78 research outputs found

    Multicycle dynamics of fault systems and static and dynamic triggering of earthquakes

    Get PDF
    Dynamic simulations of rupture propagation and multiple earthquake cycles for varying fault geometries are presented. We investigate the role of both dynamic and static stress changes on earthquake triggering. Dynamic stress triggering of earthquakes is caused by the passage of seismic waves, whereas static stress triggering is due to net slippage on a fault resulting from an earthquake. Static stress changes represented by a Coulomb failure function and its relationship to seismicity rate change is a relatively well-known mechanism, whereas the physical origin of dynamic triggering remains one of the least understood aspects of earthquake nucleation. We investigate these mechanisms by analysing seismicity patterns with varying fault separation, geometry and with and without dynamic triggering present

    Analysis of slip-weakening frictional laws with static restrengthening and their implications on the scaling, asymmetry and mode of dynamic rupture on homogeneous and bi-material interfaces

    Get PDF
    Dynamic simulations of homogeneous and heterogeneous fault rupture using the finite element method are presented giving rise to both crack-like and pulse-like rupture. We employ various slip-weakening frictional laws to examine their effect on the resulting earthquake rupture speed, size and mode. More complex rupture characteristics were produced with more strongly slip-weakening frictional laws, and the degree of slip-weakening had to be finely tuned to reproduce realistic earthquake rupture characteristics. Rupture propagation on a fault is controlled by the constitutive properties of the fault. A dynamic elasto-plastic constitutive law for the interface friction at the fault is formulated based on the Coulomb failure criterion and applied in a way analogous to non-associated elasto-plasticity. We provide benchmark tests of our method against other reported solutions in the literature. We demonstrate the applicability of our elasto-plastic fault model for modeling dynamic rupture and wave propagation in fault systems, and the rich array of dynamic properties produced by our elasto-plastic finite element fault model. These are governed by a number of model parameters including: the spatial and material heterogeneity of the fault, the fault strength, and not least of all the frictional law employed. Asymmetric bilateral fault rupture was produced for the heterogeneous case, where the degree of heterogeneity influenced the rupture speed in the different propagation directions

    Dynamic triggering of earthquakes is promoted by crustal heterogeneities and bimaterial faults

    Get PDF
    Remotely triggered earthquakes and aftershocks constitute a great challenge in assessing seismic risk. A growing body of observations indicates that significant earthquakes can be triggered by moderate to great earthquakes occurring at distances of up to thousands of kilometres. Currently we lack the knowledge to predict the location of triggered events. We present numerical simulations showing that dynamic interactions between material heterogeneities (e.g. compliant fault zones, sedimentary basins) and seismic waves focus and enhance stresses sufficiently to remotely trigger earthquakes. Numerical simulations indicate that even at great distances (>100 km), the amplified transient dynamic stress near heterogeneities is equivalent to stress levels near the source rupture tip

    esys User's guide: Solving partial differential equations with Escript and Finley. Release 3.0 (r2601)

    Get PDF
    esys.escript is a python-based environment for implementing mathematical models, in particular those based on coupled, non-linear, time-dependent partial differential equations. It consists of four major components: • esys.escript core library • finite element solver esys.finley (which uses fast vendor-supplied solvers or our paso linear solver library) • the meshing interface esys.pycad • a model library. The current version supports parallelization through both MPI for distributed memory and OpenMP for distributed shared memory. The esys.pyvisi module from previous releases has been deprecated. For more info on this and other changes from previous releases see Appendix A.2. If you use this software in your research, then we would appreciate (but do not require) a citation. Some relevant references can be found in Appendix A.3

    Identification of supershear transition mechanisms due to material contrast at bimaterial faults

    Get PDF
    Numerical modelling of dynamic rupture is conducted along faults separating similar and dissimilar materials. Supershear transition is enhanced in the direction of slip of the stiffer material (the negative direction) due to the bimaterial effect whereby a decrease in normal stress in front of the crack tip supports yielding ahead of the rupture. In the direction of slip of the more compliant material (the positive direction), an increase in normal stress ahead of the rupture tip delays or prevents the supershear transition, whereas the impact of the bimaterial effect on subshear ruptures is to promote rupture in the positive direction due to the tensile stress perturbation behind the rupture tip in this direction. We demonstrate that the material contrast and the parameter S control whether the transition from sub- to supershear velocity (supershear transition) is smooth or follows the Burridge–Andrews mechanism. Supershear transition along interfaces separating dissimilar materials is possible for higher values of the parameter S than supershear transition along material interfaces separating similar materials. The difference between pulse-like and crack-like rupture is small with regard to the supershear transition type

    Bottlenecks in granular flow: When does an obstacle increase the flowrate in an hourglass?

    Full text link
    Bottlenecks occur in a wide range of applications from pedestrian and traffic flow to mineral and food processing. We examine granular flow across a bottleneck using particle-based simulations. Contrary to expectations we find that the flowrate across a bottleneck actually increases if an opti- mized obstacle is placed before it. The dependency of flowrate on obstacle diameter is derived using a phenomenological velocity-density relationship that peaks at a critical density. This relationship is in stark contrast to models of traffic flow, as the mean velocity does not depend only on density but attains hysteresis due to interaction of particles with the obstacle.Comment: Submitted to Phys. Rev. Let

    Stress heterogeneities in earthquake rupture experiments with material contrasts

    Get PDF
    We investigate significant heterogeneous stresses along bimaterial interfaces in laboratory and numerical experiments. These stresses, partially induced by model or experimental configuration, affect the supershear transition length and rupture speed, mode and directivity in uniaxial compression tests and dynamic rupture experiments with bimaterial interfaces. Using numerical simulations we show that normal and tangential stresses at the fault are distorted by the different stress-strain relationships of the materials. This distortion leads to altered supershear transition lengths, higher rupture potencies and amplifies the preference for rupture in the direction of slip of the slower and more compliant material. We demonstrate how this stress-distortion can be decreased in laboratory experiments by using larger specimen samples and in numerical models by using periodic boundary conditions

    Damage in step-overs may enable large cascading earthquakes

    Get PDF
    Seismic hazard analysis relies on the ability to predict whether an earthquake will terminate at a fault tip or propagate onto adjacent faults, cascading into a larger, more devastating event. While ruptures are expected to arrest at fault discontinuities larger than 4–5 km, scientists are often puzzled by much larger rupture jumps. Here we show that material properties between faults significantly affect the ability to arrest propagating ruptures. Earthquake simulations accounting for fault step-over zones weakened by accumulated damage provide new insights into rupture propagation. Revealing that lowered rigidity and material interfaces promote rupture propagation, our models show for the first time that step-overs as wide as 10 km may not constitute effective earthquake barriers. Our results call for re-evaluation of seismic hazard analyses that predict rupture length and earthquake magnitude based on historic records and fault segmentation models

    Bridging the macro to mesoscale: evaluating the fourth-order anisotropic damage tensor parameters from ultrasonic measurements of an isotropic solid under triaxial stress loading

    No full text
    One of the most challenging problems which arises in continuum damage mechanics is the selection of variables to describe the internal damage. Many theories have been proposed and various types of damage variables ranging from scalar to vector to tensor quantities have been used. In this paper we consider anisotropic damage and the most general form for damage by using a fourth-order tensor for the damage variables. We demonstrate how experimentally measured quantities can be related to the internal tensorial damage variables. We apply this analysis to experiments of an initially isotropic solid becoming transverse isotropic under triaxial or uniaxial stress loading
    • …
    corecore