted for publication in Astron.Astrophys. Small language corrections are made after the A&A Language Edito

    Анализ возмоТностСй практичСского использования ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ²

    Get PDF
    In recent years, discrete approaches have been widely used in mathematical modeling of physicochemical processes. Cellular automata-based methods greatly simplify modeling procedures in many cases. In particular, this is important when using models in the form of partial differential equations systems to analyze the transfer of a substance in inhomogeneous media. In some cases, it is quite difficult to set the boundary conditions correctly if the object of study has boundaries of complex shape. It is also difficult to use mathematical physics classical equations if one cannot neglect the influence of stochastic effects on the process flow. The lattice gas models considered in the article are one of the types of cellular automata. Until now they have not been widely adopted, despite the fact that the first works on their use appeared about forty years ago. It is known, however, that lattice gases successfully describe a number of hydrodynamic phenomena, and the results obtained do not contradict the generally accepted views on the physical nature of continuous media motion processes. When using models of lattice gases, there are often questions about the correctness of the use of discrete models in various flow regimes. The second problem is a large-scale transition from model discrete parameters to generally accepted macroscopic characteristics of flows, such as flow velocity, viscosity and density of the medium, etc. It is also necessary to take into account that the indicated parameters in the lattice model are dimensionless, and the corresponding real macroscopic parameters have dimension. In this paper, an attempt is made to propose a method of large-scale transition, as well as to indicate the areas of practical use of some models of lattice gases.Π’ послСдниС Π³ΠΎΠ΄Ρ‹ для матСматичСского модСлирования Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских процСссов стали ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ дискрСтныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹. Π‘Ρ€Π΅Π΄ΠΈ Π½ΠΈΡ… исслСдоватСли Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° использовании ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Ρ… матСматичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² обоснована ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… случаях ΠΎΠ½ΠΈ сущСствСнно ΡƒΠΏΡ€ΠΎΡ‰Π°ΡŽΡ‚ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ модСлирования ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π’ частности, ΠΏΡ€ΠΈ использовании ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π² Π²ΠΈΠ΄Π΅ систСм Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с частными ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ для Π°Π½Π°Π»ΠΈΠ·Π° пСрСноса субстанции, трудности Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ Π² случаях протСкания процСссов Π² Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… срСдах. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² рядС случаСв довольно ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΡƒΡŽ постановку Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… условий, Ссли ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ исслСдования ΠΈΠΌΠ΅Π΅Ρ‚ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ слоТной Ρ„ΠΎΡ€ΠΌΡ‹. Π’Π°ΠΊΠΆΠ΅ Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ классичСскиС уравнСния матСматичСской Ρ„ΠΈΠ·ΠΈΠΊΠΈ Π² условиях, ΠΊΠΎΠ³Π΄Π° Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ³Π½ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ влиянии стохастичСских эффСктов Π½Π° ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π½ΠΈΠ΅ процСсса. ДискрСтныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ€Π΅ свободны ΠΎΡ‚ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… нСдостатков. РассматриваСмыС Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ² ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· разновидностСй ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ². НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎ использованию Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π³Π°Π·ΠΎΠ² появились ΠΎΠΊΠΎΠ»ΠΎ сорока Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄, ΠΎΠ½ΠΈ Π΄ΠΎ настоящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ распространСния Π² срСдС исслСдоватСлСй СстСствСннонаучных процСссов. