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Multi-objective Evolutionary Design of Robust Controllers on the Grid

Alex Shenfielda,∗, Peter J. Flemingb

aSchool of Engineering, Manchester Metropolitan University, Manchester, M1 5JD, UK
bDepartment of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK

Abstract

Coupling conventional controller design methods, model based controller synthesis and simulation, and multi-objective
evolutionary optimisation methods frequently results in an extremely computationally expensive design process. How-
ever, the emerging paradigm of grid computing provides a powerful platform for the solution of such problems by
providing transparent access to large-scale distributed high-performance compute resources. As well as substantially
speeding up the time taken to find a single controller design satisfying a set of performance requirements this grid-
enabled design process allows a designer to effectively explore the solution space of potential candidate solutions. An
example of this is in the multi-objective evolutionary design of robust controllers, where each candidate controller design
has to be synthesised and the resulting performance of the compensated system evaluated by computer simulation. This
paper introduces a grid-enabled framework for the multi-objective optimisation of computationally expensive problems
which will then be demonstrated using and example of the multi-objective evolutionary design of a robust lateral stability
controller for a real-world aircraft using H∞ loop shaping.

Keywords: Aerospace Stability Control, H∞ Controller Design, Multiobjective Evolutionary Algorithms, High
Performance Computing

1. Introduction

Modern aircraft consist of many complex subsystems,
all of which require robust and reliable control. These sys-
tems are often multi-variable, consisting of multiple inputs
and multiple outputs, and frequently the desired responses
of a subsystem are in conflict with each other (for exam-
ple, a controller design that achieves the minimum possible
overshoot of the plant often requires accepting a slower rise
time than might otherwise have been achieved).

Whilst conventional robust controller design methods
such as H∞ or LQG control can be effectively used to
create controllers that are robust both to modelling uncer-
tainties and to cross-coupling between channels in complex
multi-variable systems, the resulting controlled system of-
ten performs unsatisfactorily. One approach to overcom-
ing this problem is by coupling novel evolutionary multi-
objective optimisation techniques with these conventional
controller design methods. This provides the engineer
with a set of powerful tools for addressing complex multi-
variable problems with performance constraints (Fleming
and Purshouse, 2002). This type of integrated multi-objective
optimisation approach to the design of robust controllers
has been successfully used for the design of fixed struc-
ture robust H∞ controllers (Wang and Li, 2011), as well
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as forming the basis of a novel multi-objective PID con-
troller design procedure (Reynoso-Meza et al., 2012, 2013).
However, such methods are frequently computationally ex-
pensive, requiring many thousands of controller designs to
be evaluated.

Grid computing offers one potential solution to the
computationally expensive nature of this evolutionary con-
troller design process. The grid computing paradigm aims
to provide “a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpen-
sive access to high-end computational capabilities” (Fos-
ter and Kesselman, 1999). This paradigm is differentiated
from traditional approaches to distributed computing by
its emphasis on providing “a seamless, integrated com-
putational and collaborative environment” (Baker et al.,
2002) for the solution of complex problems by allowing
coordinated resource sharing across dynamic virtual or-
ganisations (Foster et al., 2001). By coupling evolution-
ary multi-objective optimisation techniques with the large
scale distributed high performance computing resources
offered by the grid computing paradigm, engineers and
designers can effectively address many complex, compu-
tationally expensive multi-variable problems - including
those that require the synthesis of robust controllers as
part of the evaluation process. Grid-enabled optimisation
of single objective engineering design problems has been
successfully integrated into both computer aided engineer-
ing workflows (Weng et al., 2012) and multi-disciplinary
design workflows (Lee et al., 2009) to provide easy ac-
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cess to powerful real-time analysis and optimization rou-
tines. This allows a potential reduction in both design
cycle times and development costs, with a commensurate
improvement in product quality.

The purpose of this paper is to describe a grid-enabled
framework for evolutionary multi-objective design. This
framework will then be applied to the design of a robust
controller for the flight dynamics of a real-world aircraft - a
complex problem with many (often conflicting) objectives
to consider. The paper is organised as follows: section
2 will provide a brief introduction to evolutionary algo-
rithms, their use in control systems engineering and their
application to multi-objective optimisation problems; sec-
tion 3 will describe the grid computing paradigm in detail
and highlight some of the key features that are used in
the development of the optimisation framework; section 4
will discuss the implementation of the grid-enabled frame-
work for multi-objective evolutionary optimisation; section
5 will demonstrate the use of the grid-enabled optimisa-
tion framework in designing robust control systems for the
lateral stability of aircraft; and section 6 will present our
conclusions and outline some ideas for further work.

2. Multi-objective evolutionary algorithms

2.1. Background to evolutionary algorithms

Evolutionary Algorithms (EAs) utilise some of the con-
cepts behind natural selection and population genetics to
iteratively evolve a population of candidate solutions to
a problem (Goldberg, 1989). They both explore the so-
lution space of a problem (by using variation operators
such as mutation and recombination) and exploit valuable
information present in the previous generation of candi-
date solutions (by using a selection operator). The trade-
off between exploration of undiscovered regions of the so-
lution space and exploitation of promising areas already
discovered by the algorithm is extremely important: too
much exploration and the algorithm will take too long to
converge on a useful solution, too much exploitation and
the algorithm may converge prematurely to local optima.
Obtaining a correct balance between exploration of the
solution space and exploitation of promising solutions is
somewhat of a “black art” (Purshouse, 2003), with little
guidance available in the literature on setting the parame-
ters that control this balance. Some promising results have
been obtained using computational steering frameworks to
allow these parameters to be altered during the run-time of
the algorithm (Bullock et al., 2002; Shenfield et al., 2007),
but this can be time-intensive and requires the engineer to
have a good knowledge of both the optimisation problem
and the algorithm design. Another potential solution is
to use some kind of self-adaptation to dynamically change
the balance between exploration and exploitation as the
algorithm runs (Beyer, 1995; Igel et al., 2007).

