
esys User’s Guide:
Solving Partial Differential Equations

with Escript and Finley
Release 3.0

(r2601)

Lutz Gross et al. (Editor)

Earth Systems Science Computational Centre (ESSCC)
School of Earth Sciences

The University of Queensland
Brisbane, Australia

Email: esys@esscc.uq.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15070551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright (c) 2003-2009 by University of Queensland
Earth Systems Science Computational Center (ESSCC)

School of Earth Sciences
http://www.uq.edu.au/esscc

Primary Business: Queensland, Australia
Licensed under the Open Software License version 3.0

http://www.opensource.org/licenses/osl-3.0.php

Abstract

esys.escript is a python-based environment for implementing mathematical models, in particular those based
on coupled, non-linear, time-dependent partial differential equations.

It consists of four major components

• esys.escript core library

• finite element solver esys.finley (which uses fast vendor-supplied solvers or our paso linear solver
library)

• the meshing interface esys.pycad

• a model library.

The current version supports parallelization through both MPI for distributed memory and OpenMP for distributed
shared memory. The esys.pyvisi module from previous releases has been deprecated. For more info on this
and other changes from previous releases see Appendix A.2.

If you use this software in your research, then we would appreciate (but do not require) a citation. Some relevant
references can be found in Appendix A.3.

CONTENTS

1 Tutorial: Solving PDEs 1
1.1 Installation . 1
1.2 The First Steps . 1
1.3 The Diffusion Problem . 8
1.4 3-D Wave Propagation . 13
1.5 Elastic Deformation . 19
1.6 Stokes Flow . 22

2 Execution of an escript Script 27
2.1 Overview . 27
2.2 Options . 28
2.3 Input and Output . 29
2.4 Hints for MPI Programming . 29

3 The Module esys.escript 31
3.1 esys.escript Classes . 35
3.2 Physical Units . 46
3.3 Utilities . 48

4 The Module esys.escript.linearPDEs 51
4.1 Linear Partial Differential Equations . 51
4.2 Solver Options . 55

5 The Module esys.pycad 63
5.1 Introduction . 63
5.2 esys.pycad Classes . 64
5.3 Interface to the mesh generation software . 67

6 Models 69
6.1 Stokes Problem . 69
6.2 Darcy Flux . 71
6.3 Isotropic Kelvin Material . 74

7 The Module esys.finley 79
7.1 Formulation . 79
7.2 Meshes . 79

A Misc 89
A.1 Einstein Notation . 89
A.2 Changes from previous releases . 90
A.3 escript references . 91

B The Module esys.pyvisi 93
B.1 Introduction . 93

i

B.2 esys.pyvisi Classes . 93
B.3 More Examples . 111
B.4 Useful Keys . 115
B.5 Sample Output . 116

Index 119

ii

CHAPTER

ONE

Tutorial: Solving PDEs

1.1 Installation

To download escript and friends , please visit https://launchpad.net/escript-finley. The web site will offer binary
distributions for some platforms and provide information about the installation process..

Please direct any questions you might have to mailto:esys@esscc.uq.edu.au.

1.2 The First Steps

In this chapter we give an introduction how to use esys.escript to solve a partial differential equation (PDE
). We assume you are at least a little familiar with Python. The knowledge presented at the Python tutorial at
http://docs.python.org/tut/tut.html is more than sufficient.

The PDE we wish to solve is the Poisson equation

−∆u = f (1.1)

for the solution u. The function f is the given right hand side. The domain of interest, denoted by Ω, is the unit
square

Ω = [0, 1]2 = {(x0;x1)|0 ≤ x0 ≤ 1 and 0 ≤ x1 ≤ 1} (1.2)

The domain is shown in Figure 1.1.

FIGURE 1.1: Domain Ω = [0, 1]2 with outer normal field n.

∆ denotes the Laplace operator, which is defined by

∆u = (u,0),0 + (u,1),1 (1.3)

1

where, for any function u and any direction i, u,i denotes the partial derivative of u with respect to i. 1 Basically,
in the subindex of a function, any index to the left of the comma denotes a spatial derivative with respect to the
index. To get a more compact form we will write u,ij = (u,i),j which leads to

∆u = u,00 + u,11 =
2∑
i=0

u,ii (1.4)

We often find that use of nested
∑

symbols makes formulas cumbersome, and we use the more convenient Einstein
summation convention . This drops the

∑
sign and assumes that a summation is performed over any repeated

index. For instance we write

xiyi =
2∑
i=0

xiyi (1.5)

xiu,i =
2∑
i=0

xiu,i (1.6)

u,ii =
2∑
i=0

u,ii (1.7)

xijui,j =
2∑
j=0

2∑
i=0

xijui,j (1.8)

(1.9)

With the summation convention we can write the Poisson equation as

−u,ii = 1 (1.10)

where f = 1 in this example.

On the boundary of the domain Ω the normal derivative niu,i of the solution u shall be zero, ie. u shall fulfill the
homogeneous Neumann boundary condition

niu,i = 0 . (1.11)

n = (ni) denotes the outer normal field of the domain, see Figure 1.1. Remember that we are applying the Einstein
summation convention , i.e niu,i = n0u,0 +n1u,1. 2 The Neumann boundary condition of Equation (1.11) should
be fulfilled on the set ΓN which is the top and right edge of the domain:

ΓN = {(x0;x1) ∈ Ω|x0 = 1 or x1 = 1} (1.12)

On the bottom and the left edge of the domain which is defined as

ΓD = {(x0;x1) ∈ Ω|x0 = 0 or x1 = 0} (1.13)

the solution shall be identically zero:
u = 0 . (1.14)

This kind of boundary condition is called a homogeneous Dirichlet boundary condition . The partial differential
equation in Equation (1.10) together with the Neumann boundary condition Equation (1.11) and Dirichlet bound-
ary condition in Equation (1.14) form a so called boundary value problem (BVP) for the unknown function u.

In general the BVP cannot be solved analytically and numerical methods have to be used construct an approxi-
mation of the solution u. Here we will use the finite element method (FEM). The basic idea is to fill the domain
with a set of points called nodes. The solution is approximated by its values on the nodes. Moreover, the domain

1You may be more familiar with the Laplace operator being written as∇2, and written in the form

∇2u = ∇t · ∇u =
∂2u

∂x2
0

+
∂2u

∂x2
1

and Equation (1.1) as
−∇2u = f

2Some readers may familiar with the notation ∂u
∂n

= niu,i for the normal derivative.

2 Chapter 1. Tutorial: Solving PDEs

FIGURE 1.2: Mesh of 4 elements on a rectangular domain. Here each element is a quadrilateral and described by four
nodes, namely the corner points. The solution is interpolated by a bi-linear polynomial.

is subdivided into smaller sub-domains called elements . On each element the solution is represented by a poly-
nomial of a certain degree through its values at the nodes located in the element. The nodes and its connection
through elements is called a mesh. Figure 1.2 shows an example of a FEM mesh with four elements in the x0 and
four elements in the x1 direction over the unit square. For more details we refer the reader to the literature, for
instance Reference [28, 5].

The esys.escript solver we want to use to solve this problem is embedded into the python interpreter lan-
guage. So you can solve the problem interactively but you will learn quickly that is more efficient to use scripts
which you can edit with your favorite editor. To enter the escript environment you use escript command3:

escript

which will pass you on to the python prompt

Python 2.5.2 (r252:60911, Oct 5 2008, 19:29:17)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Here you can use all available python commands and language features, for instance

>>> x=2+3
>>> print "2+3=",x
2+3= 5

We refer to the python users guide if you not familiar with python.

esys.escript provides the class Poisson to define a Poisson equation . (We will discuss a more general
form of a PDE that can be defined through the LinearPDE class later). The instantiation of a Poisson class
object requires the specification of the domain Ω. In esys.escript the Domain class objects are used to
describe the geometry of a domain but it also contains information about the discretization methods and the actual
solver which is used to solve the PDE. Here we are using the FEM library esys.finley . The following
statements create the Domain object mydomain from the esys.finley method Rectangle

from esys.finley import Rectangle
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)

In this case the domain is a rectangle with the lower, left corner at point (0, 0) and the right, upper corner at

3escript is not available under Windows yet. If you run under windows you can just use the python command and the
OMP NUM THREADS environment variable to control the number of threads.

1.2. The First Steps 3

(l0, l1) = (1, 1). The arguments n0 and n1 define the number of elements in x0 and x1-direction respectively. For
more details on Rectangle and other Domain generators within the esys.finley module, see Chapter 7.

The following statements define the Poisson class object mypde with domain mydomain and the right hand side
f of the PDE to constant 1:

from esys.escript.linearPDEs import Poisson
mypde = Poisson(mydomain)
mypde.setValue(f=1)

We have not specified any boundary condition but the Poisson class implicitly assumes homogeneous Neuman
boundary conditions defined by Equation (1.11). With this boundary condition the BVP we have defined has no
unique solution. In fact, with any solution u and any constant C the function u + C becomes a solution as well.
We have to add a Dirichlet boundary condition . This is done by defining a characteristic function which has
positive values at locations x = (x0, x1) where Dirichlet boundary condition is set and 0 elsewhere. In our case
of ΓD defined by Equation (1.13), we need to construct a function gammaD which is positive for the cases x0 = 0
or x1 = 0. To get an object x which contains the coordinates of the nodes in the domain use

x=mydomain.getX()

The method getX of the Domain mydomain gives access to locations in the domain defined by mydomain. The
object x is actually a Data object which will be discussed in Chapter 3 in more detail. What we need to know
here is that

x has rank (number of dimensions) and a shape (list of dimensions) which can be viewed by calling the getRank
and getShape methods:

print "rank ",x.getRank(),", shape ",x.getShape()

This will print something like

rank 1, shape (2,)

The Data object also maintains type information which is represented by the FunctionSpace of the object.
For instance

print x.getFunctionSpace()

will print

Function space type: Finley_Nodes on FinleyMesh

which tells us that the coordinates are stored on the nodes of (rather than on points in the interior of) a
esys.finley mesh. To get the x0 coordinates of the locations we use the statement

x0=x[0]

Object x0 is again a Data object now with rank 0 and shape (). It inherits the FunctionSpace from x:

print x0.getRank(),x0.getShape(),x0.getFunctionSpace()

will print

0 () Function space type: Finley_Nodes on FinleyMesh

We can now construct a function gammaD which is only non-zero on the bottom and left edges of the domain with

from esys.escript import whereZero
gammaD=whereZero(x[0])+whereZero(x[1])

whereZero(x[0]) creates function which equals 1 where x[0] is (almost) equal to zero and 0 elsewhere.
Similarly, whereZero(x[1]) creates function which equals 1 where x[1] is equal to zero and 0 elsewhere.
The sum of the results of whereZero(x[0]) and whereZero(x[1]) gives a function on the domain mydo-
main which is strictly positive where x0 or x1 is equal to zero. Note that gammaD has the same rank , shape and
FunctionSpace like x0 used to define it. So from

print gammaD.getRank(),gammaD.getShape(),gammaD.getFunctionSpace()

4 Chapter 1. Tutorial: Solving PDEs

one gets

0 () Function space type: Finley_Nodes on FinleyMesh

An additional parameter q of the setValue method of the Poisson class defines the characteristic function of
the locations of the domain where homogeneous Dirichlet boundary condition are set. The complete definition of
our example is now:

from esys.linearPDEs import Poisson
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)

The first statement imports the Poisson class definition from the esys.escript.linearPDEs module
esys.escript package. To get the solution of the Poisson equation defined by mypde we just have to call its
getSolution.

Now we can write the script to solve our Poisson problem

from esys.escript import *
from esys.escript.linearPDEs import Poisson
from esys.finley import Rectangle
generate domain:
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
define characteristic function of GammaˆD
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)
u = mypde.getSolution()

The question is what we do with the calculated solution u. Besides postprocessing, eg. calculating the gradient
or the average value, which will be discussed later, plotting the solution is one one things you might want to do.
esys.escript offers two ways to do this, both base on external modules or packages and so data need to
converted to hand over the solution. The first option is using the matplotlib module which allows plotting 2D
results relatively quickly, see [12]. However, there are limitations when using this tool, eg. in problem size and
when solving 3D problems. Therefore esys.escript provides a second options based on VTK files which is
especially designed for large scale and 3D problem and which can be read by a variety of software packages such
as mayavi [2], VisIt [24].

1.2.1 Plotting Using matplotlib

The matplotlib module provides a simple and easy to use way to visualize PDE solutions (or other Data
objects). To hand over data from esys.escript to matplotlib the values need to mapped onto a rectangular
grid 4. We will make use of the numpy module.

First we need to create a rectangular grid. We use the following statements:

import numpy
x_grid = numpy.linspace(0.,1.,50)
y_grid = numpy.linspace(0.,1.,50)

x grid is an array defining the x coordinates of the grids while y grid defines the y coordinates of the grid. In this
case we use 50 points over the interval [0, 1] in both directions.

Now the values created by esys.escript need to be interpolated to this grid. We will use the matplotlib
mlab.griddata function to do this. We can easily extract spatial coordinates as a list by

4Users of Debian 5(Lenny) please note: this example makes use of the griddata method in matplotlib.mlab. This method is not
part of version 0.98.1 which is available with Lenny. If you wish to use contour plots, you may need to install a later version. Users of Ubuntu
8.10 or later should be fine.

1.2. The First Steps 5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 1.3: Visualization of the Poisson Equation Solution for f = 1 using matplotlib.

x=mydomain.getX()[0].toListOfTuples()
y=mydomain.getX()[1].toListOfTuples()

In principle we can apply the same toListOfTuples method to extract the values from the PDE solution u.
However, we have to make sure that the Data object we extract the values from uses the same FunctionSpace
as we have us when extracting x and y. We apply the interpolation to u before extraction to achieve this:

z=interpolate(u,mydomain.getX().getFunctionSpace())

The values in z are now the values at the points with the coordinates given by x and y. These values are now
interpolated to the grid defined by x grid and y grid by using

import matplotlib
z_grid = matplotlib.mlab.griddata(x,y,z,xi=x_grid,yi=y_grid)

z grid gives now the values of the PDE solution u at the grid. The values can be plotted now using the contourf:

matplotlib.pyplot.contourf(x_grid, y_grid, z_grid, 5)
matplotlib.pyplot.savefig("u.png")

Here we use 5 contours. The last statement writes the plot to the file ‘u.png’ in the PNG format. Alternatively,
one can use

matplotlib.pyplot.contourf(x_grid, y_grid, z_grid, 5)
matplotlib.pyplot.show()

which gives an interactive browser window.

Now we can write the script to solve our Poisson problem

from esys.escript import *
from esys.escript.linearPDEs import Poisson
from esys.finley import Rectangle
import numpy
import matplotlib
import pylab
generate domain:
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
define characteristic function of GammaˆD
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])

6 Chapter 1. Tutorial: Solving PDEs

FIGURE 1.4: Visualization of the Poisson Equation Solution for f = 1

define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)
u = mypde.getSolution()
interpolate u to a matplotlib grid:
x_grid = numpy.linspace(0.,1.,50)
y_grid = numpy.linspace(0.,1.,50)
x=mydomain.getX()[0].toListOfTuples()
y=mydomain.getX()[1].toListOfTuples()
z=interpolate(u,mydomain.getX().getFunctionSpace())
z_grid = matplotlib.mlab.griddata(x,y,z,xi=x_grid,yi=y_grid)
interpolate u to a rectangular grid:
matplotlib.pyplot.contourf(x_grid, y_grid, z_grid, 5)
matplotlib.pyplot.savefig("u.png")

The entire code is available as ‘poisson matplotlib.py’ in the example directory. You can run the script using the
escript environment

escript poisson_matplotlib.py

This will create the ‘u.png’, see Figure Figure 1.3. For details on the usage of the matplotlib module we refer
to the documentation [12].

As pointed out, matplotlib is restricted to the two-dimensional case and should be used for small problems
only. It can not be used under MPI as the toListOfTuples method is not safe under MPI 5.

1.2.2 Visualization using VTK

As an alternative escript supports the usage of visualization tools which base on VTK, eg. mayavi [2], VisIt [24].
In this case the solution is written to a file in the VTK format. This file the can read by the tool of choice. Using
VTK file is MPI safe.

To write the solution u in Poisson problem to the file ‘u.xml’ one need to add the line

saveVTK("u.xml",sol=u)

5The phrase ’safe under MPI ’ means that a program will produce correct results when run on more than one processor under MPI .

1.2. The First Steps 7

FIGURE 1.5: Temperature Diffusion Problem with Circular Heat Source

The solution u is now available in the ‘u.xml’ tagged with the name ”sol”.

The Poisson problem script is now

from esys.escript import *
from esys.escript.linearPDEs import Poisson
from esys.finley import Rectangle
generate domain:
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
define characteristic function of GammaˆD
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])
define PDE and get its solution u
mypde = Poisson(domain=mydomain)
mypde.setValue(f=1,q=gammaD)
u = mypde.getSolution()
write u to an external file
saveVTK("u.xml",sol=u)

The entire code is available as ‘poisson VTK.py’ in the example directory

You can run the script using the escript environment and visualize the solution using mayavi:

escript poisson\hackscore VTK.py
mayavi2 -d u.xml -m SurfaceMap

The result is shown in Figure Figure 1.4.

1.3 The Diffusion Problem

1.3.1 Outline

In this chapter we will discuss how to solve a time-dependent temperature diffusion PDE for a given block of
material. Within the block there is a heat source which drives the temperature diffusion. On the surface, energy
can radiate into the surrounding environment. Figure 1.5 shows the configuration.

In the next Section 1.3.2 we will present the relevant model. A time integration scheme is introduced to calculate
the temperature at given time nodes t(n). We will see that at each time step a Helmholtz equation must be solved.
The implementation of a Helmholtz equation solver will be discussed in Section 1.3.3. In Section 1.3.4 the solver
of the Helmholtz equation is used to build a solver for the temperature diffusion problem.

8 Chapter 1. Tutorial: Solving PDEs

1.3.2 Temperature Diffusion

The unknown temperature T is a function of its location in the domain and time t > 0. The governing equation in
the interior of the domain is given by

ρcpT,t − (κT,i),i = qH (1.15)

where ρcp and κ are given material constants. In case of a composite material the parameters depend on their
location in the domain. qH is a heat source (or sink) within the domain. We are using the Einstein summation
convention as introduced in Chapter 1.2. In our case we assume qH to be equal to a constant heat production rate
qc on a circle or sphere with center xc and radius r and 0 elsewhere:

qH(x, t) =

 qc ‖x− xc‖ ≤ r
if

0 else
(1.16)

for all x in the domain and all time t > 0.

On the surface of the domain we are specifying a radiation condition which prescribes the normal component of
the flux κT,i to be proportional to the difference of the current temperature to the surrounding temperature Tref :

κT,ini = η(Tref − T) (1.17)

η is a given material coefficient depending on the material of the block and the surrounding medium. ni is the i-th
component of the outer normal field at the surface of the domain.

To solve the time-dependent Equation (1.15) the initial temperature at time t = 0 has to be given. Here we assume
that the initial temperature is the surrounding temperature:

T (x, 0) = Tref (1.18)

for all x in the domain. It is pointed out that the initial conditions satisfy the boundary condition defined by
Equation (1.17).

The temperature is calculated at discrete time nodes t(n) where t(0) = 0 and t(n) = t(n−1) +h where h > 0 is the
step size which is assumed to be constant. In the following the upper index (n) refers to a value at time t(n). The
simplest and most robust scheme to approximate the time derivative of the the temperature is the backward Euler
scheme. The backward Euler scheme is based on the Taylor expansion of T at time t(n):

T (n) ≈ T (n−1) + T
(n)
,t (t(n) − t(n−1)) = T (n−1) + h · T (n)

,t (1.19)

This is inserted into Equation (1.15). By separating the terms at t(n) and t(n−1) one gets for n = 1, 2, 3 . . .

ρcp
h
T (n) − (κT (n)

,i),i = qH +
ρcp
h
T (n−1) (1.20)

where T (0) = Tref is taken form the initial condition given by Equation (1.18). Together with the natural boundary
condition

κT
(n)
,i ni = η(Tref − T (n)) (1.21)

taken from Equation (1.17) this forms a boundary value problem that has to be solved for each time step. As a first
step to implement a solver for the temperature diffusion problem we will first implement a solver for the boundary
value problem that has to be solved at each time step.

1.3.3 Helmholtz Problem

The partial differential equation to be solved for T (n) has the form

ωT (n) − (κT (n)
,i),i = f (1.22)

and we set
ω =

ρcp
h

and f = qH +
ρcp
h
T (n−1) . (1.23)

1.3. The Diffusion Problem 9

With g = ηTref the radiation condition defined by Equation (1.21) takes the form

κT
(n)
,i ni = g − ηT (n) on Γ (1.24)

The partial differential Equation (1.22) together with boundary conditions of Equation (1.24) is called the
Helmholtz equation .