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ имССтся ΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π² Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π³Π°Π·Ρ‹ достаточно ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ†Π΅Π»Ρ‹ΠΉ ряд гидродинамичСских явлСний, Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π½Π΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡Π°Ρ‚ общСпринятым взглядам Π½Π° Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ процСссов двиТСния ΡΠΏΠ»ΠΎΡˆΠ½Ρ‹Ρ… срСд. НСсмотря Π½Π° появлСниС Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ количСства разновидностСй ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ², ΠΏΡ€ΠΈ ΠΈΡ… использовании часто Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ вопросы, ΠΊΠ°ΡΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² тСчСния, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… использованиС дискрСтных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½Ρ‹ΠΌ. Вторая ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰Π°Ρ ΠΏΠ΅Ρ€Π΅Π΄ исслСдоватСлями, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ, - это ΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΎΡ‚ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… дискрСтных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊ общСпринятым макроскопичСским характСристикам Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠΉ. Π—Π΄Π΅ΡΡŒ, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ Π² Π²ΠΈΠ΄Ρƒ Ρ‚Π°ΠΊΠΈΠ΅ физичСскиС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΊΠ°ΠΊ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π²ΡΠ·ΠΊΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ срСды ΠΈ ΠΏΡ€. Битуация ослоТняСтся Ρ‚Π΅ΠΌ ΠΎΠ±ΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π² Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±Π΅Π·Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ, Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ макроскопичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ дСлаСтся ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ области практичСского использования Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ²

    Π‘Π ΠΠ’ΠΠ˜Π’Π•Π›Π¬ΠΠ«Π™ ΠΠΠΠ›Π˜Π— ΠœΠ•Π’ΠžΠ”Π˜Πš Π Π•ΠΠ’Π“Π•ΠΠžΠ€Π›Π£ΠžΠ Π•Π‘Π¦Π•ΠΠ’ΠΠžΠ“Πž ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π― Π­Π›Π•ΠœΠ•ΠΠ’ΠΠžΠ“Πž Π‘ΠžΠ‘Π’ΠΠ’Π АРΠ₯Π•ΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠžΠ™ ΠšΠ•Π ΠΠœΠ˜ΠšΠ˜ Π˜Π— ΠœΠΠ›Π«Π₯ ΠΠΠ’Π•Π‘ΠžΠš

    Get PDF
    Wavelength-dispersive X-ray fluorescence analysis (WDXRF) and total-reflection X-ray fluorescence (TXRF) analysis were applied to study the elemental composition of the Late Neolithic ancient ceramics collected at the Popovsky Lug burial site (Kachug, Upper Lena river, Russia). Semi-quantitative non-destructive analysis of ceramic pieces showed that measurements of the upper and lower sides of the ceramic are less informative than the measurement of its cut. Various sample preparation techniques for the low quantity of crushed ceramics such as fusion, pressing and preparation of suspensions were compared to preserve the material. Samples were prepared as 150 mg fused beads and 250 mg pressed pellets for WDXRF, and as suspensions of 20 mg sample based on the aqueous solution of the Triton X-100 surfactant for TXRF. Certified methods were used to validate the obtained contents of rock-forming oxides and inductively coupled plasma mass spectrometry was used to confirm the results of trace elements determination. Based on the carried-out studies, a combination of the wavelength-dispersive X-ray fluorescence analysis (glass) and total-reflection X-ray fluorescence analysis (suspension) methods was chosen to obtain the data on the elemental bulk composition of archaeological ceramics. The proposed combination allowed the quantitative determination of Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Ba from the sample of crushed ceramics weighing only about 170 mg.Keywords: wavelength-dispersive X-ray fluorescence analysis, total reflection X-ray fluorescence analysis, ceramics, archeology, Popovsky Lug, Upper Lena RiverΒ DOI: http://dx.doi.org/10.15826/analitika.2020.25.1.001Β G.V. Pashkova1,2, M.M. Mukhamedova1,2, V.M. Chubarov1,3, A.S. Maltsev1,4,A.A. Amosova3, E.I. Demonterova1, E.A. Mikheeva1, D.L. Shergin1,2,5, V.A. Pellinen1, A.V. Teten'kin1,4Β 1Institute of the Eatrh’s Crust, SB RAS, 128 Lermontov St., 640033, Irkutsk, Russian Federation2Irkutsk State University, 1 K. Marx St., 664003, Irkutsk, Russian Federation3Vinogradov Institute of Geochemistry, SB RAS, 1А Favorsky st., 664033, Irkutsk, Russian Federation4Irkutsk National Research Technical University, 83 