One of the main reasons evolutionary algorithms are
applicable across many different problem domains (includ-
ing those where conventional optimisation techniques may

struggle) is their use use of evaluation function informa-
tion directly, rather than derivative information or other
auxiliary knowledge. For many non-trivial real-world ap-
plications this evaluation function information is obtained
by computer simulation of the system. For example, in
the optimisation of maintenance schedules for gas turbine
aero-engines (Shenfield et al., 2010), the cost information
for each schedule is obtained by the computer simulation of
a candidate solution over a time period of 25 years. How-
ever, this use of computer simulation to obtain evaluation
function information leads to some additional problems.
To ensure that the results gained from the evolutionary
algorithm accurately represent the real-world system, the
simulation must be complex enough to capture all the rel-
evant dynamics of the true system. Assuming that this
level of complexity is obtainable, this can often lead to
the simulation becoming very computationally expensive.
Since EAs are both iterative and population based, the
simulation may have to be run several thousand times
which increases the computational requirements (in terms
of computer clock cycles) of the optimisation process sig-
nificantly.

2.2. Multi-objective evolutionary algorithms

Many real-world engineering problems involve the sat-
isfaction of several, often conflicting, objectives. The gen-
eral form of a multi-objective optimisation problem can be
characterised by a vector of objective functions, f, and the
corresponding set of decision variables, x, as illustrated in
equation 1 (note that minimisation can be assumed here
with no loss of generality).

min
f

(x) = (f1(x), . . . , fn(x)) (1)

In this case it is unlikely that a single optimal solu-
tion will exist. Instead, the solution of this kind of multi-
objective problem leads to a set of Pareto optimal points,
where any improvement in one objective will lead to a de-
terioration in one or more of the other objectives.

A set of non-dominated solutions1 generated by a multi-
objective optimisation algorithm is known as an approxi-

mation set (Zitzler et al., 2003) and the quality of this set
can be characterised by three main performance indicators
(Purshouse, 2003):

• The proximity of the approximation set to the true
Pareto front.

• The diversity of the distribution of solutions in the
approximation set.

• The pertinency of the solutions in the approxima-
tion set to the decision maker.

1A solution in non-dominated if there exists no other solution in
the set of current candidate solutions that is better in all objectives.
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These concepts are illustrated graphically in Fig. 1,
where it can be seen that the ideal approximation set pro-
duced by an optimiser should be both as close as possible
to the true Pareto front (i.e. having good proximity) and
provide a uniform spread of solutions across the region of
interest of the decision maker (i.e. having a diverse set
of candidate solutions that are pertinent to the decision
maker).

dominated objective space

objective vector

Pareto front

diversity in the 

region of interest

pertinency of the solutions in the 

approximation set (i.e. the region 

of interest (ROI))

proximity in the 

approximation set

Figure 1: Characterising the approximation set for a bi-objective
problem

Conventional multi-objective optimisation methods
(such as the weighted sum method (Hwang and Masud,
1979) and the goal attainment method (Gembicki, 1974))
often struggle to satisfy these requirements in the optimi-
sation of real-world engineering problems as they can find
only a single point from the approximation set rather than
a diverse distribution of potential solutions. This means
that a decision maker cannot fully understand the shape
of the trade-off space (and thus know whether the a priori

trade-offs they have chosen are appropriate) without run-
ning the optimisation routine many times. However, since
evolutionary algorithms search a population of candidate
solutions in parallel, they are able to find multiple non-
dominated solutions from this approximation set. This
provides the decision maker with a set of potential solu-
tions to choose from, rather than a single solution that
may not meet the required performance criteria.

A further complication in the application of optimisa-
tion routines in real-world engineering design problems is
that the optimiser is often required to deal with a large
number of objectives. This has lead to interest amongst
the research community in the area of many-objective op-

timisation2. The increased scale of many-objective opti-
misation problems means that the pertinency (see Fig. 1)
of the candidate solutions within an approximation set is

2The phrase many-objective has been suggested in the Operations
Research (OR) community to refer to problems with more than the
standard two or three objectives (Farina and Amato, 2004).

especially important so as to avoid overwhelming the deci-
sion maker with irrelevant solutions. This can be a critical
issue in problems with many conflicting objectives because
the global trade-off surface will contain large numbers of
Pareto-optimal solutions, many of which may not be in
the area of the search space that the decision maker is
interested in (Purshouse, 2003). To overcome this issue
many authors have suggested allowing the decision maker
to focus the search on relevant areas of the solution space
increases the efficiency of the optimisation process and re-
duces the amount of irrelevant information that has to be
considered (Fleming et al., 2005).

