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Abstract—The quality of Evolutionary Multi-Objective Optim-
isation (EMO) approximation sets can be measured by their
proximity, diversity and pertinence. In this paper we introduce a
modular and extensible Multi-Objective Evolutionary Algorithm
(MOEA) capable of converging to the Pareto-optimal front in a
minimal number of function evaluations and producing a diverse
approximation set. This algorithm, called the Covariance Matrix
Adaptation Pareto Archived Evolution Strategy (CMA-PAES),
is a form of (µ + λ) Evolution Strategy which uses an online
archive of previously found Pareto-optimal solutions (maintained
by a bounded Pareto-archiving scheme) as well as a population
of solutions which are subjected to variation using Covariance
Matrix Adaptation. The performance of CMA-PAES is compared
to NSGA-II (currently considered the benchmark MOEA in the
literature) on the ZDT test suite of bi-objective optimisation
problems and the significance of the results are analysed using
randomisation testing.

Index Terms—Meta-heuristics, Multi-Objective Optimisation,
Multi-Objective Evolutionary Algorithm, Evolution Strategy, Ad-
aptive Grid Archiving, Covariance Matrix Adaptation, Diversity
preservation, Pareto-optimal solutions

I. INTRODUCTION

The quality of Evolutionary Multi-Objective Optimisation
(EMO) candidate solution sets can be measured by their
proximity, diversity and pertinence. Proximity is a measure of
the distance between the approximation set and the true Pareto-
optimal front1 whilst diversity is a measure of the distribution
of solutions along that front in multi-objective space. An
ideal multi-objective optimiser converges to solutions that
are uniformly spread along the true Pareto-optimal front [3].
In real-world optimisation problems this approximation set
must also be pertinent [4] (that is relevant to the preferences
expressed by the Decision Maker (DM)). A good Multi-
Objective Evolutionary Algorithm (MOEA) satisfies these
goals adequately, presenting the DM with an approximation
set of diverse trade-off solutions within the search space of

1This notion of “Pareto” optimality was originally proposed by Francis
Edgeworth in 1881 [1] and was later developed by the Italian economist
Vilfredo Pareto in 1896 who used the concept in his studies of economic
efficiency and income distribution [2].

their specified Region Of Interest (ROI). These measures of
performance have been illustrated in figure 1.

Figure 1. Proximity, diversity, and pertinence characteristics in an approx-
imation set for a bi-objective problem.

The Covariance Matrix Adaptation (CMA) [5] mutation
scheme has been combined with a method of Bounded Pareto
Archiving inspired by the Pareto Archived Evolution Strategy
(PAES) introduced in [6], in a new algorithm named the
Covariance Matrix Adaptation Pareto Archived Evolutionary
Strategy (CMA-PAES). CMA-PAES is identified as a (µ+λ)
Evolution Strategy, which maintains a bounded archive of
previously found Pareto-optimal solutions governed by an
AGA scheme, alongside a population of solutions which are
subjected to mutation using CMA. As a result, the algorithm
has inherited the beneficial properties of its contributing al-
gorithms; namely the fast convergence to an approximation set
which is close to or part of the Pareto-optimal front and the
maintenance of diversity amongst solutions in its populations.

The structure of this paper is as follows: Section II contains
a brief survey on the field of EMO beginning with an intro-
duction on Evolutionary Algorithms (EAs), Multi-Objective
Optimisation (MOO), MOEAs and a overview of the current
state-of-the-art MOEAs. Section III is concerned with diversity
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preservation in MOEAs, beginning with an introduction to
diversity preservation in MOEAs, an overview of the trade-
off between proximity and diversity, and concluding with an
overview of methods of diversity preservation including those
used in the algorithms compared in the experiment.

Methods are described in section IV with a description of
CMA-PAES, an overview of the ZDT suite of test functions
and the difficulties each function imposes, the performance
metrics and randomisation testing used to produce the results,
and the configurations of the algorithms compared. Section
V contains the results and observations from the proximity
and diversity performance analysis. Section VI concludes the
paper with the some final observations and recommendations
for further work.