We want to use the LinearPDE class provided by esys.escript to define and solve a general linear,steady,
second order PDE such as the Helmholtz equation. For a single PDE the LinearPDE class supports the following
form:

−(Ajlu,l),j +Du = Y . (1.25)

where we show only the coefficients relevant for the problem discussed here. For the general form of single
PDE see Equation (4.1). The coefficients A, and Y have to be specified through Data objects in the general
FunctionSpace on the PDE or objects that can be converted into such Data objects. A is a rank-2 Data
object and D and Y are scalar. The following natural boundary conditions are considered on Γ:

njAjlu,l + du = y . (1.26)

Notice that the coefficient A is the same like in the PDE Equation (1.25). The coefficients d and y are each a
scalar Data object in the boundary FunctionSpace. Constraints for the solution prescribing the value of the
solution at certain locations in the domain. They have the form

u = r where q > 0 (1.27)

r and q are each scalar Data object where q is the characteristic function defining where the constraint is applied.
The constraints defined by Equation (1.27) override any other condition set by Equation (1.25) or Equation (1.26).
The Poisson class of the esys.escript.linearPDEsmodule, which we have already used in Chapter 1.2,
is in fact a subclass of the more general LinearPDE class. The esys.escript.linearPDEs module pro-
vides a Helmholtz class but we will make direct use of the general LinearPDE class.

By inspecting the Helmholtz equation (1.22) and boundary condition (1.24) and substituting u for T (n) we can
easily assign values to the coefficients in the general PDE of the LinearPDE class:

Aij = κδij D = ω Y = f
d = η y = g

(1.28)

δij is the Kronecker symbol defined by δij = 1 for i = j and 0 otherwise. Undefined coefficients are assumed
to be not present.6 In this diffusion example we do not need to define a characteristic function q because the
boundary conditions we consider in Equation (1.24) are just the natural boundary conditions which are already
defined in the LinearPDE class (shown in Equation (1.26)).

The Helmholtz equation can be set up by following way 7 :

mypde=LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain),D=omega,Y=f,d=eta,y=g)
u=mypde.getSolution()

where we assume that mydomain is a Domain object and kappa omega eta and g are given scalar values typ-
ically float or Data objects. The setValue method assigns values to the coefficients of the general PDE. The
getSolution method solves the PDE and returns the solution u of the PDE. kronecker is esys.escript
function returning the Kronecker symbol.

The coefficients can set by several calls of setValue where the order can be chosen arbitrarily. If a value is
assigned to a coefficient several times, the last assigned value is used when the solution is calculated:

mypde=LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain),d=eta)
mypde.setValue(D=omega,Y=f,y=g)
mypde.setValue(d=2*eta) # overwrites d=eta
u=mypde.getSolution()

6There is a difference in esys.escript of being not present and set to zero. As not present coefficients are not processed, it is more
efficient to leave a coefficient undefined instead of assigning zero to it.

7Please, note that this is not a complete code. The complete code can be found in “helmholtz.py”.

10 Chapter 1. Tutorial: Solving PDEs

In some cases the solver of the PDE can make use of the fact that the PDE is symmetric where the PDE is called
symmetric if

Ajl = Alj . (1.29)

Note that D and d may have any value and the right hand sides Y , y as well as the constraints are not relevant.
The Helmholtz problem is symmetric. The LinearPDE class provides the method checkSymmetry to check
if the given PDE is symmetric.

mypde=LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain),d=eta)
print mypde.checkSymmetry() # returns True
mypde.setValue(B=kronecker(mydomain)[0])
print mypde.checkSymmetry() # returns False
mypde.setValue(C=kronecker(mydomain)[0])
print mypde.checkSymmetry() # returns True

Unfortunately, a checkSymmetry is very expensive and is recommendable to use for testing and debugging
purposes only. The setSymmetryOn method is used to declare a PDE symmetric:

mypde = LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain))
mypde.setSymmetryOn()

Now we want to see how we actually solve the Helmholtz equation. on a rectangular domain of length l0 = 5 and
height l1 = 1. We choose a simple test solution such that we can verify the returned solution against the exact
answer. Actually, we take T = x0 (here qH = 0) and then calculate the right hand side terms f and g such that the
test solution becomes the solution of the problem. If we assume κ as being constant, an easy calculation shows
that we have to choose f = ω ·x0. On the boundary we get κniu,i = κn0. So we have to set g = κn0 + ηx0. The
following script ‘helmholtz.py’ which is available in the example directory implements this test problem using the
esys.finley PDE solver:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
#... set some parameters ...
kappa=1.
omega=0.1
eta=10.
#... generate domain ...
mydomain = Rectangle(l0=5.,l1=1.,n0=50, n1=10)
#... open PDE and set coefficients ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
n=mydomain.getNormal()
x=mydomain.getX()
mypde.setValue(A=kappa*kronecker(mydomain),D=omega,Y=omega*x[0], \

d=eta,y=kappa*n[0]+eta*x[0])
#... calculate error of the PDE solution ...
u=mypde.getSolution()
print "error is ",Lsup(u-x[0])
saveVTK("x0.xml",sol=u)

To visualize the solution ‘x0. xml’ just use the command

mayavi -d u.xml -m SurfaceMap &

and it is easy to see that the solution T = x0 is calculated.

The script is similar to the script ‘poisson.py’ discussed in Chapter 1.2. mydomain.getNormal() returns the
outer normal field on the surface of the domain. The function Lsup imported by the from esys.escript
import * statement and returns the maximum absolute value of its argument. The error shown by the print
statement should be in the order of 10−7. As piecewise bi-linear interpolation is used by esys.finley approx-
imate the solution and our solution is a linear function of the spatial coordinates one might expect that the error
would be zero or in the order of machine precision (typically ≈ 10−15). However most PDE packages use an

1.3. The Diffusion Problem 11

iterative solver which is terminated when a given tolerance has been reached. The default tolerance is 10−8. This
value can be altered by using the setTolerance of the LinearPDE class.

1.3.4 The Transition Problem

Now we are ready to solve the original time-dependent problem. The main part of the script is the loop over time
t which takes the following form:

t=0
T=Tref
mypde=LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain),D=rhocp/h,d=eta,y=eta*Tref)
while t<t_end:

mypde.setValue(Y=q+rhocp/h*T)
T=mypde.getSolution()
t+=h

kappa, rhocp, eta and Tref are input parameters of the model. q is the heat source in the domain and h is the time
step size. The variable T holds the current temperature. It is used to calculate the right hand side coefficient f in
the Helmholtz equation in Equation (1.22). The statement T=mypde.getSolution() overwrites T with the
temperature of the new time step t+h. To get this iterative process going we need to specify the initial temperature
distribution, which equal to Tref . The LinearPDE class object mypde and coefficients not changing over time
are set up before the loop over time is entered. In each time step only the coefficient Y is reset as it depends on the
temperature of the previous time step. This allows the PDE solver to reuse information from previous time steps
as much as possible.

The heat source qH which is defined in Equation (1.16) is qc in an area defined as a circle of radius r and center
xc and zero outside this circle. q0 is a fixed constant. The following script defines qH as desired:

from esys.escript import length,whereNegative
xc=[0.02,0.002]
r=0.001
x=mydomain.getX()
qH=q0*whereNegative(length(x-xc)-r)

x is a Data class object of the esys.escript module defining locations in the Domain mydomain. The
length() imported from the esys.escript module returns the Euclidean norm:

‖y‖ =
√
yiyi = esys.escript.length(y) (1.30)

So length(x-xc) calculates the distances of the location x to the center of the circle xc where the heat source
is acting. Note that the coordinates of xc are defined as a list of floating point numbers. It is automatically
converted into a Data class object before being subtracted from x. The function whereNegative applied to
length(x-xc)-r, returns a Data object which is equal to one where the object is negative (inside the circle)
and zero elsewhere. After multiplication with qc we get a function with the desired property of having value qc
inside the circle and zero elsewhere.

Now we can put the components together to create the script ‘diffusion.py’ which is available in the example
directory: :

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
#... set some parameters ...
xc=[0.02,0.002]
r=0.001
qc=50.e6
Tref=0.
rhocp=2.6e6
eta=75.
kappa=240.
tend=5.
... time, time step size and counter ...

12 Chapter 1. Tutorial: Solving PDEs

FIGURE 1.6: Results of the Temperature Diffusion Problem for Time Steps 1 16, 32 and 48.

t=0
h=0.1
i=0
#... generate domain ...
mydomain = Rectangle(l0=0.05,l1=0.01,n0=250, n1=50)
#... open PDE ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
mypde.setValue(A=kappa*kronecker(mydomain),D=rhocp/h,d=eta,y=eta*Tref)
... set heat source:
x=mydomain.getX()
qH=qc*whereNegative(length(x-xc)-r)
... set initial temperature
T=Tref
... start iteration:
while t<tend:

i+=1
t+=h
print "time step :",t
mypde.setValue(Y=qH+rhocp/h*T)
T=mypde.getSolution()
saveVTK("T.%d.xml"%i,temp=T)

The script will create the files ‘T.1.xml’, ‘T.2.xml’, . . ., ‘T.50.xml’ in the directory where the script has been started.
The files give the temperature distributions at time steps 1, 2, . . ., 50 in the VTK file format.

Figure 1.6 shows the result for some selected time steps. An easy way to visualize the results is the command

mayavi -d T.1.xml -m SurfaceMap &

Use the Configure Data window in mayavi to move forward and and backwards in time.

1.4 3-D Wave Propagation

In this next example we want to calculate the displacement field ui for any time t > 0 by solving the wave
equation:

ρui,tt − σij,j = 0 (1.31)

1.4. 3-D Wave Propagation 13

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

FIGURE 1.7: Input Displacement at Source Point (α = 0.7, t0 = 3, U0 = 1).

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5

FIGURE 1.8: Input Acceleration at Source Point (α = 0.7, t0 = 3, U0 = 1).

in a three dimensional block of length L in x0 and x1 direction and height H in x2 direction. ρ is the known
density which may be a function of its location. σij is the stress field which in case of an isotropic, linear elastic
material is given by

σij = λuk,kδij + µ(ui,j + uj,i) (1.32)

where λ and µ are the Lame coefficients and δij denotes the Kronecker symbol. On the boundary the normal stress
is given by

σijnj = 0 (1.33)

for all time t > 0.

Here we are modelling a point source at the point xC in the x0-direction which is a negative pulse of amplitude
U0 followed by the same positive pulse. In mathematical terms we use

u0(xC , t) = U0

√
2

(t− t0)
α

e
1
2−

(t−t0)2

α2 (1.34)

for all t ≥ 0 where α is the width of the pulse and t0 is the time when the pulse changes from negative to positive.
In the simulations we will choose α = 0.3 and t0 = 2, see Figure 1.7 and will apply the source as a constraint in
a in a sphere of small radius around the point xC .

14 Chapter 1. Tutorial: Solving PDEs

We use an explicit time integration scheme to calculate the displacement field u at certain time marks t(n) where
t(n) = t(n−1) +h with time step size h > 0. In the following the upper index (n) refers to values at time t(n). We
use the Verlet scheme with constant time step size h which is defined by

u(n) = 2u(n−1) − u(n−2) + h2a(n) (1.35)
(1.36)

for all n = 2, 3, It is designed to solve a system of equations of the form

u,tt = G(u) (1.37)

where one sets a(n) = G(u(n−1)).

In our case a(n) is given by

ρa
(n)
i = σ

(n−1)
ij,j (1.38)

and boundary conditions

σ
(n−1)
ij nj = 0 (1.39)

derived from Equation (1.33) where

σ
(n−1)
ij = λu

(n−1)
k,k δij + µ(u(n−1)

i,j + u
(n−1)
j,i). (1.40)

We also need to apply the constraint

a
(n)
0 (xC , t) = U0

√
(2.)
α2

(4
(t− t0)3

α3
− 6

t− t0
α

)e
1
2−

(t−t0)2

α2 (1.41)

which is derived from equation 1.34 by calculating the second order time derivative, see Figure 1.8. Now we have
converted our problem for displacement, u(n), into a problem for acceleration, a(n), which now depends on the
solution at the previous two time steps, u(n−1) and u(n−2).

In each time step we have to solve this problem to get the acceleration a(n), and we will use the LinearPDE class
of the esys.escript.linearPDEs to do so. The general form of the PDE defined through the LinearPDE
class is discussed in Section 4.1. The form which is relevant here is

Dija
(n)
j = −Xij,j . (1.42)

The natural boundary condition
njXij = 0 (1.43)

is used. With u = a(n) we can identify the values to be assigned to D and X:

Dij = ρδij Xij = −σ(n−1)
ij (1.44)

Moreover we need to define the location r where the constraint 1.41 is applied. We will apply the constraint on a
small sphere of radius R around xC (we will use 3p.c. of the width of the domain):

qi(x) =
{

1 ‖x− xc‖ ≤ R
0 otherwise (1.45)

The following script defines a the function wavePropagation which implements the Verlet scheme to solve
our wave propagation problem. The argument domain which is a Domain class object defines the domain of
the problem. h and tend are the time step size and the end time of the simulation. lam, mu and rho are material
properties.

def wavePropagation(domain,h,tend,lam,mu,rho, x_c, src_radius, U0):
lists to collect displacement at point source which is returned to the caller
ts, u_pc0,u_pc1,u_pc2=[], [], [], []

x=domain.getX()
... open new PDE ...
mypde=LinearPDE(domain)

1.4. 3-D Wave Propagation 15

mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().LUMPING)
kronecker=identity(mypde.getDim())
dunit=numpy.array([1.,0.,0.]) # defines direction of point source
mypde.setValue(D=kronecker*rho, q=whereNegative(length(x-xc)-src_radius)*dunit)
... set initial values
n=0
for first two time steps
u=Vector(0.,Solution(domain))
u_last=Vector(0.,Solution(domain))
t=0
define the location of the point source
L=Locator(domain,xc)
find potential at point source
u_pc=L.getValue(u)
print "u at point charge=",u_pc
open file to save displacement at point source
u_pc_data=FileWriter(’./data/U_pc.out’)
ts.append(t); u_pc0.append(u_pc[0]), u_pc1.append(u_pc[1]), u_pc2.append(u_pc[2])

while t<tend:
t+=h
... get current stress
g=grad(u)
stress=lam*trace(g)*kronecker+mu*(g+transpose(g))
... get new acceleration
amplitude=U0*(4*(t-t0)**3/alpha**3-6*(t-t0)/alpha)*sqrt(2.)/alpha**2 \

*exp(1./2.-(t-t0)**2/alpha**2)
mypde.setValue(X=-stress, r=dunit*amplitude)
a=mypde.getSolution()
... get new displacement ...
u_new=2*u-u_last+h**2*a
... shift displacements
u_last=u
u=u_new
n+=1
print n,"-th time step t ",t
u_pc=L.getValue(u)
print "u at point charge=",u_pc
save displacements at point source to file for t > 0
ts.append(t); u_pc0.append(u_pc[0]), u_pc1.append(u_pc[1]), \

u_pc2.append(u_pc[2])

... save current acceleration in units of gravity and displacements
if n==1 or n%10==0: saveVTK("./data/usoln.%i.vtu"%(n/10), \

acceleration=length(a)/9.81,
displacement = length(u), \
tensor = stress, Ux = u[0])

return ts, u_pc0, u_pc1, u_pc2

Notice that all coefficients of the PDE which are independent of time t are set outside the while loop. This is
very efficient since it allows the LinearPDE class to reuse information as much as possible when iterating over
time.

The statement

mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().LUMPING)

switches on the use of an aggressive approximation of the PDE operator as a diagonal matrix formed from the
coefficient D. The approximation allows, at the cost of additional error, very fast solution of the PDE. When using
lumping the presence of A, B or C will produce wrong results.

There are a few new esys.escript functions in this example: grad(u) returns the gradient ui,j of u (in
fact grad(g)[i,j]== ui,j). There are restrictions on the argument of the grad function, for instance the statement

16 Chapter 1. Tutorial: Solving PDEs

grad(grad(u)) will raise an exception. trace(g) returns the sum of the main diagonal elements g[k,k] of
g and transpose(g) returns the matrix transpose of g (ie. transpose(g)[i,j] = g[j,i]).

We initialize the values of u and u last to be zero. It is important to initialize both with the solution
FunctionSpace FunctionSpace as they have to be seen as solutions of PDEs from previous time steps. In
fact, the grad does not accept arguments with a certain FunctionSpace, for more details see Section 3.1.3.

The Locator is designed to extract values at a given location (in this case xC) from functions such as the
displacement vector u. Typically the Locator is used in the following form:

L=Locator(domain,xc)
u=...
u_pc=L.getValue(u)

The return value u pc is the value of u at the location xc8. The values are collected in the lists u pc0, u pc1
and u pc2 together with the corresponding time marker in ts. The values are handed back to the caller. Later we
will show to ways to access these data.

One of the big advantages of the Verlet scheme is the fact that the problem to be solved in each time step is very
simple and does not involve any spatial derivatives (which is what allows us to use lumping in this simulation).
The problem becomes so simple because we use the stress from the last time step rather then the stress which
is actually present at the current time step. Schemes using this approach are called an explicit time integration
schemes . The backward Euler scheme we have used in Chapter 1.3 is an example of an implicit scheme . In this
case one uses the actual status of each variable at a particular time rather then values from previous time steps.
This will lead to a problem which is more expensive to solve, in particular for non-linear problems. Although
explicit time integration schemes are cheap to finalize a single time step, they need significantly smaller time steps
then implicit schemes and can suffer from stability problems. Therefore they need a very careful selection of the
time step size h.

An easy, heuristic way of choosing an appropriate time step size is the Courant condition which says that within
a time step a information should not travel further than a cell used in the discretization scheme. In the case of the

wave equation the velocity of a (p-) wave is given as
√

λ+2µ
ρ so one should choose h from

h =
1
5

√
ρ

λ+ 2µ
∆x (1.46)

where ∆x is the cell diameter. The factor 1
5 is a safety factor considering the heuristics of the formula.

The following script uses the wavePropagation function to solve the wave equation for a point source located
at the bottom face of a block. The width of the block in each direction on the bottom face is 10km (x0 and x1

directions ie. l0 and l1). The ne gives the number of elements in x0 and x1 directions. The depth of the block
is aligned with the x2-direction. The depth (l2) of the block in the x2-direction is chosen so that there are 10
elements and the magnitude of the of the depth is chosen such that the elements become cubic. We chose 10 for
the number of elements in x2-direction so that the computation would be faster. Brick(n0, n1, n2, l0, l1, l2)
is an esys.finley function which creates a rectangular mesh with n0 × n1 × n2 elements over the brick
[0, l0]× [0, l1]× [0, l2].

from esys.finley import Brick
ne=32 # number of cells in x_0 and x_1 directions
width=10000. # length in x_0 and x_1 directions
lam=3.462e9
mu=3.462e9
rho=1154.
tend=60
U0=1. # amplitude of point source
spherical source at middle of bottom face
xc=[width/2.,width/2.,0.]
define small radius around point xc
src_radius = 0.03*width
print "src_radius = ",src_radius
mydomain=Brick(ne,ne,10,l0=width,l1=width,l2=10.*width/32.)
h=(1./5.)*inf(sqrt(rho/(lam+2*mu))*inf(domain.getSize())

8In fact the finite element node which is closest to the given position. The usage of Locator is MPI save.

1.4. 3-D Wave Propagation 17

FIGURE 1.9: Selected time steps (n = 11, 22, 32, 36) of a wave propagation over a 10km× 10km× 3.125km block from
a point source initially at (5km, 5km, 0) with time step size h = 0.02083. Color represents the displacement. Here the view is
oriented onto the bottom face.

print "time step size = ",h
ts, u_pc0, u_pc1, u_pc2 = \

wavePropagation(mydomain,h,tend,lam,mu,rho,xc, src_radius, U0)

The domain.getSize() return the local element size ∆x. The infmakes sure that the Courant condition 1.46
olds everywhere in the domain.

The script is available as ‘wave.py’ in the example directory . To visualize the results from the data directory:

mayavi2 -d usoln.1.vtu -m SurfaceMap &

You can rotate this figure by clicking on it with the mouse and moving it around. Again use Configure Data
to move backwards and forward in time, and also to choose the results (acceleration, displacement or ux) by using
Select Scalar. Figure 1.9 shows the results for the displacement at various time steps.

It remains to show some possibilities to inspect the collected data u pc0, u pc1 and u pc2. One way is to write
the data to a file and then use an external package such as gnuplot [26], excel or OpenOffice to read the data for
further analysis. The following code shows one possible form to write the data to the file ‘./data/U pc.out’:

u_pc_data=FileWriter(’./data/U_pc.out’)
for i in xrange(len(ts)) :

u_pc_data.write("%f %f %f %f\n"%(ts[i],u_pc0[i],u_pc1[i],u_pc2[i]))
u_pc_data.close()

The U pc.out stores 4 columns of data: t, ux, uy, uz respectively, where ux, uy, uz are the x0, x1, x2 compo-
nents of the displacement vector u at the point source. These can be plotted easily using any plotting package. In
gnuplot [26]the command:

plot ’U_pc.out’ u 1:2 title ’U_x’ w l lw 2, ’U_pc.out’ u 1:3 title ’U_y’ w l lw 2,
’U_pc.out’ u 1:4 title ’U_z’ w l lw 2

18 Chapter 1. Tutorial: Solving PDEs

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10

U_x
U_y
U_z

FIGURE 1.10: Amplitude at Point source from the Simulation.

will reproduce Figure 1.10 (As expected this is identical to the input signal shown in Figure 1.7)2. It is pointed
out that we are not using the standard python open to write to the file U pc.out as it is not safe when running
esys.escript under MPI, see chapter 2 for more details.