2.3. Multi-objective evolutionary algorithms in control sys-

tems design

Multi-objective evolutionary algorithms have been suc-
cessfully applied to many problems in the field of control
systems engineering, from the offline design of robust con-
trollers for a coal-fired gasification plant (Griffin et al.,
2000) to model identification of nonlinear systems (Tan
and Li, 2002). Whilst the majority of the applications of
evolutionary multi-objective optimisation in control sys-
tems engineering have been in offline applications due to
the iterative nature of the evolutionary design process,
they have also been used in online applications applica-
tions such as hardware-in-the-loop tuning of a fuzzy logic
based DC motor controller (Stewart et al., 2004).

The widest use of MOEAs in control systems engineer-
ing has been in controller design problems such as the tun-
ing of robust PID controllers (Herrero et al., 2008; Zhao
et al., 2011) and the design of intelligent model predic-
tive control strategies (Garcia et al., 2011), where their
robustness to noise and ability to produce a set of non-
dominated candidate solutions that meet some specified
performance requirements provide a powerful tool to con-
trol engineers. However, MOEAs have also been widely
used in systems identification (Rodriguez-Vazquez et al.,
2004) and robotics (Capi, 2008; Moshaiov and Ashram,
2009).

2.4. Parallel evolutionary algorithms

The computationally expensive nature of the evalua-
tion process of evolutionary algorithms has led to the de-
velopment of parallel evolutionary algorithms, though this
parallelism often adds significant additional complexity to
the algorithm design. Parallel evolutionary algorithms
can be classified into two main categories (Cantú-Paz and
Goldberg, 1999): those with a single panmictic popula-
tion that is maintained globally, and those with multiple
communicating subpopulations.

Single-population parallel evolutionary algorithms can
be effectively exploited using the well established Master-
Slave communication paradigm shown in Fig. 2. In this
case the evaluation of the candidate solutions is typically
distributed amongst the worker nodes whilst the master
node applies the evolutionary operators, such as selection
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and variation, centrally to the whole population (Fogarty
and Huang, 1991). Chipperfield and Fleming (1995) also
describe a similar scheme where both the evaluation of can-
didate solutions and the variation operators are performed
by the worker nodes.

Master Node

Slave 1 Slave 2 Slave n

Figure 2: The master-slave communication paradigm

Parallel evolutionary algorithms based around the con-
cept of multiple communicating subpopulations (also known
as island-model or migration EAs) introduce a degree of
geographical isolation into the search by dividing the popu-
lation up into subpopulations (known as demes) and allow-
ing each of these to evolve separately. Periodically migra-
tion occurs to allow an exchange of information between
subpopulations (Rivera, 2001). This migration strategy is
governed by the desired population topology of the algo-
rithm and can be anything from the simple ring topology
shown in Fig. 3 to a fully interconnected topology where
migration occurs between each and every subpopulation.

sub-population�1sub-population�1

sub-population�2sub-population�2sub-population�4sub-population�4

sub-population�3sub-population�3

migration

island�(or )deme

Figure 3: An island model parallel evolutionary algorithm in a ring
topology

Globally parallel evolutionary algorithms with a single
panmictic population provide the simplest form of par-
allelism (being functionally equivalent to sequential EAs).
They represent an important class of parallelism since their
use means that existing EA theory and design guidelines
can easily be applied to the problem (Cantú-Paz and Gold-
berg, 1999). Whilst this type of strategy does not exploit
all the parallelism inherent in the evolutionary algorithm,
substantial improvements in performance can be achieved
- especially in cases where the evaluation of candidate solu-
tions is significantly more computationally expensive that
the evolutionary operators themselves (Chipperfield and
Fleming, 1995).

Several authors have shown that the use of multiple
communicating subpopulations can improve the conver-
gence of the algorithm for some problems (Grosso, 1985;

Starkweather et al., 1991). Unfortunately, not only is it
poorly understood under what conditions multiple com-
municating populations perform well, it is still unclear
how effectively the multiple communicating populations
paradigm scales to problems with more than a single ob-
jective. Whilst Deb et al. (2003) report some success
applying an island model EA to optimisation problems
with two and three objectives, their approach of using a
guided domination strategy to calculate different parts of
the Pareto-optimal front using different demes is limited
to problems with a convex Pareto front. A more generally
applicable approach to sharing information between sub-
populations in a multi-objective optimisation problem is
to use a “divide and conquer” approach such as that sug-
gested by Hiroyasu et al. (2000), where the migration step
is used to order the current set of candidate solutions be-
tween the subpopulations based how well they satisfy each
objective. However, a downside to this approach is that
search effort is wasted as the subpopulations evolve away
from the area they have been focussed on. The scalability
of both these approaches is also heavily dependent on the
problem being solved.

Ultimately, the decision as to which of these forms of
parallelisation to implement must consider several factors
such as applicability to the problem being considered, ease
of implementation and use, and the potential performance
gains from parallelisation. Single-population parallel EAs
are often easiest to implement and use, since experience
gained with sequential EAs is directly applicable. In con-
trast, the implementation of parallel EAs with multiple
communicating populations requires the consideration of
extra design choices. For instance, the use of an island
model EA requires the algorithm designer to choose the
number of demes, the population topology, and the mu-
tation rate, as well as choosing values for the standard
evolutionary parameters. This substantially increases the
complexity of the parallel EA since each of these parame-
ters influences the efficiency of the algorithm and the qual-
ity of the overall solution.

