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Abstract—This paper proposes a novel multi-objective opti-
misation approach to solving both the problem of finding good
structural and parametric choices in an ANN and the problem
of training a classifier with a heavily skewed data set. The
state-of-the-art CMA-PAES-HAGA multi-objective evolutionary
algorithm [41] is used to simultaneously optimise the structure,
weights, and biases of a population of ANNs with respect to
not only the overall classification accuracy, but the classification
accuracies of each individual target class. The effectiveness of this
approach is then demonstrated on a real-world multi-class prob-
lem in medical diagnosis (classification of fetal cardiotocogorams)
where more than 75% of the data belongs to the majority class
and the rest to two other minority classes. The optimised ANN is
shown to significantly outperform a standard feed-forward ANN
with respect to minority class recognition at the cost of slightly
worse performance in terms of overall classification accuracy.

I. INTRODUCTION

The performance of classification techniques on complex
multi-class real-world problems is often reduced to a single
performance metric such as classification accuracy. However,
overall classification accuracy can be a problematic perfor-
mance metric — particularly in the classification of imbalanced
data sets (commonly found in machine learning problems and
particularly those in the medical domain). This is because over-
all classification accuracy assumes that the misclassification
cost for each target class is equal (whereas in reality this in
unlikely to be the case). This is further complicated in multi-
class classification problems where more robust performance
metrics such as the area under the receiver operator character-
istics curve cannot easily be applied.

Another issue in the design of classifiers is finding both
the optimal architecture and parameters — something that has
a significant effect on classification performance. Whilst many
local search techniques exist for refining weights and biases,
e.g. in an artificial neural network (ANN), they are all prone to
premature convergence to local optima. There also exists very
little guidance in the literature as to how to choose the structure
of an ANN (in terms of both the number of hidden layers and
the number of neurons in those hidden layers). In recent years
there has been increasing interest in addressing this problem
of finding optimal ANN topologies and parameters through

evolutionary methods, but most implementations of evolution-
ary artificial neural networks (EANNs) focus on optimising a
single performance objective rather than considering potential
trade-offs between the performance of the classifier on multiple
target classes.

The purpose of this paper is to introduce a novel multi-
objective optimisation approach to the design of ANN classi-
fiers based around the state-of-the-art Covariance Matrix Adap-
tation Pareto Archieved Evolution Strategy with Hypervolume
sorted Adaptive Grid Algorithm (CMA-PAES-HAGA). This
novel multi-objective approach not only addresses the problem
of choosing optimal ANN topologies and parameters but, by
considering trade-offs in classification performance between
multiple target classes, also addresses the problems associated
with class imbalance.

The paper is organised as follows: Section II provides a
brief introduction to ANNs, evolutionary multi-objective opti-
misation (EMO) algorithms and decision support in optimisa-
tion, followed by Section III which introduces the CMA-PAES-
HAGA and outline its use in the structural and parametric
optimisation of ANNs. Section IV will outline the ANN design
problem considered in this paper, how this ANN is applied
to the detection of anomalies in fetal cardiotocograms, and
how the classification can be improved by using the proposed
evolutionary multi-objective approach to ANN optimisation.
Finally, Section V will present some conclusions drawn from
this work.

II. BACKGROUND

A. Artificial neural networks

ANNs have been widely used in solving real-world classifi-
cation problems in a variety of application domains. ANNs use
a set of interconnected data processing nodes with associated
weights and biases that are capable of being tuned by some
learning algorithm to capture highly complex and nonlinear re-
lationships between both dependent and independent variables
with prior knowledge [47].

Unlike many other classification methods, ANNs are sim-
ple to apply to both multi-class and binary classification
problems. Other commonly used classification techniques such
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as support vector machines (SVMs) and logistic regression
require the use of complex multi-class strategies such as one-
vs-all or all-vs-all to extend the binary classification to the
multi-class case [39]. In feed-forward multilayer perceptrons
it is just a case of defining the number of output neurons equal
to the number of classes that the problem considers.

One disadvantage of applying ANNs to classification prob-
lems is the difficulty in optimising the weights and biases of
the network, and also selecting appropriate network topologies
in the first place — both of which have substantial impact on
the performance of the ANN and are highly problem dependent
[25]. Gradient descent based back-propagation methods are
commonly used in the training process to adjust the weights
and biases of the interconnected artificial neurons so as to min-
imise some error function, but these can be prone to premature
convergence to local optima [24]. In addition to this, selecting
the appropriate ANN structure is somewhat of a “black-art”,
with little definitive guidance in the literature [9], [10]. The
network structure must be sufficiently complex to capture the
underlying relationships between variables, but not so complex
that over-fitting to the training data becomes a problem. Some
authors have proposed strategies for dynamically growing the
ANN structure as part of the training process [6], whilst others
have proposed pruning the network [38]. However, both of
these approaches add substantial complexity to the training
process, resulting in much slower convergence, and tend to be
gradient descent based and therefore prone to being trapped in
local minima [21].