Lermontov st., 664074, Irkutsk, Russian Federation5Irkutsk Regional Museum of Local Lore; 13 K. Marx st., 664003, Irkutsk, Russian FederationДля изучСния элСмСнтного состава Π΄Ρ€Π΅Π²Π½Π΅ΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ эпохи ΠΏΠΎΠ·Π΄Π½Π΅Π³ΠΎ Π½Π΅ΠΎΠ»ΠΈΡ‚Π° стоянки-могильника Поповский Π›ΡƒΠ³ (Ρ€Π°ΠΉΠΎΠ½ посСлка ΠšΠ°Ρ‡ΡƒΠ³, Π²Π΅Ρ€Ρ…ΠΎΠ²ΡŒΠ΅ Ρ€Π΅ΠΊΠΈ Π›Π΅Π½Ρ‹, Россия) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° рСнтгСнофлуорСсцСнтного Π°Π½Π°Π»ΠΈΠ·Π°: Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ диспСрсиСй (WDXRF) ΠΈ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с ΠΏΠΎΠ»Π½Ρ‹ΠΌ внСшним ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ (TXRF). ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎ-количСствСнный Π°Π½Π°Π»ΠΈΠ· Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ измСрСния внСшнСй ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ΠΌ Π΅Π΅ срСза. Апробированы способы ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΎΠ±, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π° Π°Π½Π°Π»ΠΈΠ· ΠΌΠ°Π»Ρ‹Ρ… навСсок ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Ρ†Π΅Π»ΡŒΡŽ сохранСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°: сплавлСниС, прСссованиС ΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ суспСнзий. Для WDXRF ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΠΈ Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ»ΠΈ Π² Π²ΠΈΠ΄Π΅ сплавлСнных стСкол ΠΈΠ· 150 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Π²ΠΈΠ΄Π΅ прСссованных Ρ‚Π°Π±Π»Π΅Ρ‚ΠΎΠΊ ΠΈΠ· 250 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹. Для провСдСния TXRF использовали суспСнзии ΠΈΠ· 20 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹ Π½Π° основС Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ вСщСства Triton X-100. Π’ качСствС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ сравнСния ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ΄ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… оксидов примСняли аттСстованныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ количСствСнного химичСского Π°Π½Π°Π»ΠΈΠ·Π°, ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ микроэлСмСнтов – ΠΌΠ΅Ρ‚ΠΎΠ΄ масс-спСктромСтрии с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ-связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ для получСния Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± элСмСнтном Π²Π°Π»ΠΎΠ²ΠΎΠΌ составС архСологичСской ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ использованиС ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² WDXRF (стСкло) ΠΈ TXRF (суспСнзия). ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ схСма позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ количСствСнноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb ΠΈ Ba ΠΈΠ· навСски ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ массой ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 170 ΠΌΠ³.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ диспСрсиСй, рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с ΠΏΠΎΠ»Π½Ρ‹ΠΌ внСшним ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠ°, архСология, Поповский Π›ΡƒΠ³, ВСрхняя Π›Π΅Π½Π°DOI: http://dx.doi.org/10.15826/analitika.2020.25.1.00

    Comparative analysis of X-ray fluorescence methods for elemental composition determination of the archaeological ceramics from low sample quantity

    Full text link
    Для изучСния элСмСнтного состава Π΄Ρ€Π΅Π²Π½Π΅ΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ эпохи ΠΏΠΎΠ·Π΄Π½Π΅Π³ΠΎ Π½Π΅ΠΎΠ»ΠΈΡ‚Π° стоянки-могильника Поповский Π›ΡƒΠ³ (Ρ€Π°ΠΉΠΎΠ½ посСлка ΠšΠ°Ρ‡ΡƒΠ³, Π²Π΅Ρ€Ρ…ΠΎΠ²ΡŒΠ΅ Ρ€Π΅ΠΊΠΈ Π›Π΅Π½Ρ‹, Россия) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° рСнтгСнофлуорСсцСнтного Π°Π½Π°Π»ΠΈΠ·Π°: Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ диспСрсиСй (WDXRF) ΠΈ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с ΠΏΠΎΠ»Π½Ρ‹ΠΌ внСшним ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ (TXRF). ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎ-количСствСнный Π°Π½Π°Π»ΠΈΠ· Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ измСрСния внСшнСй ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ΠΌ Π΅Π΅ срСза. Апробированы способы ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΎΠ±, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π° Π°Π½Π°Π»ΠΈΠ· ΠΌΠ°Π»Ρ‹Ρ… навСсок ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Ρ†Π΅Π»ΡŒΡŽ сохранСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°: сплавлСниС, прСссованиС ΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ суспСнзий. Для WDXRF ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΠΈ Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ»ΠΈ Π² Π²ΠΈΠ΄Π΅ сплавлСнных стСкол ΠΈΠ· 150 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Π²ΠΈΠ΄Π΅ прСссованных Ρ‚Π°Π±Π»Π΅Ρ‚ΠΎΠΊ ΠΈΠ· 250 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹. Для провСдСния TXRF использовали суспСнзии ΠΈΠ· 20 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹ Π½Π° основС Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ вСщСства Triton X-100. Π’ качСствС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ сравнСния ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ΄ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… оксидов примСняли аттСстованныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ количСствСнного химичСского Π°Π½Π°Π»ΠΈΠ·Π°, ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ микроэлСмСнтов – ΠΌΠ΅Ρ‚ΠΎΠ΄ масс-спСктромСтрии с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ-связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ для получСния Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± элСмСнтном Π²Π°Π»ΠΎΠ²ΠΎΠΌ составС архСологичСской ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ использованиС ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² WDXRF (стСкло) ΠΈ TXRF (суспСнзия). ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ схСма позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ количСствСнноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb ΠΈ Ba ΠΈΠ· навСски ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ массой ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 170 ΠΌΠ³.Wavelength-dispersive X-ray fluorescence analysis (WDXRF) and total-reflection X-ray fluorescence (TXRF) analysis were applied to study the elemental composition of the Late Neolithic ancient ceramics collected at the Popovsky Lug burial site (Kachug, Upper Lena river, Russia). Semi-quantitative non-destructive analysis of ceramic pieces showed that measurements of the upper and lower sides of the ceramic are less informative than the measurement of its cut. Various sample preparation techniques for the low quantity of crushed ceramics such as fusion, pressing and preparation of suspensions were compared to preserve the material. Samples were prepared as 150 mg fused beads and 250 mg pressed pellets for WDXRF, and as suspensions of 20 mg sample based on the aqueous solution of the Triton X-100 surfactant for TXRF. Certified methods were used to validate the obtained contents of rock-forming oxides and inductively coupled plasma mass spectrometry was used to confirm the results of trace elements determination. Based on the carried-out studies, a combination of the wavelength-dispersive X-ray fluorescence analysis (glass) and total-reflection X-ray fluorescence analysis (suspension) methods was chosen to obtain the data on the elemental bulk composition of archaeological ceramics. The proposed combination allowed the quantitative determination of Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Ba from the sample of crushed ceramics weighing only about 170 mg.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ финансовой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Π³Ρ€Π°Π½Ρ‚Π° РНЀ β„– 19-78-10084. ВсС измСрСния ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с использованиСм оборудования Π¦Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ пользования Β«Π˜Π·ΠΎΡ‚ΠΎΠΏΠ½ΠΎ-гСохимичСских исслСдований» Π˜Π“Π₯ БО РАН ΠΈ Β«Π“Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΈ гСохронология» Π˜Π—Πš БО РАН. Авторы Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Π²Π΅Π΄ΡƒΡ‰Π΅ΠΌΡƒ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Ρƒ Π˜Π—Πš БО РАН Π‘.Π’. ΠŸΠ°Π½Ρ‚Π΅Π΅Π²ΠΎΠΉ Π·Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ICP-MS Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΈ Π²Π΅Π΄ΡƒΡ‰Π΅ΠΌΡƒ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Ρƒ Π˜Π“Π₯ БО РАН Π“.А. ΠŸΠΎΠ³ΡƒΠ΄ΠΈΠ½ΠΎΠΉ Π·Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ€ΠΎΠ΄ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… оксидов Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ.Current work was carried out with the financial support of the Russian Science Foundation (grant No. 19-78-10084). All measurements were performed using the equipment of β€œIsotope-Geochemical Research” and β€œGeodynamics and Geochronology” Joint Use Centers of the Siberian Branch of the Russian Academy of Sciences. The authors are grateful to Svetlana Panteeva for ICPMS analysis and Galina Pogudina for the determination of rock-forming oxides in ceramic samples
    • …
    corecore