3. Grid computing

The concept of grid computing is not new. As far back
as 1969 Len Kleinrock suggested:

“We will probably see the spread of ‘com-
puter utilities’, which, like present electric
and telephone utilities, will serve individual
homes and offices across the country.” Klien-
rock (1969)

However, it is only quite recently that technologies such
as the Globus Toolkit (Foster and Kesselman, 1999) and
web services have emerged to enable this kind of aggrega-
tion of compute resources. The Globus Toolkit provides an
open-source, community-based set of software tools that
enables multiple compute, data and other resources to be
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combined to form large-scale computational grids. One
of the key features of the Globus Toolkit is its ability to
provide a common means of interacting with the diverse
range of local resource management systems that are often
found in real-world compute resources.

3.1. Web service architectures

Web services provide an interoperable, service-oriented
approach to enabling application functionality using com-
mon standards-based internet protocols such as HTTP.
Two main types of web services exist: those based around
a transport-agnostic, standards-based approach that uses
XML formatted messages exchanged between service and
client (SOAP-based web services) and those using a lighter-
weight style based around common HTTP operations such
as GET and POST (known as representational state trans-
fer based - or RESTful - web services). The key advantage
that SOAP based web services have over RESTful web ser-
vices is that their transport-agnostic nature ensures that
they are well suited for distributed computing environ-
ments where the messages exchanged between service and
client may go through other nodes.

Although the World Wide Web Consortium recognises
both SOAP based and RESTful web services, their def-
inition of a web service is “a software system designed
to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems in-
teract with the web service in a manner prescribed by its
description using SOAP messages” (W3C Working Group,
2004). Three core technologies are used in the creation and
specification of SOAP based web services (Chappell and
Jewell, 2002):

• Simple Object Access Protocol (SOAP)

• Web Services Description Language (WSDL)

• Universal Description, Discovery, and Integration
(UDDI)

Fig. 4 shows that, in a SOAP based web service, the
client first queries a service registry for the contract details
of the desired service (i.e. the WSDL document). This
query can be done by service name, service category, or
other identifier. Once this service has been located, the
client uses the WSDL document to find out how to interact
with the service. The communication between client and
service is then carried out by sending and receiving SOAP
messages over HTTP that conform to the specific XML
schema found in the WSDL document.

3.2. Open grid services architecture

The Open Grid Services Architecture (OGSA) pro-
vides a service-oriented approach to grid computing that
builds on key web service technologies (including SOAP

Web Service

Client

Application Service

Web Service

Logic

HTTP request

HTTP response

SOAP processor

UDDI registry

Find Publish

WSDL

document

Figure 4: Interaction between Web Service Technologies

and WSDL) to allow grid computing resources to be ex-
posed as services. By following the open grid service archi-
tecture design principles and exposing grid resources such
as computers, datasets and simulation software as services,
the Globus Toolkit is able support the creation and man-
agement of ensembles of services maintained by virtual
organisations (Foster et al., 2002). There are three main
advantages to representing these resources as services:

1. It aids interoperability. A service-oriented view ad-
dresses the need for standard service definition mech-
anisms, local/remote transparency, adaptation to lo-
cal OS services, and uniform semantics (Foster et al.,
2002).

2. It simplifies virtualisation. Virtualisation allows for
consistent resource access across multiple heteroge-
neous platforms by using a common interface to hide
multiple implementations (Foster et al., 2002).

3. It enables incremental implementation of Grid func-

tionality. The provision of Grid functionality via ser-
vices means that the application developer is free to
pick and choose the services that provide the desired
behaviour to their application.

4. A grid-based framework for multi-objective op-
timisation using evolutionary algorithms

4.1. Parallelisation of the evolutionary algorithm

In section 2.4 two main categories of parallel evolution-
ary algorithm were discussed: globally parallel EAs with
a single population and island model EAs using multiple
communicating subpopulations. Whilst the use of multiple
communicating subpopulations exploits more of the inher-
ent parallelsim within the evolutionary algorithm, it also
introduces additional complexity by requiring the engineer
to choose several additional parameters. Furthermore, it
is still unclear how algorithms based around the multiple
communicating subpopulations paradigm perform in the
presence of many objectives (such as is often the case in
real-world engineering design problems). In contrast, the
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use of single population globally parallel evolutionary al-
gorithms allows experience gained with sequential EAs to
be directly applied.

For this reason it was decided to base the grid-enabled
framework for multi-objective optimisation discussed in
this paper on the single population globally parallel model
using the Master-Slave communication paradigm. This
model is well suited for the kind of heterogeneous grid
computing environment discussed in section 3 because it
keeps inter-process communication to a minimum whilst
significantly accelerating the evaluation of candidate so-
lutions (the most computationally expensive part of the
application discussed in this paper).

4.2. Implementation of the parallel multi-objective evolu-

tionary framework

The multi-objective evolutionary optimisation frame-
work discussed in this paper was implemented in a service
oriented architecture using a combination of web services
and grid services. As discussed in section 3, the service ori-
ented approach to grid computing has several advantages
over creating a monolithic high performance computing ar-
chitecture (such as its flexibility and the ease of interoper-
ation between new and existing heterogeneous resources)
which ensure it is well suited for the implementation of
our framework. In addition to the advantages discussed
in section 3, providing the functionality of the optimisa-
tion framework as services allows for both the addition of
new features (such as additional evolutionary operators)
and the integration of the framework into Internet por-
tals (which can then be accessed from any device with a
capable web browser).