Over the last two decades, there has been increasing interest
in the use of EANNs which are capable of addressing some
of the above shortcomings. EANNs can be configured for
structural learning (evolving the number and size of the hidden
layers in the network) or parametric learning (optimising the
weights and biases within the network) [49]. More recently,
algorithms which evolve both the weights and the structure of
an ANN, such as the NeuroEvolution of Augmenting Topolo-
gies (NEAT) [45], have shown promise in solving function
approximation problems. However, these approaches tend to
focus on optimising a single performance metric rather than
taking into account any potential trade-offs between classifi-
cation objectives. Stanley and Miikulainen [45] apply NEAT
to the problem of double pole balancing and use the number
of time steps that the pole remains balanced as the fitness.
Other authors have applied NEAT to classification tasks [12]
using fitness functions based around the overall classification
accuracy.

Whilst some studies into multi-objective EANNs do ex-
ist, they primarily focus on the trade-offs between classifier
performance and structural complexity [1], [2] rather than
considering the trade-offs between the classification accuracy
of different classes separately. Caballero et al. [21] proposes
a multi-objective approach to evolving ANNs for multi-class
problems based around NSGA-II [15]. However, instead of
considering each class as an optimisation objective, they focus
on the trade-off between overall classification accuracy and
sensitivity.

Everson and Fieldsend [18] have proposed an interesting
multi-objective optimisation approach based around the Pareto
archived evolution strategy (PAES) algorithm [32] to gener-
alise receiver operator characteristic (ROC) curves to multi-

class classification problems. Although not an EANN, this
method does consider the different trade-offs between multiple
classification objectives in a multi-class problem. However,
they note that the dimensionality of this comparison increases
rapidly with the number of objectives considered (for example,
a classification problem with 3 target classes will require
consideration of 6 dimensions due to the need to consider both
sensitivity and specificity for each class). Other research into
multi-objective optimisation has shown that, as the number of
objectives in a multi-objective optimisation problem increases,
the effectiveness of Pareto-ranking based optimisation methods
decreases because candidate solutions are more likely to be
non-dominated in one or more problem objectives [30].

B. Class imbalance

It is common in many machine learning problems, partic-
ularly those in the medical domain, for there to be significant
differences in the prior class probabilities (i.e. class imbal-
ances) [29], [46], [48]. This class imbalance problem often
causes significant issues for classifiers, with the probability
of a sample being assigned to the majority class often being
overstated [46]. Imbalanced data sets have been shown to
significantly compromise the performance of most commonly
used classification learning algorithms [46].

Over the last decade or so there has been much interest in
addressing this class imbalance problem. Current state-of-the-
art techniques primarily fall into three categories [22]:

• Algorithmic modifications that aim to bias the learn-
ing towards the minority class (such as those proposed
in [33]).

• Data sampling and augmentation strategies that aim
to rebalance class distributions by resampling the data
set (such as those proposed in [11] and [28]).

• Cost sensitive learning approaches where an a priori
set of misclassification costs is incorporated into the
classifier (see [17] and [50] for examples).

Out of these three approaches, resampling the data set
to rebalance the classes is the only one that doesn’t require
extensive problem specific knowledge that may not be readily
available (such as the costs of misclassification). However,
many of the resampling and data augmentation techniques
that have been proven to be effective for binary classification
problems (such as SMOTE [11] and ADASYN [28]) can
actually impair classifier performance when applied to multi-
class problems [3]. Some research into resampling techniques
for multi-class problems does exist [20], [3], but the majority
of experimental results only consider low dimensional data
sets.

C. Multi-objective optimisation using evolutionary algorithms

Many real-world optimisation problems involve the satis-
faction of multiple conflicting objectives. This general form
can be described by a vector f consisting of m objective
functions and a corresponding set of decision variables x, as
shown in (1).

min f (x) = ( f1(x), . . . , fm(x)) (1)



In the case of conflicting objectives, there is unlikely to
be a single ideal solution. Instead, the solution to this kind
of multi-objective optimisation problem leads to a family of
Pareto optimal points, where any improvement in the value of
one objective function will result in the degradation of one or
more of the other objective functions.