Alternatively, one can implement plotting the results at run time rather than in a post-processing step. This avoids
the generation of an intermediate data file. In escript the preferred way of creating 2D plots of time dependent data
is matplotlib. The following script creates the plot and writes it into the file ‘u pc.png’ in the PNG image
format:

import matplotlib.pyplot as plt
if getMPIRankWorld() == 0:

plt.title("Displacement at Point Source")
plt.plot(ts, u_pc0, ’-’, label="x_0", linewidth=1)
plt.plot(ts, u_pc1, ’-’, label="x_1", linewidth=1)
plt.plot(ts, u_pc2, ’-’, label="x_2", linewidth=1)
plt.xlabel(’time’)
plt.ylabel(’displacement’)
plt.legend()
plt.savefig(’u_pc.png’, format=’png’)

You can add the plt.show() to create a interactive browser window. Please not that through the
getMPIRankWorld() == 0 statement the plot is generated on one processor only (in this case the rank 0
processor) when run under MPI.

Both options for processing the point source data are include in the example file ‘wave.py’. There other options
available to process these data in particular through the SciPy[7] package , eg Fourier transformations. It is
beyond the scope of this users guide to document the usage of SciPy[7] for time series analysis but is highly
recommended that users use SciPy[7] to any further data processing.

1.5 Elastic Deformation

1.5. Elastic Deformation 19

In this section we want to examine the deformation of a linear elastic body caused by expansion through a heat
distribution. We want a displacement field ui which solves the momentum equation :

− σij,j = 0 (1.47)

where the stress σ is given by

σij = λuk,kδij + µ(ui,j + uj,i)− (λ+
2
3
µ) α (T − Tref)δij . (1.48)

In this formula λ and µ are the Lame coefficients, α is the temperature expansion coefficient, T is the temperature
distribution and Tref a reference temperature. Note that Equation (1.47) is similar to Equation (1.31) introduced
in section Section 1.4 but the inertia term ρui,tt has been dropped as we assume a static scenario here. Moreover,
in comparison to the Equation (1.32) definition of stress σ in Equation (1.48) an extra term is introduced to bring
in stress due to volume changes trough temperature dependent expansion.

Our domain is the unit cube

Ω = {(xi)|0 ≤ xi ≤ 1} (1.49)

On the boundary the normal stress component is set to zero

σijnj = 0 (1.50)

and on the face with xi = 0 we set the i-th component of the displacement to 0

ui(x) = 0 where xi = 0 (1.51)

For the temperature distribution we use

T (x) = T0e
−β‖x−xc‖; (1.52)

with a given positive constant β and location xc in the domain.

When we insert Equation (1.48) we get a second order system of linear PDEs for the displacements u which is
called the Lame equation. We want to solve this using the LinearPDE class to this. For a system of PDEs and a
solution with several components the LinearPDE class takes PDEs of the form

−(Aijkluk,l),j = −Xij,j . (1.53)

A is of rank-4 Data object and X is of rank-2 Data object. We show here the coefficients relevant for the we
trying to solve. The full form is given in Equation (4.4). The natural boundary conditions take the form:

njAijkluk,l = njXij . (1.54)

Constraints take the form
ui = ri where qi > 0 (1.55)

r and q are each rank-1 Data object. We can easily identify the coefficients in Equation (1.53):

Aijkl = λδijδkl + µ(δikδjl + δilδjk) (1.56)

Xij = (λ+
2
3
µ) α (T − Tref)δij (1.57)

(1.58)

The characteristic function q defining the locations and components where constraints are set is given by:

qi(x) =
{

1 xi = 0
0 otherwise (1.59)

Under the assumption that λ, µ, β and Tref are constant we may use Yi = (λ + 2
3µ) α Ti. However, this choice

would lead to a different natural boundary condition which does not set the normal stress component as defined
in Equation (1.48) to zero.

20 Chapter 1. Tutorial: Solving PDEs

Analogously to concept of symmetry for a single PDE, we call the PDE defined by Equation (1.53) symmetric if

Aijkl = Aklij (1.60)
(1.61)

This Lame equation is in fact symmetric, given the difference in D and d as compared to the scalar case. The
LinearPDE class is notified of this fact by calling its setSymmetryOn method.

After we have solved the Lame equation we want to analyse the actual stress distribution. Typically the von–Mises
stress defined by

σmises =

√
1
2

((σ00 − σ11)2 + (σ11 − σ22)2 + (σ22 − σ00)2) + 3(σ2
01 + σ2

12 + σ2
20) (1.62)

is used to detect material damage. Here we want to calculate the von–Mises and write the stress to a file for
visualization.

The following script, which is available in ‘heatedbox.py’ in the example directory, solves the Lame equation and
writes the displacements and the von–Mises stress into a file ‘deform.xml’ in the VTK file format:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Brick
#... set some parameters ...
lam=1.
mu=0.1
alpha=1.e-6
xc=[0.3,0.3,1.]
beta=8.
T_ref=0.
T_0=1.
#... generate domain ...
mydomain = Brick(l0=1.,l1=1., l2=1.,n0=10, n1=10, n2=10)
x=mydomain.getX()
#... set temperature ...
T=T_0*exp(-beta*length(x-xc))
#... open symmetric PDE ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
#... set coefficients ...
C=Tensor4(0.,Function(mydomain))
for i in range(mydomain.getDim()):

for j in range(mydomain.getDim()):
C[i,i,j,j]+=lam
C[j,i,j,i]+=mu
C[j,i,i,j]+=mu

msk=whereZero(x[0])*[1.,0.,0.] \
+whereZero(x[1])*[0.,1.,0.] \
+whereZero(x[2])*[0.,0.,1.]

sigma0=(lam+2./3.*mu)*alpha*(T-T_ref)*kronecker(mydomain)
mypde.setValue(A=C,X=sigma0,q=msk)
#... solve pde ...
u=mypde.getSolution()
#... calculate von-Misses stress
g=grad(u)
sigma=mu*(g+transpose(g))+lam*trace(g)*kronecker(mydomain)-sigma0
sigma_mises=sqrt(((sigma[0,0]-sigma[1,1])**2+(sigma[1,1]-sigma[2,2])**2+ \

(sigma[2,2]-sigma[0,0])**2)/2. \
+3*(sigma[0,1]**2 + sigma[1,2]**2 + sigma[2,0]**2))

#... output ...
saveVTK("deform.xml",disp=u,stress=sigma_mises)

Finally the the results can be visualize by calling

mayavi -d deform.xml -f CellToPointData -m VelocityVector -m SurfaceMap &

1.5. Elastic Deformation 21

FIGURE 1.11: von–Mises Stress and Displacement Vectors.

Note that the filter CellToPointData is applied to create smooth representation of the von–Mises stress. Figure 1.11
shows the results where the vertical planes showing the von–Mises stress and the horizontal plane shows the vector
representing displacements.

1.6 Stokes Flow

In this section we will look at Computational Fluid Dynamics (CFD) to simulate the flow of fluid under the
influence of gravity. The StokesProblemCartesian class will be used to calculate the velocity and pressure of the
fluid. The fluid dynamics is governed by the Stokes equation. In geophysical problems the velocity of fluids
are low; that is, the inertial forces are small compared with the viscous forces, therefore the inertial terms in the
Navier-Stokes equations can be ignored. For a body force, f , the governing equations are given by:

∇ · (η(∇~v +∇T~v))−∇p = −f, (1.63)

with the incompressibility condition
∇ · ~v = 0. (1.64)

where p, η and f are the pressure, viscosity and body forces, respectively. Alternatively, the Stokes equations can
be represented in Einstein summation tensor notation (compact notation):

−(η(vi,j + vj,i)),j −p,i = fi, (1.65)

with the incompressibility condition
−vi,i = 0. (1.66)

The subscript comma i denotes the derivative of the function with respect to xi. The body force f in Equation
(1.65) is the gravity acting in the x3 direction and is given as f = −gρδi3. The Stokes equations is a saddle point
problem, and can be solved using a Uzawa scheme. A class called StokesProblemCartesian in Escript can be used
to solve for velocity and pressure; more detail on the class can be view in Chapter 6. In order to keep numerical
stability, the time-step size needs to be kept below a certain value, to satisfy the Courant condition. The Courant
number is defined as:

C =
vδt

h
. (1.67)

where δt, v, and h are the time-step, velocity, and the width of an element in the mesh, respectively. The velocity
v may be chosen as the maximum velocity in the domain. In this problem the time-step size was calculated for a
Courant number of 0.4.

22 Chapter 1. Tutorial: Solving PDEs

The following PYTHON script is the setup for the Stokes flow simulation, and is available in the example directory
as ’fluid.py’. It starts off by importing the classes, such as the StokesProblemCartesian class, for solving the
Stokes equation and the incompressibility condition for velocity and pressure. Physical constants are defined for
the viscosity and density of the fluid, along with the acceleration due to gravity. Solver settings are set for the
maximum iterations and tolerance; the default solver used is PCG. The mesh is defined as a rectangle, to represent
the body of fluid. The gravitational force is calculated base on the fluid density and the acceleration due to gravity.
The boundary conditions are set for a slip condition at the base of the mesh; fluid movement in the x-direction is
free, but fixed in the y-direction. An instance of the StokesProblemCartesian is defined for the given computational
mesh, and the solver tolerance set. Inside the while loop, the boundary conditions, viscosity and body force are
initialized. The Stokes equation is then solved for velocity and pressure. The time-step size is calculated base on
the Courant condition, to ensure stable solutions. The nodes in the mesh are then displaced based on the current
velocity and time-step size, to move the body of fluid. The output for the simulation of velocity and pressure is
then save to file for visualization.

from esys.escript import *
import esys.finley
from esys.escript.linearPDEs import LinearPDE
from esys.escript.models import StokesProblemCartesian

#physical constants
eta=1.0
rho=100.0
g=10.0

#solver settings
tolerance=1.0e-4
max_iter=200
t_end=50
t=0.0
time=0
verbose=True

#define mesh
H=2.0
L=1.0
W=1.0
mesh = esys.finley.Rectangle(l0=L, l1=H, order=2, n0=20, n1=20)
coordinates = mesh.getX()

#gravitational force
Y=Vector(0.0, Function(mesh))
Y[1]=-rho*g

#element spacing
h=Lsup(mesh.getSize())

#boundary conditions for slip at base
boundary_cond=whereZero(coordinates[1])*[0.0,1.0]

#velocity and pressure vectors
velocity=Vector(0.0, ContinuousFunction(mesh))
pressure=Scalar(0.0, ContinuousFunction(mesh))

#Stokes Cartesian
solution=StokesProblemCartesian(mesh)
solution.setTolerance(tolerance)

while t <= t_end:

print " ----- Time step = %s -----"%(t)
print "Time = %s seconds"%(time)

solution.initialize(fixed_u_mask=boundary_cond,eta=eta,f=Y)

1.6. Stokes Flow 23

velocity,pressure=solution.solve(velocity,pressure,max_iter=max_iter, \
verbose=verbose)

print "Max velocity =", Lsup(velocity), "m/s"

#Courant condition
dt=0.4*h/(Lsup(velocity))
print "dt", dt

#displace the mesh
displacement = velocity * dt
coordinates = mesh.getX()
mesh.setX(coordinates + displacement)

time += dt

vel_mag = length(velocity)

#save velocity and pressure output
saveVTK("vel.%2.2i.vtu"%(t),vel=vel_mag,vec=velocity,pressure=pressure)
t = t+1.0

The results from the simulation can be viewed with mayavi, by executing the following command:

mayavi -d vel.00.vtu -m SurfaceMap

Colour coded scalar maps and velocity flow fields can be viewed by selecting them in the menu. The time-steps
can be swept through to view a movie of the simulation. Figures 1.12 and 1.13 shows the simulation output.
Velocity vectors and a colour map for pressure are shown. As the time progresses the body of fluid falls under the
influence of gravity. The view used here to track the fluid is the Lagrangian view, since the mesh moves with the
fluid. One of the disadvantages of using the Lagrangian view is that the elements in the mesh become severely
distorted after a period of time and introduce solver errors. To get around this limitation the Level Set Method can
be used, with the Eulerian point of view for a fixed mesh.

24 Chapter 1. Tutorial: Solving PDEs

(a) t=1 (b) t=20

(c) t=30

FIGURE 1.12: Simulation output for Stokes flow. Fluid body starts off as a rectangular shape, then progresses downwards
under the influence of gravity. Color coded distribution represents the scalar values for pressure. Velocity vectors are displayed
at each node in the mesh to show the flow field. Computational mesh used was 20×20 elements.

1.6. Stokes Flow 25

(a) t=40

(b) t=50

(c) t=60

FIGURE 1.13: Simulation output for Stokes flow.

26 Chapter 1. Tutorial: Solving PDEs

CHAPTER

TWO

Execution of an escript Script

2.1 Overview

A typical way of starting your escript script ‘myscript.py’ is with the escript command1:

escript myscript.py

as already shown in section 1.22 . In some cases it can be useful to work interactively e.g. when debugging a
script, with the command

escript -i myscript.py

This will execute myscript.py and when it completes (or an error occurs), a python prompt will be provided. To
leave the prompt press Control-d.

To start escript using four threads (eg. if you use a multi-core processor) you can use

escript -t 4 myscript.py

This will require escript to be compiled for OpenMP [18].

To start escript using MPI [14] with 8 processes you use

escript -p 8 myscript.py

If the processors which are used are multi–core processors or multi–processor shared memory architectures you
can use threading in addition to MPI . For instance to run 8 MPI processes with using 4 threads each, you use the
command

escript -p 8 -t 4 myscript.py

In the case of a super computer or a cluster, you may wish to distribute the workload over a number of nodes3.
For example, to use 8 nodes, with 4 MPI processes per node, write

escript -n 8 -p 4 myscript.py

Since threading has some performance advantages over processes, you may specify a number of threads as well.

escript -n 8 -p 4 -t 2 myscript.py

This runs the script on 8 nodes, with 4 processes per node and 2 threads per process.

1The escript launcher is not supported under MS Windows yet.
2For this discussion, it is assumed that escript is included in your PATH environment. See installation guide for details.
3For simplicity, we will use the term node to refer to either a node in a super computer or an individual machine in a cluster

27

2.2 Options

The general form of the escript launcher is as follows:

escript [-n nn] [-p np] [-t nt] [-f hostfile] [-x] [-V] [-e] [-h] [-v] [-o] [-c] [-i] [-b] [file] [ARGS]
where file is the name of a script, ARGS are arguments for the script. The escript program will import your current
environment variables. If no file is given, then you will be given a python prompt (see -i for restrictions).

The options are used as follows:

-n nn the number of compute nodes nn to be used. The total number of process being used is nn · ns. This
option overwrites the value of the ESCRIPT NUM NODES environment variable. If a hostfile is given,
the number of nodes needs to match the number hosts given in the host file. If nn > 1 but escript is not
compiled for MPI a warning is printed but execution is continued with nn = 1. If -n is not set the number
of hosts in the host file is used. The default value is 1.

-p np the number of MPI processes per node. The total number of processes to be used is nn · np. This option
overwrites the value of the ESCRIPT NUM PROCS environment variable. If np > 1 but escript is not
compiled for MPI a warning is printed but execution is continued with np = 1. The default value is 1.

-t nt the number of threads used per processes. The option overwrites the value of the
ESCRIPT NUM THREADS environment variable. If nt > 1 but escript is not compiled for
OpenMP a warning is printed but execution is continued with nt = 1. The default value is 1.

-f hostfile the name of a file with a list of host names. Some systems require to specify the addresses or names of
the compute nodes where MPI process should be spawned. The list of addresses or names of the compute
nodes is listed in the file with the name hostfile. If -n is set the the number of different hosts defined in
hostfile must be equal to the number of requested compute nodes nn. The option overwrites the value of the
ESCRIPT HOSTFILE environment variable. By default value no host file is used.

-c prints the information about the settings used to compile escript and stops execution..

-V prints the version of escript and stops execution.

-h prints a help message and stops execution.

-i executes the script file and switches to interactive mode after the execution is finished or an exception has
occurred. This option is useful for debugging a script. The option cannot be used if more then one process
(nn · np > 1) is used.

-b do not invoke python. This is used to run non-python programs.

-e shows additional environment variables and commands used during escript execution. This option is useful
if users wish to execute scripts without using the escript command.

-o switches on the redirection of output of processors with MPI rank greater than zero to the files
‘stdout r.out’ and ‘stderr r.out’ where r is the rank of the processor. The option overwrites the value
of the ESCRIPT STDFILES environment variable

-v prints some diagnostic information.

2.2.1 Notes

• Make sure that mpiexec is in your PATH.

• For MPICH and INTELMPI and for the case a hostfile is present escript will start the mpd demon before
execution.

28 Chapter 2. Execution of an escript Script

2.3 Input and Output

When MPI is used on more than one process (nn · np > 1) no input from the standard input is accepted. Standard
output on any process other the the master process (rank=0) will not be available. Error output from any processor
will be redirected to the node where escript has been invoked. If the -o or ESCRIPT STDFILES is set4, then
the standard and error output from any process other than the master process will be written to files of the names
‘stdout r.out’ and ‘stderr r.out’ (where r is the rank of the process).

If files are created or read by individual MPI processes with information local to the process (e.g in the dump
function) and more than one process is used (nn · np > 1), the MPI process rank is appended to the file names.
This will avoid problems if processes are using a shared file system. Files which collect data which are global for
all MPI processors will created by the process with MPI rank 0 only. Users should keep in mind that if the file
system is not shared, then a file containing global information which is read by all processors needs to be copied
to the local file system before escript is invoked.

2.4 Hints for MPI Programming

In general a script based on the esys.escript module does not require modifications when running under MPI
. However, one needs to be careful if other modules are used.

When MPI is used on more than one process (nn ·np > 1) the user needs to keep in mind that several copies of his
script are executed at the same time 5 while data exchange is performed through the esys.escript module.
At any time, esys.escript assumes that an argument of the type int, float, str and numpy has an identical
value across all processors. All values of these types returned by esys.escript have the same value on all
processors. If values produced by other modules are used as arguments the user has to make sure that the argument
values are identical on all processors. For instance, the usage of a random number generator to create argument
values bears the risk that the value may depend on the processor.

Special attention is required when using files on more then one processor as several processors access the file at
the same time. Open a file for reading is safe, however the user has to make sure that the variables which are set
from reading data from files are identical on all processors.

When writing data to a file it is important that only one processor is writing to the file at any time. As all
values in esys.escript are global it is sufficient to write values on the processor with MPI rank 0 only. The
FileWriter class provides a convenient way to write global data to a simple file. The following script writes
to the file ’test.txt’ on the processor with id 0 only:

from esys.escript import *
f = FileWriter(’test.txt’)
f.write(’test message’)
f.close()

It is highly recommendable to use this class rather than the build open function as it will guarantee a script which
will run in single processor mode as well as under MPI .

If there is the situation that on one of the processors is throwing an exception, for instance as opening a file for
writing fails, the other processors are not automatically made aware of this as MPI is not handling exceptions.
However, MPI will terminate the other processes but may not inform the user of the reason in an obvious way.
The user needs to inspect the error output files to identify the exception.

4That is, it has a non-empty value.
5In case of OpenMP only one copy is running but esys.escript temporarily spawns threads.

2.3. Input and Output 29

30

CHAPTER

THREE

The Module esys.escript

esys.escript is a Python module that allows you to represent the values of a function at points in a Domain
in such a way that the function will be useful for the Finite Element Method (FEM) simulation. It also provides
what we call a function space that describes how the data is used in the simulation. Stored along with the data is
information about the elements and nodes which will be used by esys.finley.

In order to understand what we mean by the term ’function space’, consider that the solution of a partial differ-
ential equation (PDE) is a function on a domain Ω. When solving a PDE using FEM, the solution is piecewise-
differentiable but, in general, its gradient is discontinuous. To reflect these different degrees of smoothness, differ-
ent function spaces are used. For instance, in FEM, the displacement field is represented by its values at the nodes
of the mesh, and so is continuous. The strain, which is the symmetric part of the gradient of the displacement
field, is stored on the element centers, and so is considered to be discontinuous.

A function space is described by a FunctionSpace object. The following statement generates the object
solution space which is a FunctionSpace object and provides access to the function space of PDE solutions
on the Domain mydomain:

solution_space=Solution(mydomain)

The following generators for function spaces on a Domain mydomain are available:

• Solution(mydomain): solutions of a PDE.

• ReducedSolution(mydomain): solutions of a PDE with a reduced smoothness requirement.

• ContinuousFunction(mydomain): continuous functions, eg. a temperature distribution.

• Function(mydomain): general functions which are not necessarily continuous, eg. a stress field.

• FunctionOnBoundary(mydomain): functions on the boundary of the domain, eg. a surface pressure.

• FunctionOnContact0(mydomain): functions on side 0 of the discontinuity.

• FunctionOnContact1(mydomain): functions on side 1 of the discontinuity.

The reduced smoothness for PDE solution is often used to fulfill the Ladyzhenskaya-Babuska-Brezzi condition
[11] when solving saddle point problems , eg. the Stokes equation. A discontinuity is a region within the domain
across which functions may be discontinuous. The location of discontinuity is defined in the Domain object.
Figure 3.1 shows the dependency between the types of function spaces in Finley (other libraries may have different
relationships).

The solution of a PDE is a continuous function. Any continuous function can be seen as a general function on the
domain and can be restricted to the boundary as well as to one side of discontinuity (the result will be different
depending on which side is chosen). Functions on any side of the discontinuity can be seen as a function on the
corresponding other side.