Fig. 5 shows that the implementation of the parallel
multi-objective evolutionary framework relies on two dif-
ferent types of service. One service type exposes the evolu-
tionary multi-objective optimisation operators to the ap-
plication client, and the other allows for the distributed
evaluation of candidate solutions across the available grid
resources. These services are written in Java to provide
portable code that allows the components of the frame-
work to run across multiple heterogeneous platforms and
interact (as shown in the pseudo-code listed in Fig. 6) to
provide a flexible grid-enabled multi-objective optimisa-
tion framework.

4.2.1. The evolutionary algorithm webservice

This service provides access to the multi-objective evo-
lutionary operators that can be used to:

• Generate initial populations

• Perform multi-objective ranking according to either
Pareto-optimality or decision maker preferences (see
section 2.2)

• Select a subset of the current population for mating
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Figure 5: The implementation of the optimisation framework

PROCEDURE GridEnabledMOEA:

// connect to the service

MOEAService = connectMOEAService();

EvalService = connectEvalService();

// initialise resources

resources = EvalService.findResources();

// run the evolutionary algorithm

MOEAService.initialise();

EvalService.distributedSolutions(resources, solutions);

EvalService.evaluateSolutions();

WHILE not finished DO:

MOEAService.selection();

MOEAService.recombination();

MOEAService.mutation();

EvalService.distributedSolutions(resources, solutions);

EvalService.evaluateSolutions();

END

END

Figure 6: Pseudo-code describing the interaction between services
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• Evolve the current population by applying variation
operators

It is important to note that the provision of the multi-
objective evolutionary methods as services allows a great
deal of flexibility in both the use of the framework and in
its maintenance. Providing additional functionality for the
optimisation routine (such as diversity preservation mea-
sures or alternative variation methods) or improving exist-
ing functionality can be achieved by simply creating new
services and integrating them into the application client.

4.2.2. The evaluation grid service

The distribution and management of computational
tasks across a diverse set of geographically distributed
compute resources is a difficult problem due to the highly
dynamic and decentralised nature of the resources involved
in grid computing. There are many resource manage-
ment systems that can successfully schedule, distributed
and manage tasks at a local level but the lack of cen-
tralised control in a computational grid means that there
are few resource schedulers that are effective in complex
large scale grid computing environments. The evaluation
grid service shown in Fig. 5 addresses this problem using
an application-centric meta-scheduling approach3 to dis-
tribute the candidate solutions across the resources of the
White Rose Grid (see section 4.3) for evaluation. This
application-centric approach is similar to that taken by
the AppLeS project (Berman et al., 1996). However, in
this case, response time information from previously com-
pleted generations of the evolutionary algorithm is used to
provide estimates of the current computational capacity of
the available grid resources rather than explicitly query-
ing the computational resources for their current state (a
process that can be both complex and time intensive).
Results presented in Shenfield and Fleming (2013) have
shown that this approach performs extremely well in com-
plex distributed and dynamic environments (such as com-
putational grids).

The evaluation grid service exposes three methods to
the multi-objective optimisation client (as shown in the
pseudo-code in Fig. 6):

1. findResources() - this method queries a database
to discover what grid resources are available to this
application and to obtain some initial information
about their states.

2. distributeSolutions(resources, solutions) - this
method uses the application-centric meta-scheduler
outlined above to calculate the optimal workload al-
location (i.e. the optimal number of candidate solu-
tions to send to each resource) with respect to the
mean response time of jobs through the system, for a

3Meta-scheduling is an approach where jobs are submitted via
local resource management systems rather than directly to the actual
machines themselves.

given set of resources. This optimal workload alloca-
tion is calculated using elements of queueing theory
(see Kleinrock (1975) for more details) to minimise
the mean response time for the evaluation of candi-
date solutions and takes into account both the usage
of the grid resources and any congestion in the net-
work (as both of these factots affect the response
time of jobs through the system). It then transfers
these candidate solutions to the grid resources using
either SFTP (the Secure File Transfer Protocol) or
GridFTP4. More details of this scheduling approach
can be found in Shenfield and Fleming (2013).

3. evaluateSolutions() - this method starts a job man-
ager daemon on the grid resources to manage the
objective function evaluations. It does this by us-
ing the local resource management system (in the
case of the White Rose Grid resources this is Sun
Grid Engine) to run as many instances of the evalua-
tion function as there are candidate solutions. These
evaluation function instances are then queued by the
local scheduler and run when appropriate compute
resources become available. The results are then re-
turned to the client.

4.3. The White Rose Grid

TheWhite Rose Grid (The White Rose University Con-
sortium, 2012) was established in 2002 to support e-Science
research at the Universities of Leeds, Sheffield and York.
It is a multi-institutional computational grid providing
access to a large number of heterogeneous compute re-
sources. The White Rose Grid currently consists of four
high-performance compute nodes located at three different
sites (see Fig. 7 for an overview of the network topology)
providing access to approximately 700 processor cores for
both local users and distributed e-Science research. Each
of these compute nodes is connected via the high-speed,
low latency Yorkshire and Humberside Metropolitan Area
Network.