A set of non-dominated solutions1 generated by an opti-
misation algorithm is known as an approximation set [51].
The quality of the solutions in this approximation set can
be characterised by the proximity of solutions to the true
Pareto front, the diversity of the solutions in terms of both
the extent across the true Pareto front and the uniformity of
the distribution of solutions, and the pertinence of the solutions
to the decision maker’s preferences [37]. These measures are
illustrated graphically in Figure 1.
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Fig. 1: A graphical representation of approximation set quality

Conventional multi-objective optimisation techniques often
fail to satisfy all these quality measures. For example, the
goal-attainment method [23] and the weighted-sum method
[31] both only provide a single solution to the optimisation
problem, failing to provide a diverse distribution of solutions
across the true Pareto front. However, evolutionary algorithms
(EAs) are well suited to the multi-objective optimisation of
conflicting objectives because they search a population of can-
didate solutions [14] and are therefore capable of maintaining
diversity in the approximation set throughout the optimisation
process.

Other advantages of EAs include the stochastic nature of
the optimisation process and the use of objective function pay-
off information directly (rather than derivative information or
other auxiliary knowledge) which help to ensure the robustness
of EAs by reducing the chances of becoming trapped in local
optima. This, in conjunction with the greater amount of infor-
mation about the fitness landscape contained in a population
of solutions, ensures that EAs are applicable to many areas in
which conventional optimisation methods struggle.

Real-world applications of optimisation, particularly in the
fields of medical decision making and bioinformatics, often
require a larger number of objectives to be dealt with than
is typically considered in the EMO literature, leading to
a growing interest amongst the research community in the

1I.e. those solutions where there is no other solution in the population that
is superior in all objectives

area of many-objective optimisation2. The increased number
of objectives in many-objective optimisation problems often
mean that the trade-off surface contains a significant number
of solutions that, whilst non-dominated with respect to the
other solutions in the approximation set, are of no interest
to a potential decision maker [37]. However, much of the
time a potential decision maker may not be aware of what
potential trade-offs exist until the optimisation process starts
and therefore is not able to articulate any preferences a
priori. It is therefore increasingly important that the optimiser
is capable of presenting a diverse approximation set to the
decision maker that captures as much of the trade-off surface
as possible.

III. AN EVOLUTION STRATEGY FOR ARTIFICIAL NEURAL
NETWORK OPTIMISATION

The optimisation algorithm employed for this experiment is
the Covariance Matrix Adaptation Pareto Archived Evolution
Strategy with Hypervolume-sorted Adaptive Grid Algorithm
(CMA-PAES-HAGA) [41]. This algorithm incorporates the
problem space exploration of Covariance Matrix Adaption
[27], and a selection mechanism based on the hypervolume
indicator by means of a fast and approximated algorithm [42].
This combination allows CMA-PAES-HAGA to maintain a
diverse population of solutions from iteration to iteration of
the optimisation process whilst using variation operators to
converge towards the theoretical optima of the problem, i.e.
the true Pareto-optimal front.

The result is an algorithm which can produce an approxi-
mation set consisting of solutions, in this case trained ANNs,
which offer a range of trade-offs in terms of the considered
problem objectives. This allows the expert to act as a decision
maker and make an informed decision as to which ANN
offers suitable performance for the application, instead of using
assumptions and making decisions for them.

All the details regarding CMA-PAES-HAGA are reported
in [41], however for the sake of clarity the pseudo-code
describing the working principles of CMA-PAES-HAGA has
been presented in Algorithm 1.

The algorithm parameters used for this experiment were:
number of problem objectives M = 4, number of problem
variables V = 989, parent population size µ = 50, and an
offspring population size λ = 50 (CMA-PAES-HAGA rec-
ommends small population sizes. The smallest number of
grid divisions possible in CMA-PAES-HAGA, δ = 2, was
selected as the population size and number of objectives are
not large enough to result in infeasible computational time
when calculating the hypervolume indicator. The optimisation
process was restricted to a maximum of 10,000 function
evaluations, i.e. ANN evaluations.

Before using CMA-PAES-HAGA for the optimisation
process, the data-set was subjected to Principal Component
Analysis (PCA) to reduce the number of data attributes, and
therefore the number of variables which were to be considered
throughout the optimisation process. The fraction of variance

2The phrase many-objective has been suggested in the operations research
(OR) community to refer to problems with more than the standard two or
three objectives [19].