A function on the boundary or on one side of the discontinuity cannot be seen as a general function on the
domain as there are no values defined for the interior. For most PDE solver libraries the space of the solution
and continuous functions is identical, however in some cases, eg. when periodic boundary conditions are used in
esys.finley, a solution fulfills periodic boundary conditions while a continuous function does not have to be
periodic.

31

Solution()

Function()

FunctionOnBoundary()

FunctionOnContactZero()

FunctionOnContactOne()

Reduced

ContinuousFunction()

DiracDeltaFunction()

ReducedSolution()

ContinuousFunction()

FIGURE 3.1: Dependency of Function Spaces in Finley. An arrow indicates that a function in the function space at the
starting point can be interpolated to the function space of the arrow target. All functionspaces on the left side can be interpolated
to any of the functionspaces on the right.

The concept of function spaces describes the properties of functions and allows abstraction from the actual repre-
sentation of the function in the context of a particular application. For instance, in the FEM context a function of
the general FunctionSpace type (written as Function() in Figure 3.1) is usually represented by its values at the
element center, but in a finite difference scheme the edge midpoint of cells is preferred. By changing its function
space you can use the same function in a Finite Difference scheme instead of Finite Element scheme. Changing
the function space of a particular function will typically lead to a change of its representation. So, when seen as a
general function, a continuous function which is typically represented by its values on the node of the FEM mesh
or finite difference grid must be interpolated to the element centers or the cell edges, respectively. Interpolation
happens automatically in esys.escript whenever it is required.

In esys.escript the class that stores these functions is called Data. The function is represented through
its values on data sample points where the data sample points are chosen according to the function space of the
function. Data class objects are used to define the coefficients of the PDEs to be solved by a PDE solver library
and also to store the solutions of the PDE.

The values of the function have a rank which gives the number of indices, and a shape defining the range of each
index. The rank in esys.escript is limited to the range 0 through 4 and it is assumed that the rank and shape
is the same for all data sample points. The shape of a Data object is a tuple (list) s of integers. The length of s
is the rank of the Data object and the i-th index ranges between 0 and s[i] − 1. For instance, a stress field has
rank 2 and shape (d, d) where d is the spatial dimension. The following statement creates the Data object mydat
representing a continuous function with values of shape (2, 3) and rank 2:

mydat=Data(value=1,what=ContinuousFunction(myDomain),shape=(2,3))

The initial value is the constant 1 for all data sample points and all components.

Data objects can also be created from any numpy array or any object, such as a list of floating point numbers, that
can be converted into a numpy.ndarray [6]. The following two statements create objects which are equivalent
to mydat:

mydat1=Data(value=numpy.ones((2,3)),what=ContinuousFunction(myDomain))
mydat2=Data(value=[[1,1],[1,1],[1,1]],what=ContinuousFunction(myDomain))

32 Chapter 3. The Module esys.escript

In the first case the initial value is numpy.ones((2,3)) which generates a 2 × 3 matrix as a numpy.ndarray
filled with ones. The shape of the created Data object it taken from the shape of the array. In the second case, the
creator converts the initial value, which is a list of lists, and converts it into a numpy.ndarray before creating
the actual Data object.

For convenience esys.escript provides creators for the most common types of Data objects in the following
forms (d defines the spatial dimension):

• Scalar(0,Function(mydomain)) is the same as Data(0,Function(myDomain),(,)) (each value is a scalar), e.g
a temperature field.

• Vector(0,Function(mydomain)) is the same as Data(0,Function(myDomain),(d)) (each value is a vector), e.g
a velocity field.

• Tensor(0,Function(mydomain)) is the same as Data(0,Function(myDomain),(d,d)), eg. a stress field.

• Tensor4(0,Function(mydomain)) is the same as Data(0,Function(myDomain),(d,d,d,d)) eg. a Hook tensor
field.

Here the initial value is 0 but any object that can be converted into a numpy.ndarray and whose shape is
consistent with shape of the Data object to be created can be used as the initial value.

Data objects can be manipulated by applying unary operations (eg. cos, sin, log) point and can be combined
point-wise by applying arithmetic operations (eg. +, - ,* , /). It is to be emphasized that esys.escript
itself does not handle any spatial dependencies as it does not know how values are interpreted by the processing
PDE solver library. However esys.escript invokes interpolation if this is needed during data manipulations.
Typically, this occurs in binary operation when both arguments belong to different function spaces or when data
are handed over to a PDE solver library which requires functions to be represented in a particular way.

The following example shows the usage of Data objects: Assume we have a displacement field u and we want to
calculate the corresponding stress field σ using the linear–elastic isotropic material model

σij = λuk,kδij + µ(ui,j + uj,i) (3.1)

where δij is the Kronecker symbol and λ and µ are the Lame coefficients. The following function takes the
displacement u and the Lame coefficients lam and mu as arguments and returns the corresponding stress:

from esys.escript import *
def getStress(u,lam,mu):

d=u.getDomain().getDim()
g=grad(u)
stress=lam*trace(g)*kronecker(d)+mu*(g+transpose(g))
return stress

The variable d gives the spatial dimension of the domain on which the displacements are defined. kronecker returns
the Kronecker symbol with indexes i and j running from 0 to d-1. The call grad(u) requires the displacement field
u to be in the Solution or continuous FunctionSpace function space. The result g as well as the returned stress
will be in the general FunctionSpace function space. If, for example, u is the solution of a PDE then getStress
might be called in the following way:

s=getStress(u,1.,2.)

However getStress can also be called with Data objects as values for lam and mu which, for instance in the case
of a temperature dependency, are calculated by an expression. The following call is equivalent to the previous
example:

lam=Scalar(1.,ContinuousFunction(mydomain))
mu=Scalar(2.,Function(mydomain))
s=getStress(u,lam,mu)

The function lam belongs to the continuous FunctionSpace function space but with g the function trace(g)
is in the general FunctionSpace function space. In the evaluation of the product lam*trace(g) we have
different function spaces (on the nodes versus in the centers) and at first glance we have incompatible data.

33

FIGURE 3.2: Element Tagging. A rectangular mesh over a region with two rock types white and gray. The number in each
cell refers to the major rock type present in the cell (1 for white and 2 for gray).

esys.escript converts the arguments in an appropriate function space according to Table 3.1. In this ex-
ample that means esys.escript sees lam as a function of the general FunctionSpace function space. In
the context of FEM this means the nodal values of lam are interpolated to the element centers. The interpolation
is automatic and requires no special handling.

Material parameters such as the Lame coefficients are typically dependent on rock types present in the area of
interest. A common technique to handle these kinds of material parameters is ”tagging”, which uses storage
efficiently. Figure 3.2 shows an example. In this case two rock types white and gray can be found in the domain.
The domain is subdivided into triangular shaped cells. Each cell has a tag indicating the rock type predominately
found in this cell. Here 1 is used to indicate rock type white and 2 for rock type gray. The tags are assigned at the
time when the cells are generated and stored in the Domain class object. To allow easier usage of tags, names
can be used instead of numbers. These names are typically defined at the time when the geometry is generated.

The following statements show how, for the example of Figure 3.2, the stress calculation discussed above and
tagged values are used for lam:

lam=Scalar(value=2.,what=Function(mydomain))
insertTaggedValue(lam,white=30.,gray=5000.)
s=getStress(u,lam,2.)

In this example lam is set to 30 for those cells with tag white (=1) and to 5000. for those cells with tag gray (=2 .
The initial value 2 of lam is used as a default value for the case when a tag is encountered which has not been linked
with a value. The getStress method does not need to be changed now that we are using tags. esys.escript
resolves the tags when lam*trace(g) is calculated.

This brings us to a very important point about esys.escript. You can develop a simulation with constant
Lame coefficients, and then later switch to tagged Lame coefficients without otherwise changing your python
script. In short, you can use the same script to model with different domains and different types of input data.

There are three main ways in which Data objects are represented internally: constant, tagged, and expanded. In

34 Chapter 3. The Module esys.escript

the constant case, the same value is used at each sample point and only a single value is stored to save memory.
In the expanded case, each sample point has an individual value (such as for the solution of a PDE). This is where
your largest data sets will be created because the values are stored as a complete array. The tagged case has already
been discussed above.

Expanded data is created when you create a Data object with expanded=True. Tagged data sets are created when
you use the insertTaggedValue() method as shown above.

Values are accessed through a sample reference number. Operations on expanded Data objects have to be per-
formed for each sample point individually. When tagged values are used, the values are held in a dictionary.
Operations on tagged data require processing the set of tagged values only, rather than processing the value for
each individual sample point. esys.escript allows any mixture of constant, tagged and expanded data in a
single expression.

Data objects can be written to disk files and read with dump and load, both of which use netCDF [16]. Use these
to save data for visualization, checkpoint/restart or simply to save and reuse data that was expensive to compute.

For instance to save the coordinates of the data points of the continuous FunctionSpace to the file x.nc use

x=ContinuousFunction(mydomain).getX()
x.dump("x.nc")
mydomain.dump(‘dom.nc‘)

To recover the object x and mydomain was a esys.finley mesh use

from esys.finley import LoadMesh
mydomain=LoadMesh(’dom.nc’)
x=load("x.nc", mydomain)

It possible to rerun the mechanism that was originally used to generates mydomain to recreate mydomain. How-
ever in most cases using dump and load is faster in particular if optimization has been applied. In case that
esys.escript is running on more than one MPI processor the dump will create an individual file for each
processor containing the local data. In order to avoid conflicts the file name is extended by the MPI processor
rank.

The function space of the Data is stored in x.nc, though. If the Data object is expanded, the number of data
points in the file and of the Domain for the particular FunctionSpace must match. Moreover, the ordering
of the values is checked using the reference identifiers provided by FunctionSpace on the Domain. In some
cases, data points will be re-ordered. Take care to be sure you get what you want!

3.1 esys.escript Classes

3.1.1 Domain class

class Domain()
A Domain object is used to describe a geometric region together with a way of representing functions
over this region. The Domain class provides an abstract interface to the domain of FunctionSpace and
Data objects. Domain needs to be subclassed in order to provide a complete implementation.

The following methods are available:
getDim()

returns the spatial dimension of the Domain.

dump(filename)
dumps the Domain into the file filename.

getX()
returns the locations in the Domain. The FunctionSpace of the returned Data object is chosen by the
Domain implementation. Typically it will be in the general FunctionSpace.

setX(newX)
assigns a new location to the Domain. newX has to have shape (d,) where d is the spatial dimension of

3.1. esys.escript Classes 35

the domain. Typically newX must be in the continuous FunctionSpace but the space actually to be used
depends on the Domain implementation.

getNormal()
returns the surface normals on the boundary of the Domain as Data object.

getSize()
returns the local sample size, e.g. the element diameter, as Data object.

setTagMap(tag name, tag)
defines a mapping of the tag name tag name to the tag.

getTag(tag name)
returns the tag associated with the tag name tag name.

isValidTagName(tag name)
return True if tag name is a valid tag name.

eq (arg)
(python == operator) returns True if the Domain arg describes the same domain. Otherwise False is
returned.

ne (arg)
(python != operator) returns True if the Domain arg does not describe the same domain. Otherwise
False is returned.

str (arg)
(python str() function) returns string representation of the Domain.

onMasterProcessor)()
returns True if the processor is the master processor within the MPI processor group used by the Domain.
This is the processor with rank 0. If MPI support is not enabled the return value is always True.

getMPISize()
returns the number of MPI processors used for this Domain. If MPI support is not enabled 1 is returned.

getMPIRank()
returns the rank of the processor executing the statement within the MPI processor group used by the
Domain. If MPI support is not enabled 0 is returned.

MPIBarrier()
executes barrier synchronization within the MPI processor group used by the Domain. If MPI support is
not enabled, this command does nothing.

3.1.2 FunctionSpace class

class FunctionSpace()
FunctionSpace objects are used to define properties of Data objects, such as continuity.
FunctionSpace objects are instantiated by generator functions. A Data object in a particular
FunctionSpace is represented by its values at data sample points which are defined by the type and
the Domain of the FunctionSpace.

The following methods are available:
getDim()

returns the spatial dimension of the Domain of the FunctionSpace.

getX()
returns the location of the data sample points.

getNormal()
If the domain of functions in the FunctionSpace is a hyper-manifold (e.g. the boundary of a domain)
the method returns the outer normal at each of the data sample points. Otherwise an exception is raised.

getSize()
returns a Data objects measuring the spacing of the data sample points. The size may be zero.

36 Chapter 3. The Module esys.escript

getDomain()
returns the Domain of the FunctionSpace.

setTags(new tag, mask)
assigns a new tag new tag to all data sample where mask is positive for a least one data point. mask must
be defined on the this FunctionSpace. Use the setTagMap to assign a tag name to new tag.

eq (arg)
(python == operator) returns True if the Domain arg describes the same domain. Otherwise False is
returned.

ne (arg)
(python != operator) returns True if the Domain arg do not describe the same domain. Otherwise False
is returned.

str (g)
(python str() function) returns string representation of the Domain.

The following function provide generators for FunctionSpace objects:
Function(domain)

returns the general FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined over the whole geometric region defined by domain.

ContinuousFunction(domain)
returns the continuous FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined over the whole geometric region defined by domain and assumed to repre-
sent a continuous function.

FunctionOnBoundary(domain)
returns the continuous FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined on the boundary of the geometric region defined by domain.

FunctionOnContactZero(domain)
returns the contact FunctionSpace on side 0 the Domain domain. Data objects in this type of general
FunctionSpace are defined on side 0 of a discontinuity within the geometric region defined by domain.
The discontinuity is defined when domain is instantiated.

FunctionOnContactOne(domain)
returns the contact FunctionSpace on side 1 on the Domain domain. Data objects in this type of
general FunctionSpace are defined on side 1 of a discontinuity within the geometric region defined by
domain. The discontinuity is defined when domain is instantiated.

Solution(domain)
returns the solution FunctionSpace on the Domain domain. Data objects in this type of general
FunctionSpace are defined on geometric region defined by domain and are solutions of partial differ-
ential equations .

ReducedSolution(domain)
returns the reduced solution FunctionSpace on the Domain domain. Data objects in this type of
general FunctionSpace are defined on geometric region defined by domain and are solutions of partial
differential equations with a reduced smoothness for the solution approximation.

3.1.3 Data Class

The following table shows arithmetic operations that can be performed point-wise on Data objects.

3.1. esys.escript Classes 37

expression Description
+arg0 identical to arg
-arg0 negation
arg0+arg1 adds arg0 and arg1
arg0*arg1 multiplies arg0 and arg1
arg0-arg1 difference arg1 fromarg1
arg0/arg1 divide arg0 by arg1
arg0**arg1 raises arg0 to the power of arg1

At least one of the arguments arg0 or arg1 must be a Data object. Either of the arguments may be a Data object,
a python number or a numpy object.

If arg0 or arg1 are not defined on the same FunctionSpace, then an attempt is made to convert arg0 to the
FunctionSpace of arg1 or to convert arg1 to the FunctionSpace of arg0. Both arguments must have the
same shape or one of the arguments may be of rank 0 (a constant).

The returned Data object has the same shape and is defined on the data sample points as arg0 or arg1.

The following table shows the update operations that can be applied to Data objects:

expression Description
arg0+=arg2 adds arg0 to arg2
arg0*=arg2 multiplies arg0 with arg2
arg0-=arg2 subtracts arg2 fromarg2
arg0/=arg2 divides arg0 by arg2
arg0**=arg2 raises arg0 by arg2

arg0 must be a Data object. arg1 must be a Data object or an object that can be converted into a Data object.
arg1 must have the same shape as arg0 or have rank 0. In the latter case it is assumed that the values of arg1 are
constant for all components. arg1 must be defined in the same FunctionSpace as arg0 or it must be possible
to interpolate arg1 onto the FunctionSpace of arg0.

The Data class supports taking slices from a Data object as well as assigning new values to a slice of an existing
Data object. The following expressions for taking and setting slices are valid:

rank of arg slicing expression shape of returned and assigned object
0 no slicing -
1 arg[l0:u0] (u0-l0,)
2 arg[l0:u0,l1:u1] (u0-l0,u1-l1)
3 arg[l0:u0,l1:u1,l2:u2] (u0-l0,u1-l1,u2-l2)
4 arg[l0:u0,l1:u1,l2:u2,l3:u3] (u0-l0,u1-l1,u2-l2,u3-l3)

where s is the shape of arg and
0 ≤ l0 ≤ u0 ≤ s[0],

0 ≤ l1 ≤ u1 ≤ s[1],

0 ≤ l2 ≤ u2 ≤ s[2],

0 ≤ l3 ≤ u3 ≤ s[3].

Any of the lower indexes l0, l1, l2 and l3 may not be present in which case 0 is assumed. Any of the upper indexes
u0, u1, u2 and u3 may be omitted, in which case, the upper limit for that dimension is assumed. The lower and
upper index may be identical, in which case the column and the lower or upper index may be dropped. In the
returned or in the object assigned to a slice, the corresponding component is dropped, i.e. the rank is reduced by
one in comparison to arg. The following examples show slicing in action:

t=Data(1.,(4,4,6,6),Function(mydomain))
t[1,1,1,0]=9.
s=t[:2,:,2:6,5] # s has rank 3
s[:,:,1]=1.
t[:2,:2,5,5]=s[2:4,1,:2]

38 Chapter 3. The Module esys.escript

3.1.4 Generation of Data objects

class Data(value=0,shape=(,),what=FunctionSpace(),expand=False)
creates a Data object with shape shape in the FunctionSpace what. The values at all data sample
points are set to the double value value. If expanded is True the Data object is represented in expanded
from.

class Data(value,what=FunctionSpace(),expand=False)
creates a Data object in the FunctionSpace what. The value for each data sample points is set to value,
which could be a numpy, Data object value or a dictionary of numpy or floating point numbers. In the
latter case the keys must be integers and are used as tags. The shape of the returned object is equal to the
shape of value. If expanded is True the Data object is represented in expanded form.

class Data()
creates an empty Data object. The empty Data object is used to indicate that an argument is not present
where a Data object is required.

Scalar(value=0.,what=FunctionSpace(),expand=False)
returns a Data object of rank 0 (a constant) in the FunctionSpace what. Values are initialized with
value, a double precision quantity. If expanded is True the Data object is represented in expanded from.

Vector(value=0.,what=FunctionSpace(),expand=False)
returns a Data object of shape (d,) in the FunctionSpace what, where d is the spatial dimension of the
Domain of what. Values are initialed with value, a double precision quantity. If expanded is True the
Data object is represented in expanded from.

Tensor(value=0.,what=FunctionSpace(),expand=False)
returns a Data object of shape (d,d) in the FunctionSpace what, where d is the spatial dimension of
the Domain of what. Values are initialed with value, a double precision quantity. If expanded is True the
Data object is represented in expanded from.

Tensor3(value=0.,what=FunctionSpace(),expand=False)
returns a Data object of shape (d,d,d) in the FunctionSpace what, where d is the spatial dimension of
the Domain of what. Values are initialed with value, a double precision quantity. If expanded is True the
Data object is reargpresented in expanded from.

Tensor4(value=0.,what=FunctionSpace(),expand=False)
returns a Data object of shape (d,d,d,d) in the FunctionSpace what, where d is the spatial dimension
of the Domain of what. Values are initialized with value, a double precision quantity. If expanded is True
the Data object is represented in expanded from.

load(filename,domain)
recovers a Data object on Domain domain from the file filename, which was created by dump.

3.1.5 Data methods

These are the most frequently-used methods of the Data class. A complete list of methods can be found on
http://esys.esscc.uq.edu.au/docs.html.
getFunctionSpace()

returns the FunctionSpace of the object.

getDomain()
returns the Domain of the object.

getShape()
returns the shape of the object as a tuple of integers.

getRank()
returns the rank of the data on each data point.

isEmpty()
returns True id the Data object is the empty Data object. Otherwise False is returned. Note that this is
not the same as asking if the object contains no data sample points.

3.1. esys.escript Classes 39

setTaggedValue(tag name,value)
assigns the value to all data sample points which have the tag assigned to tag name. value must be an
object of class numpy.ndarray or must be convertible into a numpy.ndarray object. value (or the
corresponding numpy.ndarray object) must be of rank 0 or must have the same rank like the object. If
a value has already be defined for tag tag name within the object it is overwritten by the new value. If the
object is expanded, the value assigned to data sample points with tag tag name is replaced by value. If no
tag is assigned tag name tag name, no value is set.

dump(filename)
dumps the Data object to the file filename. The file stores the function space but not the Domain. It is in
the responsibility of the user to save the Domain.

str ()
returns a string representation of the object.