II. EVOLUTIONARY MULTI-OBJECTIVE OPTIMISATION

A. Evolutionary Algorithms

Evolutionary Computation (EC) refers to a methodology
concerning adaptive search and optimisation techniques, de-
rived from the mechanics of natural selection [7] and modern
genetics [8]. EC is a sub-field of Computational Intelli-
gence (CI) alongside other biologically inspired computing
techniques such as Artificial Neural Networks (ANN) and
Artificial Immune Systems (AIS), and as an interdisciplinary
field of research, it brings together theories of evolutionary
biology, computation, mathematics and physics. The emer-
gence of EC can be traced to the early 1930s when the
geneticist Sewall Wright [9] provided mathematicians with the
notion that evolution is a form of computation. Inspired by
these concepts, John Holland [10] laid down the foundations
for Evolutionary Algorithms (EA), based on the adaptive
processes of natural systems. The fundamentals of an EA
are population-based stochastic variation and selection, with
an emphasis on robustness [11], and were primarily used in
single-objective optimisation problems when minimising or
maximising only one objective function.

The flow of a general and basic EA is shown in figure 2. The
optimisation process begins by generating an initial population
of random candidate solutions which are then evaluated using
objective functions and assigned a fitness value based on the
objective value and potentially other values. A termination
criteria is then checked to see if the maximum number of
generations has been reached or any of the solutions are
satisfactory to stop the optimisation process, otherwise it will
continue onto selection of the fittest individuals from the
population. The selected candidate solutions are then used for
recombination to exploit the best solution information, and
mutation to allow for exploration of the search space beyond
the available solution information present in the population
and prevent the possibility of getting stuck in a local optima.

Ideas of solving real-valued optimisation problems using
the evolutionary process were considered by Rechenberg [12]
and Schwefel [13] which resulted in the formation of a set
of algorithms named “Evolution Strategies” (ES). The ES
process differed from other EA methods in two ways: ESs
used real-encoded parameter values; and they did not use
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Figure 2. General flow diagram of a basic Evolutionary Algorithm.

recombination operators, instead the variation of solutions
during the optimisation process is driven entirely by mutation.
ESs typically came in two forms: two-member ESs (1 + 1),
in which a single parent is used to create a single offspring
using a mutation operator; and multi-member ESs (µ + λ)
or (µ, λ), in which a population of µ solutions is used to
create λ offspring solutions using a mutation operator. In the
“plus” variation of the multi-member ES, both parent and
offspring populations are considered in selection for the next
parent population, whereas in the “comma” variation, only the
offspring population is used, making the (µ + λ) an elitist
procedure.

The Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) is a state-of-the-art single objective ES, first intro-
duced in [5] and later improved upon in [14] and [15]. It has
been shown to perform extremely well across a broad range
of problems in the continuous domain [16]. One of the key
beneficial properties of CMA-ES is the speed at which it can
find good approximations to (and in many cases the actual
value of) the global minimum. It is also extremely robust to
the initial parameter set used due to its self adaptive nature.

B. Multi-Objective Optimisation

Multi-Objective Optimisation (MOO), refers to problems
with two or more objective functions. This is frequently the
case with real-world problems in search and optimisation
which naturally involve multiple objectives or multiple cri-
teria [3]. A fundamental difference between single-objective
optimisation and MOO is that in single-objective optimisation
problems, the objective is to find a single solution which is the
global optimum in the entire search space. However, in MOO a
solution is actually an approximation set of candidate solutions
which offer trade-offs between the multiple objectives, where
an improvement in one objective value will result in a decline
in one or more of the others. This notion of “optimum”
solutions is called Pareto optimality.

x = (x1, x2, . . . , xn) (1)

optimise fm(x), m = 1, 2, . . . ,M ;
subject to gj(x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . ,K;

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, . . . , n;

 (2)



f(x) = (f1(x), f2(x), . . . , fM (x)) (3)

A solution x is defined in (1) as a vector of n decision
variables. In formula (2) we see a MOO problem in its general
form, taken from [3]. There are M objective functions each
with the definition in formula (3), these objective functions can
be either minimised or maximised. The constraint functions
gj(x) and hk(x) impose inequality and equality constraints
that must be satisfied by a solution x if it is to be considered
a feasible solution. Another condition deciding the feasibility
of a solution regards the adherence of a solution x to values
between the lower x(L)

i and upper x(U)
i boundaries within the

decision space.