Algorithm 1 CMA-PAES-HAGA execution cycle

1: // initialise the generation counter and extreme values
2: // vector
3: g← 0
4: E← 〈ε1 = 0,ε2 = 0, . . . ,εM = 0〉
5: // initialise parent population, where V contains the
6: // solutions in the search space and X contains the
7: // vectors of objective values
8: initialise parent population X , V
9: while termination criteria not met do

10: for n = 1, ...,λ do
11: // variation of solutions
12: V

′
n←Vn

13: V
′
n←V

′
n +σn ·N (0,Cn)

14: // check solution is within bounds
15: if v(L)i � v

′
in � v(U)

i then

16: v
′
in =

{
v(U)

i if v
′
in > v(U)

i

v(L)i otherwise
17: end if
18: end for
19: // evaluate solution and update extreme values
20: X

′
n← f (V

′
n)

21: X∗ = X ∪X
′

22: for m = 1, ...,M do

23: εm =

{
x∗mn if x∗mn > εm

εm otherwise
24: end for
25: // selection routine as in [41]
26: X ,V ← HypervolumeSortedAGA(X∗, E)
27: // variation routine as in [27]
28: CMAParameterUpdate()
29: g← g+1
30: end while

contribution was set to 0.02, which reduced the data-set from
consisting of 21 attributes to only 12. One of the key benefits
of this dimensionality reduction is reducing overfitting in the
classifier design - though care must be taken in reducing the
problem dimensions as there is a trade-off between reducing
the network size (and therefore reducing chances of overfitting)
vs increasing chance of removing potentially distinguishing
features that just happen to have low variance.

IV. DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR
AUTOMATED ANALYSIS OF CARDIOTOCOGRAMS

A. Problem description

Complications during childbirth accounted for 256 peri-
natal deaths in the UK in 2014 [35] and, in more than half
of these cases, improvements in care have been identified
that may have made a difference to the outcome [16]. One
area of criticism that has been repeatedly highlighted is the
failure to correctly interpret fetal heart rate traces [40], [16].
Several studies [7], [36] have drawn attention to the poor repro-
ducibility in the visual analysis of intrapartum cardiotocograms
(CTGs), with Alfirevic et al. [4] suggesting that fetal CTG
monitoring is more likely to increase the rate of caesarean
delivery rather than improve clinical outcomes.

Several automated systems exist for the analysis of car-
diotocograms [13], [5], [34], [8]. However, whilst these reduce

the subjectiveness of the visual analysis of the CTG data, they
still require expert analysis by obstetricians to interpret the
values produced by the systems. To this end, a decision support
system capable of providing automated analysis of these data
sets may help to improve the standards of care within maternity
units and labour wards.

Ayres-de-Campos et al. [8] collected fetal CTG data from
2126 births and automatically processed this data into 21
attributes using SisPorto. This data was then classified by
three expert obstetricians, and a consensual classification label
assigned to each sample corresponding to fetal state (either
normal, suspect, or pathological).

A particular challenge in applying classifiers to this data
set is that not only does it involve considering multiple classes,
but also that the data set is heavily imbalanced — with 1655
instances of normal CTG results, 295 instances of suspect CTG
results, and 176 instances of pathological CTG results. As
mentioned in Section II-B imbalanced data sets, and partic-
ularly those with multiple classes, introduce many difficulties
in the training of machine learning algorithms [50]. This is
compounded by the fact that many of the data augmentation
techniques that are effective in binary classification problems
can do more harm than good when applied to multi-class
problems [3].

The multi-objective approach to evolving ANNs discussed
in this paper overcomes the class imbalance problem by
focussing on the simultaneous optimisation of classification
accuracies for each class. This approach means that no assump-
tions about misclassification costs for each class are necessary,
and information about the trade-offs between classification
objectives is presented to the decision maker.

B. Encoding the problem

In order to use an EA for the optimisation of ANN
classifier’s weights, biases, and topology, the problem must
first be encoded into a real-valued chromosome. Solutions to
the problem will then adhere to this chromosome structure,
which is iteratively subjected to search and variation operators
throughout the optimisation process, before being decoded for
evaluation. Figure 2 illustrates the chromosome structure used
to store the problem variables for the problem. This encoding
supports an ANN with 3 output neurons, a maximum of 2
hidden layers, and 12 input neurons.