3.1.6 Functions of Data objects

This section lists the most important functions for Data class objects a. A complete list and a more detailed
description of the functionality can be found on http://esys.esscc.uq.edu.au/docs.html.
saveVTK(filename,**kwdata)

writes Data defined by keywords in the file with filename using the vtk file format VTK file format. The
key word is used as an identifier. The statement

saveVTK("out.xml",temperature=T,velocity=v)

will write the scalar T as temperature and the vector v as velocity into the file ‘out.xml’. Restrictions on the
allowed combinations of FunctionSpace apply.

saveDX(filename,**kwdata)
writes Data defined by keywords in the file with filename using the vtk file format OpenDX [17] file format.
The key word is used as an identifier. The statement

saveDX("out.dx",temperature=T,velocity=v)

will write the scalar T as temperature and the vector v as velocity into the file ‘out.dx’. Restrictions on the
allowed combinations of FunctionSpace apply.

kronecker(d)
returns a rank-2 Data object Data object in FunctionSpace d such that

kronecker(d) [i, j] =
{

1 if i = j
0 otherwise (3.2)

If d is an integer a (d, d) numpy array is returned.

identityTensor(d)
is a synonym for kronecker (see above).

identityTensor4(d)
returns a rank-4 Data object Data object in FunctionSpace d such that

identityTensor(d) [i, j, k, l] =
{

1 if i = k and j = l
0 otherwise (3.3)

If d is an integer a (d, d, d, d) numpy array is returned.

unitVector(i,d)
returns a rank-1 Data object Data object in FunctionSpace d such that

identityTensor(d) [j] =
{

1 if j = i
0 otherwise (3.4)

If d is an integer a (d,) numpy array is returned.

40 Chapter 3. The Module esys.escript

Lsup(a)
returns the Lsup norm of arg. This is the maximum of the absolute values over all components and all data
sample points of a.

sup(a)
returns the maximum value over all components and all data sample points of a.

inf(a)
returns the minimum value over all components and all data sample points of a

minval(a)
returns at each data sample points the minimum value over all components.

maxval(a)
returns at each data sample points the maximum value over all components.

length(a)
returns at Euclidean norm at each data sample points. For a rank-4 Data object a this is

length(a) =
√∑
ijkl

a [i, j, k, l]2 (3.5)

trace(a[,axis offset=0])
returns the trace of a. This is the sum over components axis offset and axis offset+1 with the same index.
For instance in the case of a rank-2 Data object function and this is

trace(a) =
∑
i

a [i, i] (3.6)

and for a rank-4 Data object function and axis offset=1 this is

trace(a,1) [i, j] =
∑
k

a [i, k, k, j] (3.7)

transpose(a[, axis offset=None])
returns the transpose of a. This swaps the first axis offset components of a with the rest. If axis offset is not
present int(r/2) is used where r is the rank of a. the sum over components axis offset and axis offset+1
with the same index. For instance in the case of a rank-2 Data object function and this is

transpose(a) [i, j] = a [j, i] (3.8)

and for a rank-4 Data object function and axis offset=1 this is

transpose(a,1) [i, j, k, l] = a [j, k, l, i] (3.9)

swap axes(a[, axis0=0 [, axis1=1]])
returns a but with swapped components axis0 and axis1. The argument a must be at least of rank-2 Data
object. For instance in the for a rank-4 Data object argument, axis0=1 and axis1=2 this is

swap axes(a,1,2) [i, j, k, l] = a [i, k, j, l] (3.10)

symmetric(a)
returns the symmetric part of a. This is (a+transpose(a))/2.

nonsymmetric(a)
returns the non–symmetric part of a. This is (a-transpose(a))/2.

inverse(a)
return the inverse of a. This is

matrix mult(inverse(a),a)=kronecker(d) (3.11)

if a has shape (d,d). The current implementation is restricted to arguments of shape (2,2) and (3,3).

3.1. esys.escript Classes 41

eigenvalues(a)
return the eigenvalues of a. This is

matrix mult(a,V)=e[i]*V (3.12)

where e=eigenvalues(a) and V is suitable non–zero vector V . The eigenvalues are ordered in increas-
ing size. The argument a has to be the symmetric, ie. a=symmetric(a). The current implementation is
restricted to arguments of shape (2,2) and (3,3).

eigenvalues and eigenvectors(a)
return the eigenvalues and eigenvectors of a. This is

matrix mult(a,V[:,i])=e[i]*V[:,i] (3.13)

where e,V=eigenvalues and eigenvectors(a). The eigenvectors V are orthogonal and nor-
malized, ie.

matrix mult(transpose(V),V)=kronecker(d) (3.14)

if a has shape (d,d). The eigenvalues are ordered in increasing size. The argument a has to be the
symmetric, ie. a=symmetric(a). The current implementation is restricted to arguments of shape (2,2)
and (3,3).

maximum(*a)
returns the maximum value over all arguments at all data sample points and for each component. For
instance

maximum(a0,a1) [i, j] = max(a0 [i, j] , a1 [i, j]) (3.15)

at all data sample points.

minimum(*a)
returns the minimum value over all arguments at all data sample points and for each component. For instance

minimum(a0,a1) [i, j] = min(a0 [i, j] , a1 [i, j]) (3.16)

at all data sample points.

clip(a[, minval=0.][, maxval=1.])
cuts back a into the range between minval and maxval. A value in the returned object equals minval if the
corresponding value of a is less than minval, equals maxval if the corresponding value of a is greater than
maxval or corresponding value of a otherwise.

inner(a0,a1)
returns the inner product of a0 and a1. For instance in the case of rank-2 Data object arguments and this is

inner(a) =
∑
ij

a0 [j, i] · a1 [j, i] (3.17)

and for a rank-4 Data object arguments this is

inner(a) =
∑
ijkl

a0 [i, j, k, l] · a1 [j, i, k, l] (3.18)

matrix mult(a0,a1)
returns the matrix product of a0 and a1. If a1 is rank-1 Data object this is

matrix mult(a) [i] =
∑
k

a0 · [i, k] a1 [k] (3.19)

and if a1 is rank-2 Data object this is

matrix mult(a) [i, j] =
∑
k

a0 · [i, k] a1 [k, j] (3.20)

42 Chapter 3. The Module esys.escript

transposed matrix mult(a0,a1)
returns the matrix product of the transposed of a0 and a1. The function is equivalent to
matrix mult(transpose(a0),a1). If a1 is rank-1 Data object this is

transposed matrix mult(a) [i] =
∑
k

a0 · [k, i] a1 [k] (3.21)

and if a1 is rank-2 Data object this is

transposed matrix mult(a) [i, j] =
∑
k

a0 · [k, i] a1 [k, j] (3.22)

matrix transposed mult(a0,a1)
returns the matrix product of a0 and the transposed of a1. The function is equivalent to
matrix mult(a0,transpose(a1)). If a1 is rank-2 Data object this is

matrix transposed mult(a) [i, j] =
∑
k

a0 · [i, k] a1 [j, k] (3.23)

outer(a0,a1)
returns the outer product of a0 and a1. For instance if a0 and a1 both are rank-1 Data object then

outer(a) [i, j] = a0 [i] · a1 [j] (3.24)

and if a0 is rank-1 Data object and a1 is rank-3 Data object

outer(a) [i, j, k] = a0 [i] · a1 [j, k] (3.25)

tensor mult(a0,a1)
returns the tensor product of a0 and a1. If a1 is rank-2 Data object this is

tensor mult(a) [i, j] =
∑
kl

a0 [i, j, k, l] · a1 [k, l] (3.26)

and if a1 is rank-4 Data object this is

tensor mult(a) [i, j, k, l] =
∑
mn

a0 [i, j,m, n] · a1 [m,n, k, l] (3.27)

transposed tensor mult(a0,a1)
returns the tensor product of the transposed of a0 and a1. The function is equivalent to
tensor mult(transpose(a0),a1). If a1 is rank-2 Data object this is

transposed tensor mult(a) [i, j] =
∑
kl

a0 [k, l, i, j] · a1 [k, l] (3.28)

and if a1 is rank-4 Data object this is

transposed tensor mult(a) [i, j, k, l] =
∑
mn

a0 [m,n, i, j] · a1 [m,n, k, l] (3.29)

tensor transposed mult(a0,a1)
returns the tensor product of a0 and the transposed of a1. The function is equivalent to
tensor mult(a0,transpose(a1)). If a1 is rank-2 Data object this is

tensor transposed mult(a) [i, j] =
∑
kl

a0 [i, j, k, l] · a1 [l, k] (3.30)

and if a1 is rank-4 Data object this is

tensor transposed mult(a) [i, j, k, l] =
∑
mn

a0 [i, j,m, n] · a1 [k, l,m, n] (3.31)

3.1. esys.escript Classes 43

grad(a[, where=None])
returns the gradient of a. If where is present the gradient will be calculated in FunctionSpace where
otherwise a default FunctionSpace is used. In case that a has rank-2 Data object one has

grad(a) [i, j, k] =
∂a [i, j]
∂xk

(3.32)

integrate(a[,where=None])
returns the integral of a where the domain of integration is defined by the FunctionSpace of a. If where
is present the argument is interpolated into FunctionSpace where before integration. For instance in the
case of a rank-2 Data object argument in continuous FunctionSpace it is

integrate(a) [i, j] =
∫

Ω

a [i, j] dΩ (3.33)

where Ω is the spatial domain and dΩ volume integration. To integrate over the boundary of the domain one
uses

integrate(a,where=FunctionOnBoundary(a.getDomain)) [i, j] =
∫
∂Ω

a [i, j] ds (3.34)

where ∂Ω is the surface of the spatial domain and ds area or line integration.

interpolate(a,where)
interpolates argument a into the FunctionSpace where.

div(a[,where=None])
returns the divergence of a. This

div(a) = trace(grad(a), where) (3.35)

jump(a[,domain=None])
returns the jump of a over the discontinuity in its domain or if Domain domain is present in domain.

jump(a) = interpolate(a,FunctionOnContactOne(domain))
−interpolate(a,FunctionOnContactZero(domain)) (3.36)

L2(a)
returns the L2-norm of a in its function space. This is

L2(a)=integrate(length(a)2) . (3.37)

The following functions operate “point-wise”. That is, the operation is applied to each component of each point
individually.

sin(a)
applies sine function to a.

cos(a)
applies cosine function to a.

tan(a)
applies tangent function to a.

asin(a)
applies arc (inverse) sine function to a.

acos(a)
applies arc (inverse) cosine function to a.

atan(a)
applies arc (inverse) tangent function to a.

sinh(a)
applies hyperbolic sine function to a.

44 Chapter 3. The Module esys.escript

cosh(a)
applies hyperbolic cosine function to a.

tanh(a)
applies hyperbolic tangent function to a.

asinh(a)
applies arc (inverse) hyperbolic sine function to a.

acosh(a)
applies arc (inverse) hyperbolic cosine function to a.

atanh(a)
applies arc (inverse) hyperbolic tangent function to a.

exp(a)
applies exponential function to a.

sqrt(a)
applies square root function to a.

log(a)
applies the natural logarithm to a.

log10(a)
applies the base-10 logarithm to a.

sign(a)
applies the sign function to a, that is 1 where a is positive, −1 where a is negative and 0 otherwise.

wherePositive(a)
returns a function which is 1 where a is positive and 0 otherwise.

whereNegative(a)
returns a function which is 1 where a is negative and 0 otherwise.

whereNonNegative(a)
returns a function which is 1 where a is non–negative and 0 otherwise.

whereNonPositive(a)
returns a function which is 1 where a is non–positive and 0 otherwise.

whereZero(a[, tol=None, [, rtol=1.e-8]])
returns a function which is 1 where a equals zero with tolerance tol and 0 otherwise. If tol is not present,
the absolute maximum value of Ca times Crtol is used.

whereNonZero(a, [, tol=None, [, rtol=1.e-8]])
returns a function which is 1 where a different from zero with tolerance tol and 0 otherwise. If tol is not
present, the absolute maximum value of Ca times Crtol is used.

3.1.7 Operator Class

The Operator class provides an abstract access to operators build within the LinearPDE class. Operator
objects are created when a PDE is handed over to a PDE solver library and handled by the LinearPDE object
defining the PDE. The user can gain access to the Operator of a LinearPDE object through the getOperator
method.

class Operator()
creates an empty Operator object.

isEmpty(fileName)
returns True is the object is empty. Otherwise True is returned.

setValue(value)
resets all entries in the object representation to value

solves(rhs)

3.1. esys.escript Classes 45

solves the operator equation with right hand side rhs

of(u)
applies the operator to the Data object u

saveMM(fileName)
saves the object to a matrix market format file of name fileName, see http://maths.nist.gov/MatrixMarket

3.2 Physical Units

esys.escript provides support for physical units in the SI system including unit conversion. So the user can
define variables in the form

from esys.escript.unitsSI import *
l=20*m
w=30*kg
w2=40*lb
T=100*Celsius

In the two latter cases an conversion from pounds and degree Celsius is performed into the appropriate SI units kg
and Kelvin is performed. In addition composed units can be used, for instance

from esys.escript.unitsSI import *
rho=40*lb/cm**3

to define the density in the units of pounds per cubic centimeter. The value 40 will be converted into SI units, in
this case kg per cubic meter. Moreover unit prefixes are supported:

from esys.escript.unitsSI import *
p=40*Mega*Pa

to the the pressure to 40 Mega Pascal. Units can also be converted back from the SI system into a desired unit, e.g

from esys.escript.unitsSI import *
print p/atm

can be used print the pressure in units of atmosphere.

This is an incomplete list of supported physical units:

km
unit of kilo meter

m
unit of meter

cm
unit of centi meter

mm
unit of milli meter

sec
unit of second

minute
unit of minute

h
unit of hour

day
unit of day

yr
unit of year

46 Chapter 3. The Module esys.escript

gram
unit of gram

kg
unit of kilo gram

lb
unit of pound

ton
metric ton

A
unit of Ampere

Hz
unit of Hertz

N
unit of Newton

Pa
unit of Pascal

atm
unit of atmosphere

J
unit of Joule

W
unit of Watt

C
unit of Coulomb

V
unit of Volt

F
unit of Farad

Ohm
unit of Ohm

K
unit of Kelvin

Celsius
unit of Celsius

Fahrenheit
unit of Fahrenheit

Moreover unit prefixes are supported:

Yotta
prefix yotta = 1024.

Zetta
prefix zetta= 1021.

Exa
prefix exa= 1018.

Peta
prefix peta= 1015.

Tera
prefix tera= 1012.

3.2. Physical Units 47

Giga
prefix giga= 109.

Mega
prefix mega= 106.

Kilo
prefix kilo= 103.

Hecto
prefix hecto= 102.

Deca
prefix deca= 101.

Deci
prefix deci= 10−1.

Centi
prefix centi= 10−2.

Milli
prefix milli= 10−3.

Micro
prefix micro= 10−6.

Nano
prefix nano= 10−9.

Pico
prefix pico= 10−12.

Femto
prefix femto= 10−15.

Atto
prefix atto= 10−18.

Zepto
prefix zepto= 10−21.

Yocto
prefix yocto= 10−24.

3.3 Utilities

The FileWriter provides a mechanism to write data to a file. In essence, this class wraps the standard file
class to write data that are global in MPI to a file. In fact, data are written on the processor with MPI rank 0 only.
It is recommended to use FileWriter rather than open in order to write code that is running with and without
MPI . It is save to use open under MPI to read data which are global under MPI .

class FileWriter(fn[,append=False, [createLocalFiles=False]]))
Opens a file of name fn for writing. If append is set to True written data are append at the end of the
file. If running under MPI only the first processor with rank==0 will open the file and write to it. If
createLocalFiles is set each individual processor will create a file where for any processor with rank¿0 the
file name is extended by its rank. This option is normally used for debug purposes only.

The following methods are available:
close()

closes the file.

flush()
flushes the internal buffer to disk.

write(txt)

48 Chapter 3. The Module esys.escript

Write string txt to file. Note that newline is not added.

writelines(txts)
Write the list txts of strings to the file.. Note that newlines are not added. This method is equivalent to call
write() for each string.

closed
True if file is closed.

mode
access mode.

name
file name.

newlines
line separator

setEscriptParamInt(name,value)
assigns the integer value value to the parameter name. If name=”TOO MANY LINES” conversion of any
Data object to a string switches to a condensed format if more than value lines would be created.

getEscriptParamInt(name)
returns the current value of integer parameter name.

listEscriptParams(a)
returns a list of valid parameters and their description.

getMPISizeWorld()
returns the number of MPI processors in use in the MPI COMM WORLD processor group. If MPI is
not used 1 is returned.

getMPIRankWorld()
returns the rank of the process within the MPI COMM WORLD processor group. If MPI is not used 0
is returned.

MPIBarrierWorld()
performs a barrier synchronization across all processors within MPI COMM WORLD processor group.

getMPIWorldMax(a)
returns the maximum value of the integer a across all processors within MPI COMM WORLD.

3.3. Utilities 49

50

CHAPTER

FOUR

The Module
esys.escript.linearPDEs

4.1 Linear Partial Differential Equations

The LinearPDE class is used to define a general linear, steady, second order PDE for an unknown function u on
a given Ω defined through a Domain object. In the following Γ denotes the boundary of the domain Ω. n denotes
the outer normal field on Γ.

For a single PDE with a solution with a single component the linear PDE is defined in the following form:

−(Ajlu,l),j − (Bju),j + Clu,l +Du = −Xj,j + Y . (4.1)

u, j denotes the derivative of u with respect to the j-th spatial direction. Einstein’s summation convention, ie.
summation over indexes appearing twice in a term of a sum is performed, is used. The coefficients A, B, C, D,
X and Y have to be specified through Data objects in the general FunctionSpace on the PDE or objects that
can be converted into such Data objects. A is a rank-2 Data object, B, C and X are rank-1 Data object and D
and Y are scalar. The following natural boundary conditions are considered on Γ:

nj(Ajlu,l +Bju) + du = njXj + y . (4.2)

Notice that the coefficients A, B and X are defined in the PDE. The coefficients d and y are each a scalar Data
object in the boundary FunctionSpace. Constraints for the solution prescribing the value of the solution at
certain locations in the domain. They have the form

u = r where q > 0 (4.3)

r and q are each scalar Data object where q is the characteristic function defining where the constraint is applied.
The constraints defined by Equation (4.3) override any other condition set by Equation (4.1) or Equation (4.2).

For a system of PDEs and a solution with several components the PDE has the form

−(Aijkluk,l),j − (Bijkuk),j + Cikluk,l +Dikuk = −Xij,j + Yi . (4.4)

A is a rank-4 Data object, B and C are each a rank-3 Data object, D and X are each a rank-2 Data object and
Y is a rank-1 Data object. The natural boundary conditions take the form:

nj(Aijkluk,l +Bijkuk) + dikuk = njXij + yi . (4.5)

The coefficient d is a rank-2 Data object and y is a rank-1 Data object both in the boundary FunctionSpace.
Constraints take the form

ui = ri where qi > 0 (4.6)

r and q are each rank-1 Data object. Notice that not necessarily all components must have a constraint at all
locations.

LinearPDE also supports solution discontinuities over contact region Γcontact in the domain Ω. To specify the
conditions across the discontinuity we are using the generalised flux J1 which is in the case of a systems of PDEs

1In some applications the definition of flux used here can be different from the commonly used definition. For instance, if T is a temperature
field the heat flux q is defined as q,i = −κT,i (κ is diffusifity) which differs from the definition used here by the sign. This needs to be kept
in mind when defining natural boundary conditions.

51

and several components of the solution defined as

Jij = Aijkluk,l +Bijkuk −Xij (4.7)

For the case of single solution component and single PDE J is defined

Jj = Ajlu,l +Bjuk −Xj (4.8)

In the context of discontinuities n denotes the normal on the discontinuity pointing from side 0 towards side 1.
For a system of PDEs the contact condition takes the form

njJ
0
ij = njJ

1
ij = ycontacti − dcontactik [u]k . (4.9)

where J0 and J1 are the fluxes on side 0 and side 1 of the discontinuity Γcontact, respectively. [u], which is the
difference of the solution at side 1 and at side 0, denotes the jump of u across Γcontact. The coefficient dcontact

is a rank-2 Data object and ycontact is a rank-1 Data object both in the contact FunctionSpace on side 0
or contact FunctionSpace on side 1. In case of a single PDE and a single component solution the contact
condition takes the form

njJ
0
j = njJ

1
j = ycontact − dcontact[u] (4.10)

In this case the the coefficient dcontact and ycontact are each scalar Data object both in the contact
FunctionSpace on side 0 or contact FunctionSpace on side 1.

The PDE is symmetrical if
Ajl = Alj and Bj = Cj (4.11)

The system of PDEs is symmetrical if

Aijkl = Aklij (4.12)
Bijk = Ckij (4.13)
Dik = Dki (4.14)
dik = dki (4.15)

dcontactik = dcontactki (4.16)

Note that in contrast with the scalar case Equation (4.11) now the coefficients D, d abd dcontact have to be
inspected.

The following example illustrates the typical usage of the LinearPDE class:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
mypde.setValue(A=kappa*kronecker(mydomain),D=1,Y=1)
u=mypde.getSolution()

We refer to chapter 1 for more details.

An instance of the SolverOptions class is attached to the LinearPDE class object. It is used to set options
of the solver used to solve the PDE. In the following code the getSolverOptions is used to access the
SolverOptions attached to mypde:

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE, SolverOptions
from esys.finley import Rectangle
mydomain = Rectangle(l0=1.,l1=1.,n0=40, n1=20)
mypde=LinearPDE(mydomain)
mypde.setValue(A=kappa*kronecker(mydomain),D=1,Y=1)
mypde.getSolverOptions().setVerbosityOn()
mypde.getSolverOptions().setSolverMethod(SolverOptions.PCG)
mypde.getSolverOptions().setPreconditioner(SolverOptions.AMG)
mypde.getSolverOptions().setTolerance(1e-8)
mypde.getSolverOptions().setIterMax(1000)
u=mypde.getSolution()

52 Chapter 4. The Module esys.escript.linearPDEs

In this code the preconditoned conjugate gradient method SolverOptions.PCG with preconditioner
SolverOptions.AMG . The relative tolerance is set tto 10−8 and the maximum number of iteration steps
to 1000.