C. Multi-Objective Evolutionary Algorithms

MOO problems had previously been solved by being treated
as single-objective problems by using techniques such as
the weighted sum approach [17]. In this approach different
weights are assigned to each objective function based on their
importance and their priority. These weighted objectives are
then aggregated into a single weighted sum, allowing the use of
conventional optimisation techniques to solve the problem. A
major disadvantage of using the weighted sum approach and
other conventional MOO approaches is that by design they
can only produce a single candidate solution per execution,
and therefore require multiple executions to generate a set of
trade-off solutions.

In contrast, MOEAs have inherited beneficial properties
from the principles on which they are based. EAs are suitable
for solving MOO problems, due to being population based
and therefore being able to generate and exploit more than
a single solution per generational iteration, this allows them
to find several solutions in the Pareto optimal set in a single
algorithm execution [18]. In addition, MOEAs do not require
auxiliary or derivative information about the problem, do not
require aggregation of objectives into a single objective, and
are less susceptible to the shape or continuity of the Pareto-
optimal front.

Within the last decade there have been major advances
in the field of EMO. Whilst the first generation of Pareto-
based MOEAs (such as the Multi-Objective Genetic Algorithm
(MOGA), Niched Pareto Genetic Algorithm (NPGA), and
Non-dominated Sorting Genetic Algorithm (NSGA)) were
characterised by the simplicity of the algorithms and lack of
rigorous methodology for their analysis [19], the latest gener-
ation of MOEAs have focussed on efficient convergence to the
whole of the true Pareto-optimal front. This is accomplished by
incorporating elitism (ensuring that the best solutions are never
lost during the optimisation process) and advanced methods
for the preservation of diversity (to ensure a good spread
of solutions across the whole Pareto-optimal front) into the
selection-for-survival process. There are two main strategies
for incorporating elitism into EMO algorithms – maintaining
an archive of non-dominated solutions and using a (µ + λ)
type selection-for-survival mechanism.

The archiving approach to elitism is typified by PAES
which proposes a conceptually simple MOEA capable of
producing a diverse approximation set with close proximity
to the true Pareto-optimal front [20]. PAES uses a (1 + 1)
ES in conjunction with a novel AGA scheme. This bounded
Pareto archive stores only non-dominated solutions that are
discovered during the search and a non-dominated candidate
solution is compared to the archive before it is accepted as
a current solution. Once the archive has reached capacity, a
grid system (whereby the search space currently covered by
non-dominated solutions is divided up into a set number of
partitions) is used to decide which archived solution to remove
to allow space for a new non-dominated solution in a less
populated region of the search space to be added. Using a set
of rules for grid and archive management, diversity is achieved
amongst the archive. Variations of the AGA system used in
PAES have been used in other MOEAs; for example, in the
Pareto Envelope-based Selection Algorithm (PESA) [21].

The (µ+λ) type elitist selection-for-survival mechanism is
typified by the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) proposed in [22]. This algorithm uses a crowded
comparison operator in selection-for-survival that takes into
consideration both the non-domination rank of a candidate
solution and its crowding distance (a measure of the density of
solutions surrounding a particular individual). NSGA-II then
uses this crowded comparison operator to choose the new
population from the combined parent and child populations.
NSGA-II is widely regarded as the leading MOEA and has
been well tested on a range of synthetic benchmarks and real-
world problems.

The Multi-Objective Covariance Matrix Adaptation Evol-
ution Strategy (MO-CMA-ES) is a variant of the powerful
single objective CMA-ES designed to solve MOO problems
[23]. The MO-CMA-ES maintains a population of elitist solu-
tions that adapt their search strategy depending on the shape
of the underlying search landscape. There are two variations
of the MO-CMA-ES: the s-MO-CMA-ES which uses the
contributing hyper-volume measure (or s-metric) introduced
in [24], and the c-MO-CMA-ES which uses the crowding-
distance measure introduced in NSGA-II. Whilst initial results
have shown that MO-CMA-ES is extremely promising, it
is as yet predominately untested on real-world engineering
problems. Some results show that MO-CMA-ES struggles to
converge to good solutions on problems with many deceptive
locally Pareto-optimal fronts - a feature that can be common
in real world problems [25].