5. Robust control of aircraft flight dynamics

A control system for the flight dynamics of an aircraft
must provide robust and responsive multi-variable control
of the ailerons and the rudder, as well as guaranteeing
stability in the presence of modelling uncertainty. Whilst
H∞ control theory offers a proven method of designing
controllers that are robust to such uncertainty, the perfor-
mance of the resulting system can often be unsatisfactory.
The following subsections will provide an overview of the
flight dynamics of an aircraft and introduce the concept
of H∞ control and loop shaping - a technique that allows
the designer to ‘shape’ the response of a system, and thus
improve performance.

4GridFTP offers potential performance benefits when dealing
with large data-sets, but requires the administrators of the Grid re-
sources to provide a GridFTP server.
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Figure 7: An overview of the network topology of the White Rose
Grid

5.1. Flight dynamics

The dynamics of an aircraft in flight can be described
by the rotational moments around its centre of gravity
(CG) in Cartesian space. These are shown in Fig. 8 where:

• L is the rolling moment of the aircraft.

• M is the pitching moment of the aircraft.

• N is the yawing moment of the aircraft.

These flight dynamics can be separated into longitudi-

nal motions, in which the wings remain level (e.g. pitch),
and lateral motions such as roll and yaw.

L

N

M

Figure 8: The rotational moments of an aircraft

The equations of motion describing these flight dynam-
ics are non-linear; however, by applying the small distur-

bance theory (Nelson, 1998), a linearised model can be
found. This linearisation process will only give a good re-
sult in cases where the motion of the aircraft can be fully
described by small deviations about a steady flight con-
dition (such as in the flight of large commercial aircraft),
and therefore should not be used in cases where large am-
plitude motions are likely to occur.

5.2. H∞ loop shaping controller design

H∞ control theory was originally proposed by Zames
(1981) to address the problem of uncertainty in the mod-
elling of disturbances and plants and was further developed

by Glover and Doyle (1988). H∞ control theory provides
a general framework for the design of optimal controllers,
where optimal in this context refers to the minimisation
of the H∞ norm.

A drawback to robust stabilisation using H∞ control
is the inability of the designer to specify performance re-
quirements (Skogestad and Postlethwaite, 1996), which
can result in compensated systems that, whilst robust to
modelling uncertainties and cross-coupling between chan-
nels, perform unsatisfactorily. To overcome this limita-
tion, McFarlane and Glover (1990) proposed using pre-
and post-compensators to ‘shape’ the open-loop response
of the plant (see Fig. 9), and then applying robust sta-
bilisation to the shaped system. Selecting the weighting
matrices for the pre- and post-compensators is typically
challenging since these choices govern the performance of
the resulting system.

GW1 W2

Shaped�Plant�G s

K

Figure 9: The shaped and compensated plant

Traditional methods for selecting these pre- and post-
compensators tend to require a trial-and-error iterative
approach (Skogestad and Postlethwaite, 1996), where the
shaped and compensated plant is formed and its perfor-
mance analysed. If this performance is unsatisfactory then
the weighting matrices for the pre- and post-compensators
are adjusted and the process repeats. In this controller de-
sign process the engineer is typically faced with a number
of conflicting requirements that must be balanced against
each other to achieve the best result possible.

This paper aims to find an optimal H∞ loop shaping
controller for the lateral stability control of a Boeing 747
aircraft using our grid-enabled framework for evolutionary
multi-objective optimisation to determine the weighting
matrices for the pre- and post-compensators. The Boeing
747 model used in this controller design process is a lin-
earised multivariable system with two inputs (the control
signals for the aileron and rudder) and two outputs (the
roll and sideslip angles), and can be represented by the
following transfer function matrix:

G =

�

g11 g12

g21 g22

�
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where:

g11 =
0.1845s

2
+0.04795s+0.1995

s4+0.6807s3+1.049s2+0.3373s−0.001979

g12 =
0.06591s

2
−0.12s−0.5158

s4+0.6807s3+1.049s2+0.3373s−0.001979

g21 =
−0.01448s

2
−0.01962s+0.001359

s4+0.6807s3+1.049s2+0.3373s−0.001979

g22 =
0.005334s3+0.4377s2+0.1884s−0.00432

s4+0.6807s3+1.049s2+0.3373s−0.001979

The pre- and post-compensators for this loop shaping
controller have the following structures:

W1 =

�

s+a

s
0

0
s+b

s

�

W2 =

�

c 0

0 d

�

with the order of these compensators being determined
by the order of the plant.

5.3. Evolutionary multi-objective controller design

The H∞ loop shaping controller design process can
be formulated as a multi-objective optimisation problem,
where each performance requirement is treated as a sep-
arate objective, and thus solved using a multi-objective
evolutionary algorithm (see section 2.2). The decision
variables in this optimisation procedure are the weights,
a, b, c, d, for the compensators. However, this controller de-
sign problem is computationally expensive since, for every
candidate solution, an H∞ controller has to be synthesized
and the response of the compensated system obtained by
computer simulation. The evaluation of a single candidate
solution for this problem took in the order of 5.5 seconds
on a Intel Core 2 Duo based PC with a clock speed of
2.60GHz.