Moreover, after a completed solution call the attached SolverOptions object gives access to diagnostic infor-
mations:

u=mypde.getSolution()
print ’Number of iteration steps =’, mypde.getDiagnostics(’num_iter’)
print ’Total solution time =’, mypde.getDiagnostics(’time’)
print ’Set-up time =’, mypde.getDiagnostics(’set_up_time’)
print ’Net time =’, mypde.getDiagnostics(’net_time’)
print ’Residual norm of returned solution =’, mypde.getDiagnostics(’residual_norm’)

Typically a negative value for a diagnostic value indicates that the value is undefined.

4.1.1 Classes

The module esys.escript.linearPDEs provides an interface to define and solve linear partial differential
equations within esys.escript. The module esys.escript.linearPDEs does not provide any solver
capabilities in itself but hands the PDE over to the PDE solver library defined through the Domain of the PDE, eg.
esys.finley. The general interface is provided through the LinearPDE class. The Poisson class which is
also derived form the LinearPDE class should be used to define the Poisson equation .

4.1.2 LinearPDE class

This is the general class to define a linear PDE in esys.escript. We list a selection of the most important
methods of the class. For a complete list, see the reference at http://esys.esscc.uq.edu.au/docs.html.

class LinearPDE(domain,numEquations=0,numSolutions=0)
opens a linear, steady, second order PDE on the Domain domain. numEquations and numSolutions gives
the number of equations and the number of solution components. If numEquations and numSolutions is non-
positive, the number of equations and the number solutions, respectively, stay undefined until a coefficient
is defined.

LinearPDE methods

setValue([A][, B], [, C][, D] [, X][, Y] [, d][, y] [, d contact][, y contact] [, q][, r])
assigns new values to coefficients. By default all values are assumed to be zero2 If the new coefficient value
is not a Data object, it is converted into a Data object in the appropriate FunctionSpace.

getCoefficient(name)
return the value assigned to coefficient name. If name is not a valid name an exception is raised.

getShapeOfCoefficient(name)
returns the shape of coefficient name even if no value has been assigned to it.

getFunctionSpaceForCoefficient(name)
returns the FunctionSpace of coefficient name even if no value has been assigned to it.

setDebugOn()
switches on debug mode.

setDebugOff()
switches off debug mode.

getSolverOptions()
returns the solver options for solving the PDE. In fact the method returns a SolverOptions class object
which can be used to modify the tolerance, the solver or the preconditioner, see Section 4.2 for details.

2In fact it is assumed they are not present by assigning the value escript.Data(). The can by used by the solver library to reduce
computational costs.

4.1. Linear Partial Differential Equations 53

setSolverOptions([options=None])
sets the solver options for solving the PDE. If argument options is present it must be a SolverOptions
class object, see Section 4.2 for details. Otherwise the solver options are reset to the default.

isUsingLumping()
returns True if SolverOptions.LUMPING is set as the solver for the system of linear equations. Oth-
erwise False is returned.

getDomain()
returns the Domain of the PDE.

getDim()
returns the spatial dimension of the PDE.

getNumEquations()
returns the number of equations.

getNumSolutions()
returns the number of components of the solution.

checkSymmetry(verbose=False)
returns True if the PDE is symmetric and False otherwise. The method is very computationally expen-
sive and should only be called for testing purposes. The symmetry flag is not altered. If verbose=True
information about where symmetry is violated are printed.

getFlux(u)
returns the flux Jij for given solution u defined by Equation (4.7) and Equation (4.8), respectively.

isSymmetric()
returns True if the PDE has been indicated to be symmetric. Otherwise False is returned.

setSymmetryOn()
indicates that the PDE is symmetric.

setSymmetryOff()
indicates that the PDE is not symmetric.

setReducedOrderOn()
switches on the reduction of polynomial order for the solution and equation evaluation even if a quadratic or
higher interpolation order is defined in the Domain. This feature may not be supported by all PDE libraries.

setReducedOrderOff()
switches off the reduction of polynomial order for the solution and equation evaluation.

getOperator()
returns the Operator of the PDE.

getRightHandSide()
returns the right hand side of the PDE as a Data object. If ignoreConstraint=True, then the constraints
are not considered when building up the right hand side.

getSystem()
returns the Operator and right hand side of the PDE.

getSolution()
returns (an approximation of) the solution of the PDE. This call will invoke the discretization of the PDE and
the solution of the resulting system of linear equations. Keep in mind that this call is typically computational
expensive and can - depending on the PDE and the discretiztion - take a long time to complete.

4.1.3 The Poisson Class

The Poisson class provides an easy way to define and solve the Poisson equation

−u,ii = f . (4.17)

with homogeneous boundary conditions
niu,i = 0 (4.18)

54 Chapter 4. The Module esys.escript.linearPDEs

and homogeneous constraints
u = 0 where q > 0 (4.19)

f has to be a scalar Data object in the general FunctionSpace and q must be a scalar Data object in the
solution FunctionSpace.

class Poisson(domain)
opens a Poisson equation on the Domain domain. Poisson is derived from LinearPDE.

setValue(f=escript.Data(),q=escript.Data())
assigns new values to f and q.

4.1.4 The Helmholtz Class

The Helmholtz class defines the Helmholtz problem

ω u− (k u,j),j = f (4.20)

with natural boundary conditions
k u,jn,j = g − α u (4.21)

and constraints:
u = r where q > 0 (4.22)

ω, k, f have to be a scalar Data object in the general FunctionSpace, g and α must be a scalar Data object
in the boundary FunctionSpace, and q and r must be a scalar Data object in the solution FunctionSpace
or must be mapped or interpolated into the particular FunctionSpace.

class Helmholtz(domain)
opens a Helmholtz equation on the Domain domain. Helmholtz is derived from LinearPDE.

setValue([omega] [, k] [, f] [, alpha] [, g] [, r] [, q])
assigns new values to omega, k, f , alpha, g, r, q. By default all values are set to be zero.

4.1.5 The Lame Class

The Lame class defines a Lame equation problem:

−µ(ui,j + uj,i) + λuk,k)j = Fi − σij,j (4.23)

with natural boundary conditions:

nj(µ (ui,j + uj,i) + λ ∗ uk,k) = fi + njσij (4.24)

and constraint
ui = ri where qi > 0 (4.25)

µ, λ have to be a scalar Data object in the general FunctionSpace, F has to be a vector Data object in
the general FunctionSpace, σ has to be a tensor Data object in the general FunctionSpace, f must be a
vector Data object in the boundary FunctionSpace, and q and r must be a vector Data object in the solution
FunctionSpace or must be mapped or interpolated into the particular FunctionSpace.

class Lame(domain)
opens a Lame equation on the Domain domain. Lame is derived from LinearPDE.

setValue([lame lambda] [, lame mu] [, F] [, sigma] [, f] [, r] [, q])
assigns new values to lame lambda, lame mu, F, sigma, f , r and q By default all values are set to be zero.

4.2 Solver Options

class SolverOptions()
This class defines the solver options for a linear or non-linear solver. The option also supports the handling
of diagnostic informations.

4.2. Solver Options 55

getSummary()
Returns a string reporting the current settings

getName(key)
Returns the name as a string of a given key

setSolverMethod([method=SolverOptions.DEFAULT])
Sets the solver method to be used. Use method=SolverOptions.DIRECT to indicate that a direct
rather than an iterative solver should be used and use method=SolverOptions.ITERATIVE
to indicate that an iterative rather than a direct solver should be used. The value of method
must be one of the constants SolverOptions.DEFAULT, SolverOptions.DIRECT,
SolverOptions.CHOLEVSKY, SolverOptions.PCG,SolverOptions.CR,
SolverOptions.CGS, SolverOptions.BICGSTAB, SolverOptions.SSOR,
SolverOptions.GMRES, SolverOptions.PRES20, SolverOptions.LUMPING,
SolverOptions.ITERATIVE, SolverOptions.AMG, SolverOptions.NONLINEAR GMRES,
SolverOptions.TFQMR, SolverOptions.MINRES, or SolverOptions.GAUSS SEIDEL.
Not all packages support all solvers. It can be assumed that a package makes a reasonable choice if it
encounters. See Table 7.2 for the solvers supported by esys.finley.

getSolverMethod()
Returns key of the solver method to be used.

setPreconditioner([preconditioner=SolverOptions.JACOBI])
Sets the preconditioner to be used. The value of preconditioner must
be one of the constants SolverOptions.SSOR, SolverOptions.ILU0,
SolverOptions.ILUT, SolverOptions.JACOBI, SolverOptions.AMG,
SolverOptions.REC ILU, SolverOptions.GAUSS SEIDEL, SolverOptions.RILU,
or SolverOptions.NO PRECONDITIONER. Not all packages support all preconditioner. It can
be assumed that a package makes a reasonable choice if it encounters an unknown preconditioner. See
Table 7.3 for the solvers supported by esys.finley.

getPreconditioner()
Returns key of the preconditioner to be used.

setPackage([package=SolverOptions.DEFAULT])
Sets the solver package to be used as a solver. The value of method must be one of the constants
in SolverOptions.DEFAULT, SolverOptions.PASO, SolverOptions.SUPER LU,
SolverOptions.PASTIX, SolverOptions.MKL, SolverOptions.UMFPACK,
SolverOptions.TRILINOS. Not all packages are support on all implementation. An exception
may be thrown on some platforms if a particular package is requested. Currently esys.finley
supports SolverOptions.PASO (as default) and, if available, SolverOptions.MKL and
SolverOptions.UMFPACK.

getPackage()
Returns the solver package key

resetDiagnostics([all=False])
resets the diagnostics. If all is True all diagnostics including accumulative counters are reset.

getDiagnostics([name])
Returns the diagnostic information name. The following keywords are supported:

•”num iter”: the number of iteration steps

•”cum num iter”: the cumulative number of iteration steps

•”num level”: the number of level in multi level solver

•”num inner iter”: the number of inner iteration steps

•”cum num inner iter”: the cumulative number of inner iteration steps

•”time”: execution time

•”cum time”: cumulative execution time

•”set up time”: time to set up of the solver, typically this includes factorization and reordering

•”cum set up time”: cumulative time to set up of the solver

56 Chapter 4. The Module esys.escript.linearPDEs

•”net time”: net execution time, excluding setup time for the solver and execution time for precondi-
tioner

•”cum net time”: cumulative net execution time

•”residual norm”: norm of the final residual

•”converged”: return self. converged

hasConverged()
Returns True if the last solver call has been finalized successfully. If an exception has been thrown by the
solver the status of this flag is undefined.

setCoarsening([method=SolverOptions.DEFAULT])
Sets the key of the coarsening method to be applied in SolverOptions.AMG .
The value of method must be one of the constants SolverOptions.DEFAULT
SolverOptions.YAIR SHAPIRA COARSENING, SolverOptions.RUGE STUEBEN COARSENING,
or SolverOptions.AGGREGATION COARSENING.

getCoarsening()
Returns the key of the coarsening algorithm to be applied SolverOptions.AMG .

setReordering([ordering=SolverOptions.DEFAULT REORDERING])
Sets the key of the reordering method to be applied if supported by the solver. Some direct solvers support
reordering to optimize compute time and storage use during elimination. The value of ordering must be
one of the constants SolverOptions.NO REORDERING, SolverOptions.MINIMUM FILL IN,
SolverOptions.NESTED DISSECTION, or SolverOptions.DEFAULT REORDERING.

getReordering()
Returns the key of the reordering method to be applied if supported by the solver.

setRestart([restart=None])
Sets the number of iterations steps after which SolverOptions.GMRES is performing a restart. If restart
is equal to None no restart is performed.

getRestart()
Returns the number of iterations steps after which SolverOptions.GMRES is performing a restart.

setTruncation([truncation=20])
Sets the number of residuals in SolverOptions.GMRES to be stored for orthogonalization. The more
residuals are stored the faster SolverOptions.GMRES converged but

getTruncation()
Returns the number of residuals in SolverOptions.GMRES to be stored for orthogonalization

setIterMax([iter max=10000])
Sets the maximum number of iteration steps

getIterMax()
Returns maximum number of iteration steps

setLevelMax([level max=10])
Sets the maximum number of coarsening levels to be used in the SolverOptions.AMG solver or pre-
conditioner.

getLevelMax()
Returns the maximum number of coarsening levels to be used in an algebraic multi level solver or precon-
ditioner

setCoarseningThreshold([theta=0.05])
Sets the threshold for coarsening in the SolverOptions.AMG solver or preconditioner

getCoarseningThreshold()
Returns the threshold for coarsening in the SolverOptions.AMG solver or preconditioner

setMinCoarseMatrixSize([size=500])
Sets the minumum size of the coarsest level matrix in AMG.

getMinCoarseMatrixSize()

4.2. Solver Options 57

Returns the minumum size of the coarsest level matrix in AMG.

setNumSweeps([sweeps=2])
Sets the number of sweeps in a SolverOptions.JACOBI or SolverOptions.GAUSS SEIDEL
preconditioner.

getNumSweeps()
Returns the number of sweeps in a SolverOptions.JACOBI or SolverOptions.GAUSS SEIDEL
preconditioner.

setNumPreSweeps([sweeps=2])
Sets the number of sweeps in the pre-smoothing step of SolverOptions.AMG

getNumPreSweeps()
Returns the number of sweeps in the pre-smoothing step of SolverOptions.AMG

setNumPostSweeps([sweeps=2])
Sets the number of sweeps in the post-smoothing step of SolverOptions.AMG

getNumPostSweeps()
Returns he number of sweeps sweeps in the post-smoothing step of SolverOptions.AMG

setTolerance([rtol=1.e-8])
Sets the relative tolerance for the solver. The actually meaning of tolerance depends on the underlying PDE
library. In most cases, the tolerance will only consider the error from solving the discrete problem but will
not consider any discretization error.

getTolerance()
Returns the relative tolerance for the solver

setAbsoluteTolerance([atol=0.])
Sets the absolute tolerance for the solver. The actually meaning of tolerance depends on the underlying PDE
library. In most cases, the tolerance will only consider the error from solving the discrete problem but will
not consider any discretization error.

getAbsoluteTolerance()
Returns the absolute tolerance for the solver

setInnerTolerance([rtol=0.9])
Sets the relative tolerance for an inner iteration scheme for instance on the coarsest level in a multi-level
scheme.

getInnerTolerance()
Returns the relative tolerance for an inner iteration scheme

setDropTolerance([drop tol=0.01])
Sets the relative drop tolerance in ILUT

getDropTolerance()
Returns the relative drop tolerance in SolverOptions.ILUT

setDropStorage([storage=2.])
Sets the maximum allowed increase in storage for SolverOptions.ILUT . storage=2 would mean that
a doubling of the storage needed for the coefficient matrix is allowed in the SolverOptions.ILUT
factorization.

getDropStorage()
Returns the maximum allowed increase in storage for SolverOptions.ILUT

setRelaxationFactor([factor=0.3])
Sets the relaxation factor used to add dropped elements in SolverOptions.RILU to the main diagonal.

getRelaxationFactor()
Returns the relaxation factor used to add dropped elements in RILU to the main diagonal.

isSymmetric()
Returns True is the descrete system is indicated as symmetric.

setSymmetryOn()

58 Chapter 4. The Module esys.escript.linearPDEs

Sets the symmetry flag to indicate that the coefficient matrix is symmetric.

setSymmetryOff()
Clears the symmetry flag for the coefficient matrix.

isVerbose()
Returns True if the solver is expected to be verbose.

setVerbosityOn()
Switches the verbosity of the solver on.

setVerbosityOff()
Switches the verbosity of the solver off.

adaptInnerTolerance()
Returns True if the tolerance of the inner solver is selected automatically. Otherwise the inner tolerance
set by setInnerTolerance is used.

setInnerToleranceAdaptionOn()
Switches the automatic selection of inner tolerance on

setInnerToleranceAdaptionOff()
Switches the automatic selection of inner tolerance off.

setInnerIterMax([iter max=10])
Sets the maximum number of iteration steps for the inner iteration.

getInnerIterMax()
Returns maximum number of inner iteration steps.

acceptConvergenceFailure()
Returns True if a failure to meet the stopping criteria within the given number of iteration steps is not
raising in exception. This is useful if a solver is used in a non-linear context where the non-linear solver can
continue even if the returned the solution does not necessarily meet the stopping criteria. One can use the
hasConverged method to check if the last call to the solver was successful.

setAcceptanceConvergenceFailureOn()
Switches the acceptance of a failure of convergence on.

setAcceptanceConvergenceFailureOff()
Switches the acceptance of a failure of convergence off.

DEFAULT
default method, preconditioner or package to be used to solve the PDE. An appropriate method should be
chosen by the used PDE solver library.

MKL
the MKL library by Intel, Reference [13]3.

UMFPACK
the UMFPACK , Reference [23]. Remark: UMFPACK is not parallelized.

PASO
PASO is the solver library of esys.finley, see Section 7.

ITERATIVE
the default iterative method and preconditioner. The actually used method depends on the PDE solver library
and the solver package been chosen. Typically, SolverOptions.PCG is used for symmetric PDEsand
SolverOptions.BICGSTAB otherwise, both with SolverOptions.JACOBI preconditioner.

DIRECT
the default direct linear solver.

CHOLEVSKY
direct solver based on Cholevsky factorization (or similar), see Reference [20]. The solver will require a
symmetric PDE.

3The MKL library will only be available when the Intel compilation environment is used.

4.2. Solver Options 59

PCG
preconditioned conjugate gradient method, see Reference [25]. The solver will require a symmetric PDE.

TFQMR
transpose-free quasi-minimal residual method, see Reference [25].

GMRES
the GMRES method, see Reference [25]. Truncation and restart are controlled by the parameters truncation
and restart of getSolution.

MINRES
minimal residual method method,

LUMPING
uses lumping to solve the system of linear equations . This solver technique condenses the stiffness matrix
to a diagonal matrix so the solution of the linear systems becomes very cheap. It can be used when only D
is present but in any case has to applied with care. The difference in the solutions with and without lumping
can be significant but is expected to converge to zero when the mesh gets finer. Lumping does not use the
linear system solver library.

PRES20
the GMRES method with truncation after five residuals and restart after 20 steps, see Reference [25].

CGS
conjugate gradient squared method, see Reference [25].

BICGSTAB
stabilized bi-conjugate gradients methods, see Reference [25].

SSOR
symmetric successive over-relaxation method, see Reference [25]. Typically used as preconditioner but
some linear solver libraries support this as a solver.

ILU0
the incomplete LU factorization preconditioner with no fill-in, see Reference [20].

ILUT
the incomplete LU factorization preconditioner with fill-in, see Reference [20]. During the LU-factorization
element with relative size less then getDropTolerance are dropped. Moreover, the size of the LU-
factorization is restricted to the getDropStorage-fold of the stiffness matrix. getDropTolerance
and getDropStorage are both set in the getSolution call.

JACOBI
the Jacobi preconditioner, see Reference [20].

AMG
the algebraic–multi grid method, see Reference [21]. This method can be used as linear solver method but
is more robust when used in a preconditioner.

GAUSS SEIDEL
the symmetric Gauss-Seidel preconditioner, see Reference [20]. getNumSweeps() is the number of
sweeps used.

RILU
relaxed incomplete LU factorization preconditioner, see Reference [?]. This method is similar to
SolverOptions.ILU0 0 but dropped elements are added to the main diagonal with the relaxation factor
getRelaxationFactor

REC ILU
recursive incomplete LU factorization preconditioner, see Reference [27]. This method is similar to
SolverOptions.ILU0 0 but applies reordering during the factorization.

NO REORDERING
no ordering is used during factorization.

DEFAULT REORDERING
the default reordering method during factorization.

60 Chapter 4. The Module esys.escript.linearPDEs

MINIMUM FILL IN
applies reordering before factorization using a fill-in minimization strategy. You have to check with the
particular solver library or linear solver package if this is supported. In any case, it is advisable to apply
reordering on the mesh to minimize fill-in.

NESTED DISSECTION
applies reordering before factorization using a nested dissection strategy. You have to check with the partic-
ular solver library or linear solver package if this is supported. In any case, it is advisable to apply reordering
on the mesh to minimize fill-in.

TRILINOS
the Trilinos library is used as a solver Reference [?]

SUPER LU
the SuperLU library is used as a solver Reference [?]

PASTIX
the Pastix library is used as a solver Reference [?]

YAIR SHAPIRA COARSENING
SolverOptions.AMG coarsening method by Yair-Shapira

RUGE STUEBEN COARSENING
SolverOptions.AMG coarsening method by Ruge and Stueben

AGGREGATION COARSENING
SolverOptions.AMG coarsening using (symmetric) aggregation

NO PRECONDITIONER
no preconditioner is applied.

4.2. Solver Options 61

62

CHAPTER

FIVE

The Module esys.pycad

5.1 Introduction

esys.pycad provides a simple way to build a mesh for your finite element simulation. You begin by building
what we call a Design using primitive geometric objects, and then to go on to build a mesh from the Design. The
final step of generating the mesh from a Design uses freely available mesh generation software, such as Gmsh[10]
.

A Design is built by defining points, which are used to specify the corners of geometric objects and the vertices of
curves. Using points you construct more interesting objects such as lines, rectangles, and arcs. By adding many
of these objects into what we call a Design, you can build meshes for arbitrarily complex 2-D and 3-D structures.