The Multi-objective Evolutionary Algorithm Based on De-
composition (MOEA/D) is a generic framework which in-
corporates decomposition. MOEA/D solves multi-objective
optimisation problems by decomposing them into many single-
objective optimisation sub-problems, these are then optimised
simultaneously using an island population approach using
only information from their neighbouring populations [26].
With advanced decomposition methods, MOEA/D is able to
generate evenly distributed solutions among its sub-problems
which naturally leads to diversity among solutions in the



produced approximation set.

III. DIVERSITY PRESERVATION

A. Diversity Preservation in Multi-Objective Evolutionary Al-
gorithms

After proximity to the true Pareto-optimal front, diversity of
solutions in an approximation set is the most desired quality
in a robust MOEA. The reason for this is because in EMO,
and MOO in general, there exists no single ideal solution to a
problem. Instead there exist many trade-off solutions, and in
the Pareto-optimal set, the minimisation of one objective will
result in the increase of another objective. For this reason, DM
requires a set of Pareto-optimal solutions that are uniformly
spread along the objective space to allow the DM to see the
trade-off information and use expert knowledge to select a
final solution.

Figure 3 presents an ideal approximation set of solutions
uniformly distributed along the Pareto-optimal front, this is an
approximation set with both ideal proximity and diversity. In
another scenario presented in figure 4, the EMO process has
successfully converged to solutions along the Pareto-optimal
front, however it has not achieved a satisfactory level of
diversity amongst the approximation set. This scenario does
not offer the DM with adequate information to make a well-
informed decision.

Figure 3. A 10 point approximation set with ideal diversity.

Figure 4. A 10 point approximation set with undesirable diversity.

B. Trade-offs between Proximity and Diversity

The EMO process (and MOO process in general) is presen-
ted with a multi-objective trade-off of its own. This trade-off
arises due to the conflict between attaining ideal proximity
and diversity in an approximation set. This is a bi-objective
trade-off which exists in most cases where the true Pareto-
optimal set is not known, in such a case it is not possible
to determine whether the approximation set has converged
to the true Pareto-optimal front, and therefore diversity pre-
servation cannot become the focus of the remainder of the
search. However, diversity preservation usually comes second
to obtaining a good approximation set, as stated in [27], the
goal of diversity preservation is to preserve diversity along
an approximation set as close to the Pareto-optimal front as
possible.

The example in figure 5 illustrates the trade-off between
proximity and diversity. Set 2 has a more diverse population
of solutions in comparison to Set 1; however Set 1 is closer in
proximity to the Pareto-optimal front than Set 2. In this case,
the better diversity offered by Set 2 is not as valuable as the
proximity offered by Set 1.

Figure 5. An illustration of the trade-off between proximity and diversity to
the Pareto-optimal front of an objective function.

C. Methods of Diversity Preservation

1) Niching: One of the earliest forms of diversity preserva-
tion in MOEAs is to use niching to maintain the diversity in the
Pareto-optimal set. This was first proposed by De Jong [28] to
combat the problems of population drift in multi-modal single
objective EAs and aims to maintain multiple niches in the
population by modelling competition amongst individuals in
the same niche for limited resources. This results in a selection
pressure towards less crowded areas of the search space. In the
crowding factor approach to niche formation [28], the solution
from a sample of the parent population which is most similar to
the child solution is replaced in the current generation. Many
of the early generation of Pareto-based MOEAs used some
kind of niching based diversity preservation mechanism such
as fitness sharing in objective space.

2) Crowding Comparison Operator: The crowded compar-
ison operator is used in various stages of NSGA-II to guide



its selection process towards an approximation set with uni-
formly spread out solutions. Associated with each individual
in a population is two algorithm specific properties: a non-
domination rank, in which solutions are ranked by the number
of solutions they are dominated by, found using the fast non-
dominated sorting approach; and a local crowding distance,
which is an estimation of the density of solutions surrounding
a particular solution in the population [22], [29]. Between two
solutions with different non-domination ranks, the solution
with the lower rank is given preference. However, if both
solutions are of the same domination rank, then the solution
which is located in a region with the least number of solutions
is given preference.