To overcome the computationally expensive nature of
this controller design problem the grid-enabled framework
for evolutionary multi-objective optimisation described in
this paper was used in a real-valued multi-objective genetic
algorithm configuration with multi-objective ranking per-
formed using the preference articulation operator proposed
by Fonseca and Fleming (1998) to incorporate decision
maker preferences. Whilst using a single compute cluster
for this evaluation process would also be possible (and in-
deed, under reasonably light loads, is likely to provide a
substantial speed up over the evaluation of candidate so-
lutions on a single machine), the key advantage in using a
computational grid for this controller design application is
the dynamic and scalable nature of the computational re-
source pool available. This ensures that, even under fairly
heavy loads, there are sufficient resources available for the
evaluation process.

A real-valued representation for the compensator weights
was used since Fogel and Ghoziel (1997) have shown that
there is no intrinsic advantage in choosing one bijective

representation over another, although particular represen-
tations may be more computationally tractable or efficient
for certain problems. As a consequence of this, mod-
ern MOEA practice emphasises choosing a representation
that is appropriate for the problem under consideration
(Michalewicz and Fogel, 2000). Selection in our algorithm
was performed using Stochastic Universal Sampling (Baker,
1987), which guarantees sampling with zero bias and min-
imum spread, and is generally considered superior to other
selection schemes for many problems (Hancock, 1994). The
extended intermediate recombination operator and BGA
mutation operator (Mühlenbein and Schlierkamp-Voosen,
1993) were used to introduce variation into the population
and prevent the search process from stagnating. How-
ever, it is important to note that the implementation of
the multi-objective grid-enabled framework in a service-
oriented architecture (see section 4.2) provides a high de-
gree of flexibility in the choice of algorithm architecture,
representation, and evolutionary operators used. This flex-
ibility means it is simple to adapt the framework to other
optimisation problems.

A set of performance requirements arising from domain
specific knowledge about the problem have been specified
for the response of the compensated system (see Table
1). Some of these requirements are hard constraints and
others are simply desired goals. However, several of the
performance requirements for this controller are in com-
petition which makes achieving all the goals difficult. The
grid-enabled MOEA implementation described in this pa-
per uses the preference articulation operator proposed by
Fonseca and Fleming (1998) to handle both the stated
goals and hard constraints from Table 1.

Table 1: Performance requirements for the H∞ controller design
problem

Requirements Type
1 Minimise the overshoot in

response to a step input
Goal (overshoot <

5%)
2 Minimise the rise time Goal (Tr < 3 sec-

onds)
3 Minimise the settling time Goal (Ts < 4 sec-

onds)
4 Prevent aileron actuator

saturation
Constraint (Aileron
deflection < 0.349
radians)

5 Prevent rudder actuator
saturation

Constraint (Rudder
deflection < 0.52
radians)

6 Controller must be robust
to 30% multiplicitive un-
certainty

Constraint

5.4. Numerical results and discussion

The results shown in Fig. 10 are from 25 runs of the
optimisation algorithm with no constraints on any of the
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Figure 10: Trade-offs between aileron control signal and other per-
formance requirements

objectives. It can be seen from Fig. 10 that there is a
strong trade-off between the deflection of the aileron ac-
tuator and two other key performance objectives – the
rise time of the compensated system and the settling time
of the compensated system. Whilst the aileron actuator
deflection in Fig. 10 is shown up to 1 radian, in a real-
world aircraft this would not be realistically achievable. A
reasonable maximum limit for a large commercial aircraft
such as the Boeing 747 considered in this paper would be
0.35 radians which, as can be seen from Fig. 10, would
impose performance bounds on the best achievable rise
time and settling time of the compensated system of 1.75
seconds and 2.75 seconds, respectively.

5.4.1. Optimisation results

Table 2 shows the best achieved objective value, the
average achieved objective value, and the variance of the
achieved objective values for each objective. These values
are based on offline archives of all optimal solutions from
100 independent runs of the optimisation routine5. It can
be seen from Table 2 that all the performance require-
ments specified in Table 1 are satisfied, with significant
improvements over all the goal values achievable.

Fig. 11 shows the performance of the chosen controller
design to a 0.1 radians step change in the aileron control
signal. It can be seen from this step response that the per-
formance of the compensated system is excellent; achieving
minimal overshoot and good rise time and settling time.

5.4.2. Performance assessment

A full statistical analysis of the results from 100 in-
dependent runs of the optimisation algorithm was under-
taken to assess its performance. As mentioned in section

5An average of 2213 solutions were stored in the offline archive
after each run of the optimiser. These represent all solutions in
each optimisation run that met or exceeded the desired goals for the
performance of the compensated system.

Table 2: Achieved performance of the compensated system

Obj. Best Value Average
Value

Variance

1 0.687% 1.07% 0.128
2 1.71 s 1.864 s 0.006
3 2.77 s 2.98 s 0.029
4 0.211 rad 0.333 rad 0.001
5 0.0111 rad 0.185 rad 0.000
6 36.4% 32.4% 2.92
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Figure 11: Step response of the compensated system to aileron de-
flection
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2.2, the quality of the final approximation set produced
a multiobjective optimisation algorithm can be charac-
terised by:

1. The proximity of the solutions to the true Pareto
front.

2. The diversity of the distribution of solutions in the
approximation set.

3. The pertinency (i.e. the relevance) of the solutions
in the approximation set to the decision maker.

The results presented in section 5.4.1 above have shown
that the grid-based framework for multiobjective optimi-
sation using evolutionary algorithms presented in this pa-
per has produced final approximation sets that are highly
pertinent to the decision maker meeting all the specified
constraints and achieving significant improvements over all
the specified goal values and so fulfils the third of these
criteria.