The example included below shows how to use pycad to create a 2-D mesh in the shape of a trapezoid with a
cutout area.

from esys.pycad import *
from esys.pycad.gmsh import Design
from esys.finley import MakeDomain

A trapezoid
p0=Point(0.0, 0.0, 0.0)
p1=Point(1.0, 0.0, 0.0)
p2=Point(1.0, 0.5, 0.0)
p3=Point(0.0, 1.0, 0.0)
l01=Line(p0, p1)
l12=Line(p1, p2)
l23=Line(p2, p3)
l30=Line(p3, p0)
c=CurveLoop(l01, l12, l23, l30)

A small triangular cutout
x0=Point(0.1, 0.1, 0.0)
x1=Point(0.5, 0.1, 0.0)
x2=Point(0.5, 0.2, 0.0)
x01=Line(x0, x1)
x12=Line(x1, x2)
x20=Line(x2, x0)
cutout=CurveLoop(x01, x12, x20)

Create the surface with cutout
s=PlaneSurface(c, holes=[cutout])

Create a Design which can make the mesh
d=Design(dim=2, element_size=0.05)

Add the trapezoid with cutout
d.addItems(s)

Create the geometry, mesh and Escript domain

63

d.setScriptFileName("trapezoid.geo")
d.setMeshFileName("trapezoid.msh")
domain=MakeDomain(d, integrationOrder=-1, reducedIntegrationOrder=-1, optimizeLabeling=True)

Create a file that can be read back in to python with mesh=ReadMesh(fileName)
domain.write("trapezoid.fly")

This example is included with the software in pycad/examples/trapezoid.py. If you have gmsh installed
you can run the example and view the geometry and mesh with:

python trapezoid.py
gmsh trapezoid.geo
gmsh trapezoid.msh

A CurveLoop is used to connect several lines into a single curve. It is used in the example above to create the
trapezoidal outline for the grid and also for the triangular cutout area. You can use any number of lines when
creating a CurveLoop, but the end of one line must be identical to the start of the next.

Sometimes you might see us write -c where c is a CurveLoop. This is the reverse curve of the curve c. It
is identical to the original except that its points are traversed in the opposite order. This may make it easier to
connect two curves in a CurveLoop.

The example python script above calls both d.setScriptFileName() and d.setMeshFileName(). You
need only call these if you wish to save the gmsh geometry and mesh files.

Note that the underlying mesh generation software will not accept all the geometries you can create with pycad.
For example, pycad will happily allow you to create a 2-D Design that is a closed loop with some additional points
or lines lying outside of the enclosed area, but gmsh will fail to create a mesh for it.

5.2 esys.pycad Classes

5.2.1 Primitives

Some of the most commonly-used objects in pycad are listed here. For a more complete list see the full API
documentation.

class Point(x=0.,y=0.,z=0.[,local scale=1.])
Create a point with from coordinates with local characteristic length local scale

class Line(point1, point2)
Create a line with between starting and ending points.

setElementDistribution(n[,progression=1[,createBump=False]])
Defines the number of elements on the line. If set it overwrites the local length setting which would be ap-
plied. The progression factor progression defines the change of element size between naighboured elements.
If createBump is set progression is applied towards the center of the line.

resetElementDistribution()
removes a previously set element distribution from the line.

getElemenofDistribution()
Returns the element distribution as tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

class Spline(point0, point1, ...)
A spline curve defined by a list of points point0, point1,....

setElementDistribution(n[,progression=1[,createBump=False]])
Defines the number of elements on the line. If set it overwrites the local length setting which would be ap-
plied. The progression factor progression defines the change of element size between naighboured elements.
If createBump is set progression is applied towards the center of the line.

resetElementDistribution()
removes a previously set element distribution from the line.

64 Chapter 5. The Module esys.pycad

getElemenofDistribution()
Returns the element distribution as tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

class BSpline(point0, point1, ...)
A B-spline curve defined by a list of points point0, point1,....

setElementDistribution(n[,progression=1[,createBump=False]])
Defines the number of elements on the line. If set it overwrites the local length setting which would be ap-
plied. The progression factor progression defines the change of element size between naighboured elements.
If createBump is set progression is applied towards the center of the line.

resetElementDistribution()
removes a previously set element distribution from the line.

getElemenofDistribution()
Returns the element distribution as tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

class BezierCurve(point0, point1, ...)
A Brezier spline curve defined by a list of points point0, point1,....

setElementDistribution(n[,progression=1[,createBump=False]])
Defines the number of elements on the line. If set it overwrites the local length setting which would be ap-
plied. The progression factor progression defines the change of element size between naighboured elements.
If createBump is set progression is applied towards the center of the line.

resetElementDistribution()
removes a previously set element distribution from the line.

getElemenofDistribution()
Returns the element distribution as tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

class Arc(center point, start point, end point)
Create an arc by specifying a center for a circle and start and end points. An arc may subtend an angle of at
most π radians.

setElementDistribution(n[,progression=1[,createBump=False]])
Defines the number of elements on the line. If set it overwrites the local length setting which would be ap-
plied. The progression factor progression defines the change of element size between naighboured elements.
If createBump is set progression is applied towards the center of the line.

resetElementDistribution()
removes a previously set element distribution from the line.

getElemenofDistribution()
Returns the element distribution as tuple of number of elements, progression factor and bump flag. If no
element distribution is set None is returned.

class CurveLoop(list)
Create a closed curve from the list. of Line, Arc, Spline, BSpline, BrezierSpline.

class PlaneSurface(loop, [holes=[list]])
Create a plane surface from a CurveLoop, which may have one or more holes described by list of
CurveLoop.

setRecombination(max deviation)
the mesh generator will try to recombine triangular elements into quadrilateral elements. max deviation
(in radians) defines the maximum deviation of any angle in the quadrilaterals from the right angle. Set
max deviation=None to remove recombination.

setTransfiniteMeshing([orientation=”Left”])
applies 2D transfinite meshing to the surface. orientation defines the orientation of triangles. Allowed
values are “Left”, “Right” or “Alternate”. The boundary of the surface muist be defined by three or four
lines where an element distribution must be defined on all faces where opposite faces uses the same element

5.2. esys.pycad Classes 65

distribution. No holes must be present.

class RuledSurface(list)
Create a surface that can be interpolated using transfinite interpolation. list gives a list of three or four lines
defining the boundary of the surface.

setRecombination(max deviation)
the mesh generator will try to recombine triangular elements into quadrilateral elements. max deviation
(in radians) defines the maximum deviation of any angle in the quadrilaterals from the right angle. Set
max deviation=None to remove recombination.

setTransfiniteMeshing([orientation=”Left”])
applies 2D transfinite meshing to the surface. orientation defines the orientation of triangles. Allowed
values are “Left”, “Right” or “Alternate”. The boundary of the surface muist be defined by three or four
lines where an element distribution must be defined on all faces where opposite faces uses the same element
distribution. No holes must be present.

class SurfaceLoop(list)
Create a loop of PlaneSurface or RuledSurface, which defines the shell of a volume.

class Volume(loop, [holes=[list]])
Create a volume given a SurfaceLoop, which may have one or more holes define by the list of
SurfaceLoop.

class PropertySet(list)
Create a PropertySet given a list of 1-D, 2-D or 3-D items. See the section on Properties below for more
information.

5.2.2 Transformations

Sometimes it’s convenient to create an object and then make copies at different orientations and in different sizes.
Transformations are used to move geometrical objects in the 3-dimensional space and to resize them.

class Translation([b=[0,0,0]])
defines a translation x → x + b. b can be any object that can be converted into a numpy object of shape
(3,).

class Rotatation([axis=[1,1,1], [point = [0,0,0], [angle=0*RAD]]])
defines a rotation by angle around axis through point point and direction axis. axis and point can be any
object that can be converted into a numpy object of shape (3,). axis does not have to be normalized but
must have positive length. The right hand rule [1] applies.

class Dilation([factor=1., [center=[0,0,0]]])
defines a dilation by the expansion/contraction factor with center as the dilation center. center can be any
object that can be converted into a numpy object of shape (3,).

class Reflection([normal=[1,1,1], [offset=0]])
defines a reflection on a plane defined in normal form ntx = d where n is the surface normal normal and
d is the plane offset. normal can be any object that can be converted into a numpy object of shape (3,).
normal does not have to be normalized but must have positive length.

DEG
A constant to convert from degrees to an internal angle representation in radians. For instance use 90*DEG
for 90 degrees.

5.2.3 Properties

If you are building a larger geometry you may find it convenient to create it in smaller pieces and then assemble
them into the whole. Property sets make this easy, and they allow you to name the smaller pieces for convenience.

Property sets are used to bundle a set of geometrical objects in a group. The group is identified by a name.
Typically a property set is used to mark subregions with share the same material properties or to mark portions of

66 Chapter 5. The Module esys.pycad

the boundary. For efficiency, the Design class object assigns a integer to each of its property sets, a so-called
tag . The appropriate tag is attached to the elements at generation time.

See the file pycad/examples/quad.py for an example using a PropertySet.

class PropertySet(name,*items)
defines a group geometrical objects which can be accessed through a name The objects in the tuple items
mast all be Manifold1D , Manifold2D or Manifold3D objects.

getManifoldClass()
returns the manifold class Manifold1D , Manifold2D or Manifold3D expected from the items in
the property set.

getDim()
returns the spatial dimension of the items in the property set.

getName()
returns the name of the set

setName(name)
sets the name. This name should be unique within a Design .

addItem(*items)
adds a tuple of items. They need to be objects of class Manifold1D , Manifold2D or Manifold3D .

getItems()
returns the list of items

clearItems()
clears the list of items

getTag()
returns the tag used for this property set

5.3 Interface to the mesh generation software

The class and methods described here provide an interface to the mesh generation software, which is currently
gmsh. This interface could be adopted to triangle or another mesh generation package if this is deemed to be
desirable in the future.

class Design([dim=3, [element size=1., [order=1, [keep files=False]]]])
The Design describes the geometry defined by primitives to be meshed. The dim specifies the spatial
dimension. The argument element size defines the global element size which is multiplied by the local
scale to set the element size at each Point . The argument order defines the element order to be used. If
keep files is set to True temporary files a kept otherwise they are removed when the instance of the class
is deleted.

setDim([dim=3])
sets the spatial dimension which needs to be 1, 2 or 3.

getDim()
returns the spatial dimension.

setElementOrder([order=1])
sets the element order which needs to be 1 or 2.

getElementOrder()
returns the element order.

setElementSize([element size=1])
set the global element size. The local element size at a point is defined as the global element size multiplied
by the local scale. The element size must be positive.

getElementSize()
returns the global element size.

5.3. Interface to the mesh generation software 67

DELAUNAY
the gmsh Delauny triangulator.

TETGEN
the TetGen [22] triangulator.

NETGEN
the NETGEN [9] triangulator.

setKeepFilesOn()
work files are kept at the end of the generation.

setKeepFilesOff()
work files are deleted at the end of the generation.

keepFiles()
returns True if work files are kept. Otherwise False is returned.

setScriptFileName([name=None])
set the filename for the gmsh input script. if no name is given a name with extension ”geo” is generated.

getScriptFileName()
returns the name of the file for the gmsh script.

setMeshFileName([name=None])
sets the name for the gmsh mesh file. if no name is given a name with extension ”msh” is generated.

getMeshFileName()
returns the name of the file for the gmsh msh

addItems(*items)
adds the tuple of varitems. An item can be any primitive or a PropertySet. Warning: If a
PropertySet is added as an item added object that are not part of a PropertySet are not considered
in the messing.

getItems()
returns a list of the items

clearItems()
resets the items in design

getMeshHandler()
returns a handle to the mesh. The call of this method generates the mesh from the geometry and returns
a mechanism to access the mesh data. In the current implementation this method returns a file name for a
gmsh file containing the mesh data.

getScriptString()
returns the gmsh script to generate the mesh as a string.

getCommandString()
returns the gmsh command used to generate the mesh as string.

setOptions([algorithm=None, [optimize quality=True,[smoothing=1]]])
sets options for the mesh generator. algorithm sets the algorithm to be used. The algorithm needs to be
Design.DELAUNAY Design.TETGEN or Design.NETGEN. By default Design.DELAUNAY is used. opti-
mize quality=True invokes an optimization of the mesh quality. smoothing sets the number of smoothing
steps to be applied to the mesh.

getTagMap()
returns a TagMap to map the name PropertySet in the class to tag numbers generated by gmsh.

68 Chapter 5. The Module esys.pycad

CHAPTER

SIX

Models

The following sections give a breif overview of the model classes and their corresponding methods.

6.1 Stokes Problem

The velocity field v and pressure p of an incompressible fluid is given as the solution of the Stokes problem

− (η(vi,j + vi,j)),j + p,i = fi − σij,j (6.1)

where η is the viscosity, Fi defines an internal force and σij is an intial stress . We assume an incompressible
media:

−vi,i = 0 (6.2)

Natural boundary conditions are taken in the form

(η(vi,j + vi,j))nj − nip = si + σijnj (6.3)

which can be overwritten by constraints of the form

vi(x) = vDi (x) (6.4)

at some locations x at the boundary of the domain. The index i may depend on the location x on the boundary.
vD is a given function on the domain.

6.1.1 Solution Method

In block form equation equations 6.1 and 6.2 takes the form of a saddle point problem[
A B∗

B 0

] [
v
p

]
=
[
G
0

]
(6.5)

whereA is coercive, self-adjoint linear operator in a suitable Hilbert space,B is the (−1)· divergence operator and
B∗ is it adjoint operator (=gradient operator). For more details on the mathematics see references [3, 4]. We use
iterative techniques to solve this problem. To make sure that the incomressibilty condition holds with sufficient
accuracy we check for

‖vk,k‖≤ε‖
√
vj,kvj,k‖ (6.6)

where ε is the desired relative accuracy and

‖p‖2 =
∫

Ω

p2 dx (6.7)

defines the L2-norm. We use the Uzawa scheme to solve the problem.

In fact the first equation in 6.5 gives for a known pressure

v = A−1(G−B∗p) (6.8)

69

which is inserted into the second equation leading to

Sp = BA−1G (6.9)

with the Schur complement S = BA−1B∗. This problem can be solved iteratively with the preconditioner Ŝ
defined as q = Ŝ−1p by solving

1
η
q = p (6.10)

see [8] for more details. Note that the residual for the current approximation p is given as

r = BA−1(G−B∗p) = Bv (6.11)

where v is given by 6.8.

If one uses the generalized minimal residual method (GMRES) the method is directly applied to the preconditioned
system

Ŝ−1Sp = Ŝ−1BA−1G (6.12)

We use the norm
‖p‖GMRES = ‖Ŝp‖ (6.13)

Notice that for the residual r̂ = Ŝ−1r one has
(6.14)

If p0 provides an initial guess for the pressure we use 6.8 to get a first initial guess for the velocity v0 which we
use to set an absolute tolerance ATOL = ε‖

√
v0
j,kv

0
j,k‖. The GMRES is terminated when

‖r̂‖GMRES ≤ ATOL (6.15)

Notice that ‖r̂‖GMRES = ‖r‖ = ‖Bv‖ = ‖vk,k‖ so we we can expect that the target stopping criterion 6.6 is
fullfilled. However, if v is very different from the initial choice of v0 the value ofATOL is corrected and GMRES
is restarted with a new tolerance. For time dependend problems this apprach works well as value for p form a
previous time step provides a good initial guess.

Alternatively, as S is symmetric and positive definite one can apply the preconditioned conjugate gradient method
(PCG) . PCG use the norm

‖r‖2PCG =
∫

Ω

rŜ−1r dx =
∫

Ω

ηr2 dx (6.16)

To take the extra factor η into consideration when checking the stopping criterion we use the following definition
for ATOL:

ATOL = ε
‖
√
v0
j,kv

0
j,k‖

‖v0
k,k‖

‖v0
k,k‖PCG (6.17)

6.1.2 Functions

class StokesProblemCartesian(domain[, adaptSubTolerance=True])
opens the Stokes problem on the Domain domain. The approximation order needs to be two. If adapt-
SubTolerance is True the tolerances for all subproblems are set automatically.

initialize([f=Data(), [fixed u mask=Data(), [eta=1, [surface stress=Data(), [stress=Data()]]]]])
assigns values to the model parameters. In any call all values must be set. f defines the external force
f , eta the viscosity η, surface stress the surface stress s and stress the initial stress σ. The locations and
compontents where the velocity is fixed are set by the values of fixed u mask. The method will try to cast
the given values to appropriate Data class objects.

solve(v,p [, max iter=100 [, verbose=False [, usePCG=True]]])
solves the problem and return approximations for velocity and pressure. The arguments v and p define initial
guess. The values of v marked by fixed u mask remain unchanged. If usePCG is set to True reconditioned
conjugate gradient method (PCG) scheme is used. Otherwise the problem is solved generalized minimal
residual method (GMRES) . In most cases the PCG scheme is more efficient. max iter defines the maximum
number of iteration steps.

If verbose is set to True informations on the progress of of the solver are printed.

70 Chapter 6. Models

setTolerance([tolerance=1.e-4])
sets the tolerance in an appropriate norm relative to the right hand side. The tolerance must be non-negative
and less than 1.

getTolerance()
returns the current relative tolerance.

setAbsoluteTolerance([tolerance=0.])
sets the absolute tolerance for the error in the relevant norm. The tolerance must be non-negative. Typically
the absolute talerance is set to 0.

getAbsoluteTolerance()
sreturns the current absolute tolerance.

getSolverOptionsVelocity()
returns the solver options used solve the equations (6.8) for velocity.

getSolverOptionsPressure()
returns the solver options used solve the equation (6.10) for pressure.

getSolverOptionsDiv()
set the solver options for solving the equation to project the divergence of the velocity onto the function
space of pressure.

6.1.3 Example: Lit Driven Cavity

The following script ‘lit driven cavity.py’ which is available in the example directory illustrates the usage of the
StokesProblemCartesian class to solve the lit driven cavity problem:

from esys.escript import *
from esys.finley import Rectangle
from esys.escript.models import StokesProblemCartesian
NE=25
dom = Rectangle(NE,NE,order=2)
x = dom.getX()
sc=StokesProblemCartesian(dom)
mask= (whereZero(x[0])*[1.,0]+whereZero(x[0]-1))*[1.,0] + \

(whereZero(x[1])*[0.,1.]+whereZero(x[1]-1))*[1.,1]
sc.initialize(eta=.1, fixed_u_mask= mask)
v=Vector(0.,Solution(dom))
v[0]+=whereZero(x[1]-1.)
p=Scalar(0.,ReducedSolution(dom))
v,p=sc.solve(v,p, verbose=True)
saveVTK("u.xml",velocity=v,pressure=p)

6.2 Darcy Flux

We want to calculate the velocity u and pressure p on a domain Ω solving the Darcy flux problem

ui + κijp,j = gi
uk,k = f

(6.18)

with the boundary conditions
ui ni = uNi ni on ΓN

p = pD on ΓD
(6.19)

where ΓN and ΓD are a partition of the boundary of Ω with ΓD non empty, ni is the outer normal field of
the boundary of Ω, uNi and pD are given functions on Ω, gi and f are given source terms and κij is the given
permability. We assume that κij is symmetric (which is not really required) and positive definite, i.e there are
positive constants α0 and α1 wich are independent from the location in Ω such that

α0 xixi ≤ κijxixj ≤ α1 xixi (6.20)

for all xi.