3) Bounded Pareto Archiving: Bounded Pareto archiving
(as in the adaptive grid archiving strategy used in both PAES
and the CMA-PAES algorithm introduced in this paper) is
a simple yet powerful diversity preservation scheme which
uses an adaptive grid to keep track of the density of solutions
within the search space [6]. To achieve this a grid with a pre-
set number of divisions is used to divide the search space,
and when a solution is generated its grid location is identified
and associated with it. Each grid location is considered to
contain its own population, and information on how many
solutions in the archive are located in a certain grid location
is available during the optimisation process. When the archive
has reached capacity and a candidate solution is to be archived,
the information tracked by the adaptive grid algorithm is used
to replace a solution in a population containing the highest
number of solutions, on the condition that the candidate
solutions own grid location does not contain that number.
When a candidate solution is non-dominated in regards to the
current solution and the archive, the grid information is used
to select the solution from the grid location with the smaller
population size.

IV. METHODOLOGY

A. CMA-PAES

The purpose for the design and development of CMA-PAES
was to arrive at a MOEA benefiting from both the diversity
preservation features of AGA and the fast convergence and
adaptation of the CMA-ES. A PAES inspired structure was
selected as the base framework - due to the simplicity of the
algorithm - and thus extending the algorithm with enhance-
ments is an intuitive task. The CMA scheme for maintaining
a covariance matrix and mutating solutions was inserted in
the appropriate areas of the framework, resulting in a modular
algorithm which directs the flow of operations through the
pre-eminent features of its contributing algorithms.

CMA-PAES begins by initializing the algorithm variables
and parameters including: the number of grid divisions used
in the AGA; the archive for storing non-dominated solutions;
the parent vector Y; and the covariance matrix. An initial
current solution is then generated at random, evaluated and
then the first to be added to the archive. The generational
loop then begins, the square root of the covariance matrix is
resolved using Cholsky decomposition, and then λ candidate

solutions are generated using copies of the current solution and
the CMA-ES procedure for mutation before being evaluated.
The archive is then merged with the newly generated offspring
and subjected to Pareto ranking, this assigns a rank of zero
to all non-dominated solutions, and a rank reflecting the
number of solutions that dominate inferior solutions. These
population is then purged of inferior solutions so that only non-
dominated solutions remain before being fed into the Bounded
Pareto Archiving procedure. After the candidate solutions have
gone through the archiving procedure and the grid has been
adapted to the new solution coverage of objective space,
the archive is scanned to identify the grid location with the
smallest population, this is considered the lowest density grid
population (ldgp) . The solutions from the ldgp are then
spliced onto the end of the first µ − ldgp of the Pareto rank
ordered population to be included in the adaptation of the
covariance matrix, with the aim to improve the diversity of
the next generation by encouraging movement into the least
dense area of the grid. After the covariance matrix is updated,
the generational loop continues onto its next iteration until the
pre-specified maximum number of generations are met. The
flow of the algorithm is illustrated in figure 6.

B. ZDT Test Suite

Both CMA-PAES and NSGA-II were tested using the
ZDT suite of test functions defined in [30]. The test suite
contains six test functions which provide sufficient complexity
to compare multi-objective optimisers: ZDT1, ZDT2, ZDT3,
ZDT4, ZDT5 and ZDT6, with each function incorporating a
feature that is known to cause the EMO process difficulty in
convergence to the Pareto-optimal front, and the maintenance
of diversity in the approximation set. Each test function has
two objectives and is concerned with their minimisation.

A summary of each of the difficult features that each ZDT
test function imposes is given in the following:

ZDT1-30 variable problem; convex Pareto-optimal front.
ZDT2-30 variable problem; convex Pareto-optimal front.
ZDT3-30 variable problem; Pareto-optimal front consists

of non-contiguous convex parts. Discontinuity in the
Pareto-optimal front introduced with sine function.