Parameter boundaries are also required to restrict the num-
ber of hidden layers, neurons per hidden layer, and ranges for
the weights and biases within a lower and upper limit. All
hidden layers but the last can contain a number of neurons
ranging from none to twice the number of input neurons as
seen in Equation 2, and the last hidden layer must contain a
minimum of neurons equal to the number of input neurons
as seen in Equation 3. This means each candidate network
generated by the optimiser must have at least one hidden layer,
preventing the generation of benign networks which would
waste function evaluations throughout the entire optimisation
process. Finally, each weight or bias is restricted to the same
boundary shown in Equation 4.

b(1...(HL−1)) = {x ∈ Z | 0≤ x≤ 2i} (2)



HL1.NEURONS
Variables: 1

HL2.NEURONS
Variables: 1

IL.WEIGHTS
Variables: 288

HL1.WEIGHTS
Variables: 576

HL2.WEIGHTS
Variables: 72

HL1.BIAS
Variables: 24

HL2.BIAS
Variables: 24

OL.BIAS
Variables: 3

Fig. 2: Encoded chromosome for the three-objective ANN
consisting of a maximum of 2 hidden layers (HL), input layer
(IL), 3 neurons on the output layer (OL), and associated biases,
totalling to 989 variables.

b(HL) = {x ∈ Z | i≤ x≤ 2i} (3)

w = {x ∈ R | −5≤ x≤ 5} (4)

The algorithmic approach for generating the parameter
boundaries which solutions must adhere to has been taken from
[44]. This algorithm requires an input of the maximum number
of hidden layers, minimum number of neurons per hidden layer
(typically set to the number of input neurons), and the number
of output neurons.

For the ANN encoding used in this paper, each candidate
solution contains 989 variables, with the first 2 variables
defining the number of hidden layers and the number of
neurons on each respectively, the following 288 variables
defining the weights for the input layer, the following 576 for
the first hidden layer, and the following 72 for the second and
final hidden layer. The remainder of the variables are used to
store the biases associated with these layers.

Regardless of the ANN topology of each candidate solution
(defined by the first two genes of the encoded chromosome) the
solutions chromosome will still store all 989 genes, including
weights and biases which are not used to configure a particular
solutions ANN. These unused variables will remain unex-
pressed in the phenotype until the first two genes allow them
to manifest. Genes can remain dormant for many generations
before they are activated, which introduces the interesting
feature of atavism3 into this problem.

At each function evaluation, a chromosome is decoded
from its encoded state described in Figure 2 and used to
instantiate an ANN. This ANN is then used to classify the
training data and the objective information is extracted and
used to assess the chromosome’s fitness based on the ANN
result set. The algorithm used to decode a chromosome which
conforms to the encoded structure has been taken from [44].

C. Optimisation results and discussion

The ANN encoding described in Section IV-B was opti-
mised using the CMA-PAES-HAGA algorithm described in
Section III and the performance evaluated using the objectives

3“Atavism is the tendency to revert to ancestral type. In biology, an atavism
is an evolutionary throwback, such as traits reappearing which had disappeared
generations before.”

shown in Table I. These objectives represent the classification
accuracies for each of the three classes considered in this
problem and the overall classification accuracy. Note that
these have been converted into minimisation objectives for the
purpose of optimisation. As highlighted in Section IV-A, a
particular challenge in designing a classifier for this data set
is the extreme class imbalance (with more than three quarters
of the data set classed as normal).

TABLE I: Performance objectives
Objective 1 Classification accuracy for normal fetal state
Objective 2 Classification accuracy for suspect fetal state
Objective 3 Classification accuracy for pathological fetal state
Objective 4 Overall classification accuracy

The performance of the optimised classifier is compared
with a standard feed-forward multilayer perceptron, a support
vector machine classifier with RBF kernel, and a Random
Forests classifier. Results presented in [43] have shown that,
for the two class version of this problem (i.e. distinguishing
normal fetal states from pathological fetal states), the perfor-
mance of SVM and Random Forests was comparable (with
Random Forests obtaining slightly better results). Standard
feed-forward multilayer perceptron results (with some manual
tuning of the ANN topology) are also shown here as a point
of comparison with the completely automated multi-objective
optimisation of both weights and topology performed by the
CMA-PAES-HAGA algorithm.