The quality of the final approximation sets of the op-
timisation algorithm in terms of the first and second of
the characteristics above can be assessed using three differ-
ent performance metrics: generational distance (Van Veld-
huizen, 1999) to assess proximity, Schott distance (Schott,
1995) to assess diversity, and the hypervolume indicator
(Zitzler and Thiele, 1998) which provides a measure of
both convergence and diversity in one combined metric.
The results for these metrics are shown in Table 3.

Table 3: Statistical results for the performance of the grid-based
framework for multiobjective optimisation using evolutionary algo-
rithms in terms of generational distance (GD), Schott distance (SD)
and the hypervolume indicator (HV)

Mean Variance Maximum Minimum
GD 0.012432 1.7161e−5 0.029544 0.006869
SD 0.060367 7.5941e−5 0.085421 0.042413
HV 6.4079 3.5524e−3 6.5003 6.19

The generational distance evaluates the average dis-
tance of solutions in an approximation set to the true
Pareto front. In the case of real-world optimisation prob-
lems, such as the design of a robust lateral stability con-
troller presented in this paper, the true Pareto front may
not be known. In this case, a reference set that approxi-
mates to the true Pareto front can be used. In this paper,
the reference set used was produced using all the non-
dominated solutions from 25 independent runs of an un-
constrained multiobjective evolutionary algorithm with a
population size of 1000 individuals to ensure good cover-
age of the search space. As Table 3 shows, the grid-based
framework for multiobjective optimisation using evolution-
ary algorithms presented in this paper has produced final
approximation sets that are close to the reference set and
have minimal variance from run-to-run.

The Schott distance, or spacing metric, quantifies the
spread of solutions in objective space. The more evenly
these solutions are distributed, the smaller the value of

this metric will be. As can be seen from Table 3, the
grid-based framework for multiobjective optimisation us-
ing evolutionary algorithms presented in this paper has
produced final approximation sets that are are evenly dis-
tributed across the objective space and that have minimal
variance from run-to-run.

The final quality measure we will consider in this pa-
per is the hypervolume indicator proposed in Zitzler and
Thiele (1998). This metric provides a measure of both
convergence and diversity by calculating the volume (in
objective space) dominated by the solutions in the final
approximation set and bounded by some reference point6.
The key advantage of this metric is that it is strictly Pareto
compliant (i.e. given two approximation sets, A and B, the
value of the hypervolume indicator will always be better
for set A if set A dominates set B). Table 3 shows that
the grid-based framework for multiobjective optimisation
using evolutionary algorithms presented in this paper has
produced final approximation sets that cover a large vol-
ume of the objective space and that have minimal variance
from run-to-run.

5.4.3. Run-time results

Table 4 shows a representative set of execution times
from the evolutionary multi-objective optimisation of the
controller design problem presented in this paper. These
times are averaged over 25 runs for both the results ob-
tained from a single workstation and the results obtained
using the resources of the White Rose Grid. As Table 4
shows, the grid-enabled multi-objective optimisation frame-
work discussed in this paper has significantly reduced the
time taken to optimise the performance of the compen-
sated system.

Table 4: Execution times for the optimisation of an H∞ controller
for aircraft flight dynamics

Single Workstation Computational Grid
50 gen. 100 gen. 50 gen. 100 gen.
28486 s 56672 s 8126 s 122622 s

6. Conclusions and further work

Table 4 has shown that significant reductions in the
execution times of the evolutionary multi-objective con-
troller design process can be achieved by using the grid-
enabled optimisation framework discussed in this paper.
Whilst the example presented in this paper uses a multi-
objective evolutionary algorithm in the optimisation pro-
cess, the service-oriented nature of the framework means
it is easily extensible to other iterative optimisation algo-
rithms such as ant-colony or particle swarm optimisation.

6For the hypervolume indicator results shown in Table 3 the goal
values were used as the bounding reference point in objective space.
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The grid-enabled framework for multi-objective opti-
misation described in this paper is best suited to computa-
tionally expensive evaluation functions such as the robust
controller design problem presented in section 5. This is
due to both the communication overheads involved in the
distribution and management of the evaluation function
jobs across multiple diverse resources and the high overall
utilisation of the compute resources comprising the White
Rose Grid. A preliminary investigation into the scale of
problems for which this framework is most effective has
been performed by altering the computational complexity
of the objective function evaluation process and determin-
ing the time needed to evaluate 50 candidate solutions us-
ing this altered objective function. Five runs of the exper-
iment were performed and the results averaged to obtain
accurate data.

As can be seen from Fig. 12, for computationally triv-
ial objective functions these distribution and management
overheads can result in a degradation in performance com-
pared with a sequential MOEA on a single machine; how-
ever, for objective functions that require over 0.5 seconds
to evaluate a single candidate solution, substantial sav-
ings in the overall execution time of the algorithm can be
achieved. It is expected that further research and devel-
opment in the fields of grid-middleware, job submission
services and job management services will result in a re-
duction in these communication overheads, allowing the
framework described in this paper to provide increased
performance for less computationally expensive problems.
However, this framework is not intended to replace se-
quential MOEAs in cases where the performance of the
sequential MOEA is satisfactory.
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Figure 12: Time taken to evaluate 50 individuals vs. the computa-
tional complexity of the objective function
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