We present a high resolution simulation of an idealized model to explain the
origin of the two young, counter-rotating, sub-parsec scale stellar disks
around the supermassive black hole SgrA* at the Center of the Milky Way. In our
model, the collision of a single molecular cloud with a circum-nuclear gas disk
(similar to the one observed presently) leads to multiple streams of gas
flowing towards the black hole and creating accretion disks with angular
momentum depending on the ratio of cloud and circum-nuclear disk material. The
infalling gas creates two inclined, counter-rotating sub-parsec scale accretion
disks around the supermassive black hole with the first disk forming roughly 1
Myr earlier, allowing it to fragment into stars and get dispersed before the
second, counter-rotating disk forms. Fragmentation of the second disk would
lead to the two inclined, counter-rotating stellar disks which are observed at
the Galactic Center. A similar event might be happening again right now at the
Milky Way Galactic Center. Our model predicts that the collision event
generates spiral-like filaments of gas, feeding the Galactic Center prior to
disk formation with a geometry and inflow pattern that is in agreement with the
structure of the so called mini-spiral that has been detected in the Galactic
Center.Comment: 14 pages, 12 figures, submitted to Ap