Figure 3 presents the confusion matrix for the standard
feed-forward multilayer perceptron classifier, figure 4 presents
the confusion matrix for the support vector machine classifier,
and figure 5 presents the confusion matrix for the Random
Forests classifier. Table II presents a summary of the perfor-
mance of each of these classifiers in terms of both the overall
accuracy and the M score (equivalent to the multi-class area
under the ROC curve) calculated using the multi-class receiver
operator characteristics curve approach from [26].
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Fig. 3: Confusion matrix for the feed-forward multilayer
perceptron ANN

Figure 6 shows a parallel coordinates plot of the trade-
off surface of this classification problem. It can be seen that
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Fig. 4: Confusion matrix for the support vector machine
classifier with RBF kernel
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Fig. 5: Confusion matrix for the Random Forests classifier

there is a clear trade-off between objective 1 (classification
accuracy of the normal fetal state) and objective 2 (classifi-
cation accuracy of the suspect fetal state). Presenting the full
trade-off surface (as in Figure 6) to a decision maker means
that no a priori decisions have to be made about the costs
of misclassification for each objective. In medical diagnosis,
the costs of misclassification of each class are usually not
equal — frequently the cost of misclassifying a sample from a
minority class (representing an abnormality) as a majority class
sample (representing the normal case) is highly expensive (for
example, a patient may miss the opportunity for prompt and
life saving treatment) [48].

TABLE II: Comparison of classification approaches

Feed-forward
multilayer
perceptron

Support vector
machine

Random
Forests
classifier

Accuracy 90.4% 91.5% 94.4%
M score 0.894 0.875 0.901
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Fig. 6: Parallel coordinate plot of problem trade-off surface at
the end of the optimisation process

The 50 candidate ANNs produced by the CMA-PAES-
HAGA algorithm have also been evaluated using the multi-
class M score from [26]. This resulted in a best M value of
0.913, a median M value of 0.911, and a standard deviation
of 0.002. This indicates that the classifiers trained using the
CMA-PAES-HAGA algorithm exhibit somewhat better dis-
crimination compared to the benchmark classifiers shown in
Table II and are more robust to the decision criteria used for
deciding which class a sample belongs to. Figure 7 shows
the confusion matrix for the best discriminating optimised
classifier.

Comparing Figures 3, 4, and 5 to Figure 7 shows that
whilst the other classifiers obtain a higher overall classification
accuracy (90.4%, 91.5%, and 94.4% compared to 87.0% for
the optimised ANN), the CMA-PAES-HAGA trained ANN ob-
tains significantly better accuracy with respect to minority class
recognition. It can be seen from Figures 3, 4, 5, and 7 that,
although the misclassification rate of the normal class using
the optimised multi-objective classifier is 12.9% compared to
3.7% for the standard feed-forward ANN, 2.2% for the support
vector machine classifier, and 1.9% for the Random Forests
classifier, the misclassification rates for the suspect class is
significantly better using the CMA-PAES-HAGA trained ANN
classifier (12.9% vs 34.2%, 34.2%, and 23.1%). Performance
of the CMA-PAES-HAGA trained ANN classifier is signifi-
cantly better than that of the standard multilayer perceptron
and the support vector machine classifier for the pathological
class (14.8% vs 23.9% and 24.4%), and roughly similar to
that of the Random Forests classifier (14.8% vs 10.8%) with
the CMA-PAES-HAGA trained ANN classifier less likely to
mistake the pathological state for the normal fetal state but
more likely to identify it as a suspect fetal state.

V. CONCLUSIONS

In this paper a novel method of optimising both the
structure and parameters of an ANN using the state-of-the-art
CMA-PAES-HAGA optimiser has been proposed. By using
a multi-objective approach to considering trade-offs between
the classification accuracies of each class in a multi-class
classification problem, issues with class imbalance are ad-
dressed without the need for a priori integration of problem
specific knowledge such as misclassification costs. The multi-
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Fig. 7: Confusion matrix for the optimised multi-objective
ANN

objective consideration of trade-offs between the accuracy of
classification for each class in a problem means that there is
no benefit in a classifier design inclining towards classifying
the majority class correctly at the cost of mis-classifying one
or more minority classes.

The multi-objective ANN optimisation approach proposed
in this paper has been applied to the development of a
decision support tool for the automated analysis of fetal
cardiotocograms. A particular challenge in training classifiers
with the data set used in this study is the extreme class
imbalance, with more than 75% of the data belonging to the
normal class. In this paper it is shown that, by handling the
classification accuracies in a multi-objective way, it is possible
to significantly improve minority class recognition for both
the minority classes in this data set at the cost of slightly
worse performance in terms of overall classification accuracy.
This multi-objective approach has the added benefit that no a
priori decisions have to be made about misclassification costs
and the decision maker is presented with a number of trained
ANNs with trade-offs that are well distributed across the Pareto
front. The decision maker can then select an optimised solution
which balances the number of false alarms with the number
of cases where problems are missed.
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