ZDT4-10 variable problem; tests the ability to handle multi-
modality with 219 local Pareto-optimal fronts.

ZDT6 10 variable problem; solutions non-uniformly dis-
tributed along Pareto-optimal front. Low diversity of
solutions near the Pareto-optimal front.

ZDT5 was not included in the experiment due to the require-
ment for binary represented decision variables. Each algorithm
was tested using the parameters specified in section IV-D.

C. Performance Metrics and Randomisation Testing

Due to the EMO process being stochastic by nature, each
algorithm was executed 250 times against each test function,
in an effort to minimise stochastic noise and increase the
integrity of the comparison between the two algorithms. The
performance of each algorithm execution was then measured
using metrics to assess the quality of the approximation set,
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in terms of proximity to the true Pareto-optimal front and the
diversity of solutions in the population.

A statistical comparison of the performance of CMA-PAES
and NSGA-II was conducted by computing the t-values2 of
the proximity and diversity metrics produced by both the
algorithms. Two aspects of the quality of the approximation
set produced by the optimiser are used here to characterise
the performance of the algorithm: the proximity to the true
Pareto-optimal front (measured by the generational distance
[31]) and the diversity of the approximation set (measured by
the spread [22]).

The significance of these results was then analysed using
randomisation testing. The main advantage of randomisation
testing is that it is a non-parametric test and therefore does not
require any assumptions to be made about the data [32]. The
basic premise is that, if the null hypothesis is true (i.e. that
any difference in performance has arisen by chance), then the
observed result will appear as a typical value in many random

2The t-value is the difference between the means of the datasets divided
by the standard error.

re-samplings of the data. The randomisation test procedure is
outlined below:

1) Compute the t-value of the two datasets. This is the
observed result.

2) Randomly reshuffle the data and divide into two sets.
Then recompute the t-value.

3) Repeat step 2 a large number of times to obtain the
randomised distribution.

4) If the observed result appears a typical value in this
randomised distribution, the accept the null hypothesis
as true. Otherwise consider the alternative hypothesis
(i.e. that one algorithm has outperformed the other).
If the observed result appears in the top 5% of the
randomised distribution it is said to be “significant at
the 5% level”.

In the following experiments, the results of randomisation
testing is shown graphically. Figure 7 illustrates a typical ran-
domisation test result. The randomised distribution is shown
as a histogram and the observed result is shown as an asterisk
on the x axis. An observed result to the left of the histogram
indicates that set A outperforms set B, whilst an observed
result to the right indicates the opposite is true (since the
smaller the t-value the better the performance of set A). An
observed result towards the middle of the histogram indicates
that the null hypothesis is true. In the following experiments,
set A represents CMA-PAES, and set B represents NSGA-II.

Figure 7. An example randomisation test result (set B outperforms set A)

D. Algorithm Configurations

The algorithms have been configured so they execute both
8000 function evaluations on each problem by ensuring the
population size and number of generations for each algorithm
are configured correctly. These parameter configurations are
presented in table I. NSGA-II generates and evaluates a
population of 100 individuals at each of the 80 generations,
compared with CMA-PAES which generates and evaluates 400
individuals at each of the 20 generations.

V. RESULTS

Figure 8 presents the results of the randomisation testing
conducted on the diversity and proximity metrics, these are
shown visually in the form of histograms. Instructions on how
to interpret these results are described in section IV-C. Based
on the results CMA-PAES appears to significantly outperform
NSGA-II on all but one of the test functions from the ZDT
test suite.



Figure 8. Randomisation testing results for proximity and diversity performance between NSGA-II and CMA-PAES, illustrated as a histogram.

Table I
PARAMETERS USED FOR TESTING NSGA-II AND CMA-PAES, WHERE n

IS THE NUMBER OF DECISION VARIABLES.

Parameter NSGA-II CMA-PAES
µ/ Population 100 100
λ/ Offspring 100 400
Generations 80 20

Archive Capacity — 100
Grid Divisions — 100
Mutation Rate 1/n —
Crossover Rate 0.9 —

On the test functions ZDT1 to ZDT3, the results indicate
that with the algorithm configurations and performance metrics
used, CMA-PAES provides better performance in regard to
both the proximity of the approximation set to the true Pareto-
optimal front, as well as better diversity of solutions within
that approximation set. This also verifies that CMA-PAES is
capable of converging to convex (or several non-contiguous
convex) and non-convex Pareto-optimal fronts in search spaces
of up to 30 variables.

The results for the ZDT4 test function shows better proxim-
ity to the true Pareto-optimal front for CMA-PAES; however,
should a higher number of function evaluations be allowed
the CMA-PAES is expected to prematurely converge to a local
Pareto-front and get stuck there. This behaviour has been seen
in [25] for the MO-CMA-ES algorithm and is a feature of
the CMA strategy used for variation. Therefore it is assumed
that CMA-PAES on ZDT4 converges to or close to a local
Pareto-optimal front, but does it quickly, explaining why on
fewer function evaluations CMA-PAES outperforms NSGA-
II. If a higher number of function evaluations were allowed it
is expected that NSGA-II would consistently outperform the

CMA-PAES on ZDT4.
The results for the ZDT6 test function indicate that CMA-

PAES performs better than NSGA-II in both proximity and
diversity; however, the difference in proximity is less pro-
nounced than in the other test functions used. This also verifies
that the CMA-PAES is capable of converging to the Pareto-
optimal front whilst maintaining good diversity when there
is non-uniformity in the search space, with non-uniformly
distributed solutions along the global Pareto-optimal front and
reduction in density as proximity to that global front decreases.

A comparison with PAES is also presented in table II, where
it can be seen that CMA-PAES generally out-performs PAES
on all test functions except ZDT 4 and 6. PAES was configured
to run for 8000 generations using the (1+1) scheme, with the
same AGA parameters as CMA-PAES and a mutation rate of
0.1.

.

Table II
MEAN PROXIMITY AND DIVERSITY PERFORMANCE BETWEEN NSGA-II,
CMA-PAES (LABELLED C-PAES) AND PAES, WHERE BOLD INDICATES

BETTER PERFORMANCE.

Proximity Diversity
NSGA-II C-PAES PAES NSGA-II C-PAES PAES

ZDT1 5.5424e-3 2.9595e-6 6.5509e-4 0.54068 0.3196 0.46956
ZDT2 8.0361e-3 2.6856e-6 3.7290e-4 0.63053 0.3484 0.5163
ZDT3 6.5881e-3 2.9433e-5 6.0431e-4 0.73752 0.52584 0.74639
ZDT4 5.2814e+1 1.8062e+1 0.22426 0.93150 0.97824 0.84992
ZDT6 2.4718e-2 1.5756e-2 7.2758e-3 1.1212 0.5923 0.7325

VI. CONCLUSIONS

Benchmarking and performance analysis of the algorithm
returned promising results that suggest on some problems
CMA-PAES is faster at converging to an approximation set



close to or on the true Pareto-optimal front as well as returning
a diverse set of solutions in regards to points in objective space.

These observations held in the comparison with NSGA-II on
equal function evaluations, however, in this paper, no serious
attempt was made to find the optimal parameter settings
for CMA-PAES. As previously mentioned CMA-PAES and
other CMA driven MOEAs fail to perform adequately on
ZDT4, further work is to be put into identifying a method
for preventing CMA-PAES to be deceived into prematurely
converging to locally Pareto-optimal fronts. There is potential
in treating a small portion of the population to additional
methods of mutation (e.g. Gaussian mutation) to encourage
exploration of the search space independent of the CMA
mutation scheme.

Further work on the CMA-PAES is planned to improve the
pertinence of its final approximation set by using preference
articulation techniques such as those used in the Indicator
Based Evolutionary Algorithm (IBEA) [33], allowing focus
and encouragement towards a desired ROI during the EMO
process. A review and discussion of popular methods of
incorporating preference articulation into an EMO can be
found in [34]. Further performance analysis is also required
to investigate the performance of CMA-PAES on problems of
greater than two objectives, such as the test instances described
in CEC 2009 [35], as well as a comparison between CMA-
PAES and other MOEAs using CMA such as the MO-CMA-
ES variants.
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