6.2. Darcy Flux 71

6.2.1 Solution Method

In practical applications it is an advantage to calculate the pressure p as a correction of a ’static’ pressure pref

which is the solution of

−(κkiκkjp
ref
,j),i = −(κki(gk − uNk)),i with pref = pD on ΓD (6.21)

With setting u← u− uN and p← p− pref and

gi ← gi − uNi − κijp
ref
,j

f ← f − uNk,k
(6.22)

we can assume that uNi ni = 0 and pD = 0. We set

V = {q ∈ H1(Ω) : q = 0 on ΓD} (6.23)

and
W = {v ∈ (L2(Ω))d : vk,k ∈ L2(Ω) and ui ni = 0 on ΓN} (6.24)

and define the operator Q : V → (L2(Ω))d defined by

(Qp)i = κijp,j (6.25)

and the operator D : W → L2(Ω) defined by
Dv = vk,k (6.26)

In operator notation the Darcy problem 6.18 is written in the form

u+Qp = g
Du = f

(6.27)

We solve this equation by minimising the functional

J(u, p) := ‖u+Qp− g‖20 + ‖Du− f‖20 (6.28)

over W × V where ‖.‖0 denotes the norm in L2(Ω). A simple calculation shows that one has to solve

(v +Qq, u+Qp− g) + (Dv,Du− f) = 0 (6.29)

for all v ∈W and q ∈ V .which translates back into operator notation

(I +D∗D)u+Qp = D∗f + g
Q∗u+Q∗Qp = Q∗g

(6.30)

where D∗ and Q∗ denote the adjoint operators. In [19] it has been shown that this problem is continuous and
coercive inW ×V and therefore has a unique solution. Also standart FEM methods can be used for discretization.
It is also possible to solve the problem is coupled form, however this approach leads in some cases to a very ill-
conditioned stiffness matrix in particular in the case of a very small or large permability (α1 � 1 or α0 � 1)

The approach we are taking is to eliminate the velocity u from the problem. Assuming that p is known we have

v = (I +D∗D)−1(D∗f + g −Qp) (6.31)

(notice that (I +D∗D) is coercive in W) which is inserted into the second equation

Q∗(I +D∗D)−1(D∗f + g −Qp) +Q∗Qp = Q∗g (6.32)

which is
Q∗(I − (I +D∗D)−1)Qp = Q∗(g − (I +D∗D)−1(D∗f + g)) (6.33)

We use the PCG method to solve this. The residual r (∈ V ∗) is given as

r = Q∗
(
g − (I +D∗D)−1(D∗f + g)−Qp+ (I +D∗D)−1Qp

)
= Q∗

(
g −Qp− (I +D∗D)−1(D∗f + g −Qp)

)
= Q∗ (g −Qp− v)

(6.34)

72 Chapter 6. Models

So in a partical implementation we use r̂ = g −Qp − v to represent the residual. The evaluation of the iteration
operator for a given p is then returning Qp+ v where v is the solution of

(I +D∗D)v = Qp (6.35)

We use (Q∗Q)−1 as a preconditioner for the iteration operator Q∗(I− (I+D∗D)−1)Q. So the application of the
preconditioner to r̂ representing the residual is given by solving implemented by solving

Q∗Qq = Q∗r̂ (6.36)

The residual norm used in the PCG is given as

‖r‖2PCG =
∫
r · (Q∗Q)−1r dx =

∫
r̂ ·Q(Q∗Q)−1Q∗r̂ dx ≈ ‖r̂‖20 (6.37)

The iteration is terminated if
‖r‖PCG ≤ ATOL (6.38)

where we set

ATOL = atol + rtol ·
(

1
‖v‖0

+
1

‖Qp‖0

)−1

(6.39)

where rtol is a given relative tolerance and atol is a given absolute tolerance (typically = 0). Notice that if Qp
and v both are zero, the pair (0, p) is a solution. The problem is that ATOL is depending on the solution p (and
v calculated form 6.31). In partcice one use the initial guess for p to get a first value for ATOL. If the stopping
crierion is met in the PCG iteration, a new v is calculated from the current pressure approximation and ATOL
is recalculated. If 6.38 is still fullfilled the calculation is terminated and (v, p) is returned. Otherwise PCG is
restarted with a new ATOL.

6.2.2 Functions

class DarcyFlow(domain [, adaptSubTolerance=True])
opens the Darcy flux problem on the Domain domain. If adaptSubTolerance is set to True, the relative
tolerances for solving (6.31), (6.35) and (6.36) are set automatically.

setValue([f=None, [g=None, [location of fixed pressure=None, [location of fixed flux=None, [perme-
ability=None]]]]])

assigns values to the model parameters. Values can be assigned using various calls - in particular in a
time dependend problem only values that change over time needs to be reset. The permability can be
defined as scalar (isotropic), a vector (orthotropic) or a matrix (anisotropic). f and g are the corresponding
parameters in 6.18. The locations and compontents where the flux is prescribed are set by positive values
in location of fixed flux. The locations where the pressure is prescribed are set by by positive values of
location of fixed pressure. The values of the pressure and flux are defined by the initial guess. Notice
that at any point on the boundary of the domain the pressure or the normal component of the flux must be
defined. There must be at least one point where the pressure is prescribed. The method will try to cast the
given values to appropriate Data class objects.

setTolerance([rtol=1e-4])
sets the relative tolerance rtol in 6.39.

setAbsoluteTolerance([atol=0.])
sets the absolute tolerance atol in 6.39.

getSolverOptionsFlux()
Returns the solver options used to solve the flux problems (6.31) and (6.35). Use the returned
SolverOptions object to control the solution algorithms. If the adaption of subtolerance is choosen,
the tolerance will be overwritten before the solver is called.

getSolverOptionsPressure()
Returns the solver options used to solve the pressure problems (6.36). Use the returned SolverOptions
object to control the solution algorithms. If the adaption of subtolerance is choosen, the tolerance will be
overwritten before the solver is called.

6.2. Darcy Flux 73

solve(u0,p0, [max iter=100, [verbose=False]])
solves the problem. and returns approximations for the flux v and the pressure p. u0 and p0 define
initial guess for flux and pressure. Values marked by positive values location of fixed flux and loca-
tion of fixed pressure, respectively, are kept unchanged. max iter sets the maximum number of iterations
steps allowed for solving the coupled problem.

6.2.3 Example: Gravity Flow

later

6.3 Isotropic Kelvin Material

As proposed by Kelvin [15] material strain Dij = 1
2 (vi,j + vj,i) can be decomposed into an elastic part Del

ij and
visco-plastic part Dvp

ij :
Dij = Del

ij +Dvp
ij (6.40)

with the elastic strain given as

Del′

ij =
1

2µ
σ̇′ij (6.41)

where σ′ij is the deviatoric stress (Notice that σ′ii = 0). If the material is composed by materials q the visco-plastic
strain can be decomposed as

Dvp′

ij =
∑
q

Dq′

ij (6.42)

where Dq
ij is the strain in material q given as

Dq′

ij =
1

2ηq
σ′ij (6.43)

where ηq is the viscosity of material q. We assume the following betwee the the strain in material q

ηq = ηqN

(
τ

τ qt

)1−nq

with τ =

√
1
2
σ′ijσ

′
ij (6.44)

for a given power law coefficients nq ≥ 1 and transition stresses τ qt , see [15]. Notice that nq = 1 gives a constant
viscosity. After inserting equation 6.43 into equation 6.42 one gets:

D′vpij =
1

2ηvp
σ′ij with

1
ηvp

=
∑
q

1
ηq

. (6.45)

and finally with 6.40

D′ij =
1

2ηvp
σ′ij +

1
2µ
σ̇′ij (6.46)

The total stress τ needs to fullfill the yield condition

τ ≤ τY + β p (6.47)

with the Drucker-Prager cohesion factor τY , Drucker-Prager friction β and total pressure p. The deviatoric stress
needs to fullfill the equilibrion equation

−σ′ij,j + p,i = Fi (6.48)

where Fj is a given external fource. We assume an incompressible media:

−vi,i = 0 (6.49)

Natural boundary conditions are taken in the form

σ′ijnj − nip = f (6.50)

which can be overwritten by a constraint
vi(x) = 0 (6.51)

where the index i may depend on the location x on the bondary.

74 Chapter 6. Models

6.3.1 Solution Method

By using a first order finite difference approximation wit step size dt > 0 6.41 get the form

σ̇ij =
1
dt

(
σij − σ−ij

)
(6.52)

and

D′ij =
(

1
2ηvp

+
1

2µdt

)
σ′ij −

1
2µdt

σ−
′

ij (6.53)

where σ−ij is the stress at the precious time step. With

γ̇ =

√
2
(
D′ij +

1
2µ dt

σ−
′

ij

)2

(6.54)

we have
τ = ηeff · γ̇ (6.55)

where

ηeff = min(
(

1
µ dt

+
1
ηvp

)−1

, ηmax) with ηmax =

τY +β p

γ̇ γ̇ > 0
if

∞ otherwise
(6.56)

The upper bound ηmax makes sure that yield condtion 6.47 holds. With this setting the eqaution 6.53 takes the
form

σ′ij = 2ηeff

(
D′ij +

1
2µ dt

σ
′−
ij

)
(6.57)

After inserting 6.57 into 6.48 we get

− (ηeff (vi,j + vi,j)),j + p,i = Fi +
(
ηeff
µdt

σ
′−
ij

)
,j

(6.58)

Combining this with the incomressibilty condition 6.40 we need to solve a Stokes problem as discussed in sec-
tion 6.1.1 in each time step.

If we set
1

η(τ)
=

1
µ dt

+
1
ηvp

(6.59)

we need to solve the nonlinear problem

ηeff −min(η(γ̇ · ηeff), ηmax) = 0 (6.60)

We use the Newton-Raphson Scheme to solve this problem

η
(n+1)
eff = min(ηmax, η

(n)
eff −

η
(n)
eff − η(τ (n))

1− γ̇ · η′(τ (n))
) = min(ηmax,

η(τ (n))− τ (n) · η′(τ (n))
1− γ̇ · η′(τ (n))

) (6.61)

where η′ denotes the derivative of η with respect of τ and τ (n) = γ̇ · η(n)
eff .

Looking at the evaluation of η in 6.59 it makes sense formulate the iteration 6.61 using Θ = η−1. In fact we have

η′ = −Θ′

Θ2
with Θ′ =

∑
q

(
1
ηq

)′
(6.62)

As (
1
ηq

)′
=
nq − 1
ηqN

· τn
q−2

(τ qt)nq−1
=
nq − 1
ηq

· 1
τ

(6.63)

we have
Θ′ =

1
τ
ω with ω =

∑
q

nq − 1
ηq

(6.64)

which leads to

η
(n+1)
eff = min(ηmax, η

(n)
eff

Θ(n) + ω(n)

η
(n)
effΘ(n)2 + ω(n)

) (6.65)

6.3. Isotropic Kelvin Material 75

6.3.2 Functions

class IncompressibleIsotropicFlowCartesian(domain [, stress=0 [, v=0 [, p=0 [, t=0 [,
numMaterials=1 [, verbose=True [, adaptSubTol-
erance=True]]]]]]])

opens an incompressible, isotropic flow problem in Cartesian cooridninates on the domain domain. stress,
v, p, and t set the initial deviatoric stress, velocity, pressure and time. numMaterials specifies the number of
materials used in the power law model. Some progress information are printed if verbose is set to True. If
adaptSubTolerance is equal to True the tolerances for subproblems are set automatically.

getDomain()
returns the domain.

getTime()
Returns current time.

getStress()
Returns current stress.

getDeviatoricStress()
Returns current deviatoric stress.

getPressure()
Returns current pressure.

getVelocity()
Returns current velocity.

getDeviatoricStrain()
Returns deviatoric strain of current velocity

getTau()
Returns current second invariant of deviatoric stress

getGammaDot()
Returns current second invariant of deviatoric strain

setTolerance(tol=1.e-4)
Sets the tolerance used to terminate the iteration on a time step.

setFlowTolerance(tol=1.e-4)
Sets the relative tolerance for the incompressible solver, see StokesProblemCartesian for details.

setElasticShearModulus(mu=None)
Sets the elastic shear modulus µ. If mu is set to None (default) elasticity is not applied.

setEtaTolerance=(rtol=1.e-8)
sets the relative tolerance for the effectice viscosity. Iteration on a time step is completed if the realtive of
the effective viscosity is less than rtol.

setDruckerPragerLaw([tau Y=None, [friction=None]])
Sets the parameters τY and β for the Drucker-Prager model in condition 6.47. If tau Y is set to None
(default) Drucker-Prager condition is not applied.

setElasticShearModulus(mu=None)
Sets the elastic shear modulus µ. If mu is set to None (default) elasticity is not applied.

setPowerLaws(eta N, tau t, power)
Sets the parameters of the power-law for all materials as defined in equation 6.44. eta N is the list of
viscosities ηqN , tau t is the list of reference stresses τ qt , and power is the list of power law coefficients nq .

update(dt [, iter max=100 [, inner iter max=20]])
Updates stress, velocity and pressure for time increment dt. where iter max is the maximum number of
iteration steps on a time step to update the effective viscosity and inner iter max is the maximum number
of itertion steps in the incompressible solver.

76 Chapter 6. Models

6.3.3 Example

later

6.3. Isotropic Kelvin Material 77

78

CHAPTER

SEVEN

The Module esys.finley

finley is a library of C functions solving linear, steady partial differential equations (PDEs) or systems of
PDEs using isoparametrical finite elements . It supports unstructured, 1D, 2D and 3D meshes. The module
esys.finley provides an access to the library through the LinearPDE class of esys.escript supporting
its full functionality. finley is parallelized using the OpenMP paradigm.

7.1 Formulation

For a single PDE with a solution with a single component the linear PDE is defined in the following form:∫
Ω

Ajl · v,ju,l +Bj · v,ju+ Cl · vu,l +D · vu dΩ

+
∫

Γ

d · vu dΓ +
∫

Γcontact
dcontact · [v][u] dΓ

=
∫

Ω

Xj · v,j + Y · v dΩ

+
∫

Γ

y · v dΓ +
∫

Γcontact
ycontact · [v] dΓ

(7.1)

7.2 Meshes

To understand the usage of esys.finley one needs to have an understanding of how the finite element meshes
are defined. Figure 7.1 shows an example of the subdivision of an ellipse into so called elements . In this case,
triangles have been used but other forms of subdivisions can be constructed, e.g. into quadrilaterals or, in the three
dimensional case, into tetrahedrons and hexahedrons. The idea of the finite element method is to approximate the
solution by a function which is a polynomial of a certain order and is continuous across it boundary to neighbor
elements. In the example of Figure 7.1 a linear polynomial is used on each triangle. As one can see, the triangu-
lation is quite a poor approximation of the ellipse. It can be improved by introducing a midpoint on each element
edge then positioning those nodes located on an edge expected to describe the boundary, onto the boundary. In this
case the triangle gets a curved edge which requires a parametrization of the triangle using a quadratic polynomial.
For this case, the solution is also approximated by a piecewise quadratic polynomial (which explains the name
isoparametrical elements), see Reference [28, 5] for more details.

The union of all elements defines the domain of the PDE. Each element is defined by the nodes used to describe
its shape. In Figure 7.1 the element, which has type Tri3, with element reference number 19 is defined by the
nodes with reference numbers 9, 11 and 0 . Notice that the order is counterclockwise. The coefficients of the PDE
are evaluated at integration nodes with each individual element. For quadrilateral elements a Gauss quadrature
scheme is used. In the case of triangular elements a modified form is applied. The boundary of the domain is also
subdivided into elements. In Figure 7.1 line elements with two nodes are used. The elements are also defined by
their describing nodes, e.g. the face element reference number 20 which has type Line2 is defined by the nodes
with the reference numbers 11 and 0. Again the order is crucial, if moving from the first to second node the domain
has to lie on the left hand side (in the case of a two dimension surface element the domain has to lie on the left
hand side when moving counterclockwise). If the gradient on the surface of the domain is to be calculated rich
face elements face to be used. Rich elements on a face are identical to interior elements but with a modified order

79

FIGURE 7.1: Subdivision of an Ellipse into triangles order 1 (Tri3)

FIGURE 7.2: Mesh around a contact region (Rec4)

of nodes such that the ’first’ face of the element aligns with the surface of the domain. In Figure 7.1 elements of
the type Tri3Face are used. The face element reference number 20 as a rich face element is defined by the nodes
with reference numbers 11, 0 and 9. Notice that the face element 20 is identical to the interior element 19 except
that, in this case, the order of the node is different to align the first edge of the triangle (which is the edge starting
with the first node) with the boundary of the domain.

Be aware that face elements and elements in the interior of the domain must match, i.e. a face element must be the
face of an interior element or, in case of a rich face element, it must be identical to an interior element. If no face
elements are specified esys.finley implicitly assumes homogeneous natural boundary conditions , i.e. d=0
and y=0, on the entire boundary of the domain. For inhomogeneous natural boundary conditions , the boundary
must be described by face elements.

If discontinuities of the PDE solution are considered contact elements are introduced to describe the contact
region Γcontact even if dcontact and ycontact are zero. Figure 7.2 shows a simple example of a mesh of rectangular
elements around a contact region Γcontact . The contact region is described by the elements 4, 3 and 6. Their
element type is Line2 Contact. The nodes 9, 12, 6, 5 define contact element 4, where the coordinates of nodes
12 and 5 and nodes 4 and 6 are identical with the idea that nodes 12 and 9 are located above and nodes 5 and 6
below the contact region. Again, the order of the nodes within an element is crucial. There is also the option of

80 Chapter 7. The Module esys.finley

interior face rich face contact rich contact
Line2 Point1 Line2Face Point1 Contact Line2Face Contact
Line3 Point1 Line3Face Point1 Contact Line3Face Contact
Tri3 Line2 Tri3Face Line2 Contact Tri3Face Contact
Tri6 Line3 Tri6Face Line3 Contact Tri6Face Contact
Rec4 Line2 Rec4Face Line2 Contact Rec4Face Contact
Rec8 Line3 Rec8Face Line3 Contact Rec8Face Contact
Rec9 Line3 Rec9Face Line3 Contact Rec9Face Contact
Tet4 Tri6 Tet4Face Tri6 Contact Tet4Face Contact
Tet10 Tri9 Tet10Face Tri9 Contact Tet10Face Contact
Hex8 Rec4 Hex8Face Rec4 Contact Hex8Face Contact
Hex20 Rec8 Hex20Face Rec8 Contact Hex20Face Contact

Table 7.1: Finley elements and corresponding elements to be used on domain faces and contacts. The rich types
have to be used if the gradient of function is to be calculated on faces and contacts, respectively.

using rich elements if the gradient is to be calculated on the contact region. Similarly to the rich face elements
these are constructed from two interior elements by reordering the nodes such that the ’first’ face of the element
above and the ’first’ face of the element below the contact regions line up. The rich version of element 4 is of type
Rec4Face Contact and is defined by the nodes 9, 12, 16, 18, 6, 5, 0 and 2.

Table 7.1 shows the interior element types and the corresponding element types to be used on the face and contacts.
Figure 7.3, Figure 7.4 and Figure 7.5 show the ordering of the nodes within an element.

The native esys.finley file format is defined as follows. Each node i has dim spatial coordinates Node[i],
a reference number Node ref[i], a degree of freedom Node DOF[i] and tag Node tag[i]. In most cases
Node DOF[i]=Node ref[i] however, for periodic boundary conditions, Node DOF[i] is chosen differently, see
example below. The tag can be used to mark nodes sharing the same properties. Element i is defined by the
Element numNodes nodes Element Nodes[i] which is a list of node reference numbers. The order is crucial. It
has a reference number Element ref[i] and a tag Element tag[i]. The tag can be used to mark elements sharing
the same properties. For instance elements above a contact region are marked with 2 and elements below a contact
region are marked with 1. Element Type and Element Num give the element type and the number of elements in
the mesh. Analogue notations are used for face and contact elements. The following Python script prints the mesh
definition in the esys.finley file format:

print "%s\n"%mesh_name
node coordinates:
print "%dD-nodes %d\n"%(dim,numNodes)
for i in range(numNodes):

print "%d %d %d"%(Node_ref[i],Node_DOF[i],Node_tag[i])
for j in range(dim): print " %e"%Node[i][j]
print "\n"

interior elements
print "%s %d\n"%(Element_Type,Element_Num)
for i in range(Element_Num):

print "%d %d"%(Element_ref[i],Element_tag[i])
for j in range(Element_numNodes): print " %d"%Element_Nodes[i][j]
print "\n"

face elements
print "%s %d\n"%(FaceElement_Type,FaceElement_Num)
for i in range(FaceElement_Num):

print "%d %d"%(FaceElement_ref[i],FaceElement_tag[i])
for j in range(FaceElement_numNodes): print " %d"%FaceElement_Nodes[i][j]
print "\n"

contact elements
print "%s %d\n"%(ContactElement_Type,ContactElement_Num)
for i in range(ContactElement_Num):

print "%d %d"%(ContactElement_ref[i],ContactElement_tag[i])
for j in range(ContactElement_numNodes): print " %d"%ContactElement_Nodes[i][j]
print "\n"

point sources (not supported yet)

7.2. Meshes 81

write("Point1 0",face_element_type,numFaceElements)

The following example of a mesh file defines the mesh shown in Figure 7.2:

Example 1
2D Nodes 16
0 0 0 0. 0.
2 2 0 0.33 0.
3 3 0 0.66 0.
7 4 0 1. 0.
5 5 0 0. 0.5
6 6 0 0.33 0.5
8 8 0 0.66 0.5
10 10 0 1.0 0.5
12 12 0 0. 0.5
9 9 0 0.33 0.5
13 13 0 0.66 0.5
15 15 0 1.0 0.5
16 16 0 0. 1.0
18 18 0 0.33 1.0
19 19 0 0.66 1.0
20 20 0 1.0 1.0
Rec4 6
0 1 0 2 6 5
1 1 2 3 8 6
2 1 3 7 10 8
5 2 12 9 18 16
7 2 13 19 18 9

10 2 20 19 13 15
Line2 0
Line2_Contact 3
4 0 9 12 6 5
3 0 13 9 8 6
6 0 15 13 10 8

Point1 0

Notice that the order in which the nodes and elements are given is arbitrary. In the case that rich contact elements
are used the contact element section gets the form

Rec4Face_Contact 3
4 0 9 12 16 18 6 5 0 2
3 0 13 9 18 19 8 6 2 3
6 0 15 13 19 20 10 8 3 7

Periodic boundary condition can be introduced by altering Node DOF. It allows identification of nodes even if
they have different physical locations. For instance, to enforce periodic boundary conditions at the face x0 = 0
and x0 = 1 one identifies the degrees of freedom for nodes 0, 5, 12 and 16 with the degrees of freedom for 7, 10,
15 and 20, respectively. The node section of the esys.finley mesh gets now the form:

82 Chapter 7. The Module esys.finley

2D Nodes 16
0 0 0 0. 0.
2 2 0 0.33 0.
3 3 0 0.66 0.
7 0 0 1. 0.
5 5 0 0. 0.5
6 6 0 0.33 0.5
8 8 0 0.66 0.5
10 5 0 1.0 0.5
12 12 0 0. 0.5
9 9 0 0.33 0.5
13 13 0 0.66 0.5
15 12 0 1.0 0.5
16 16 0 0. 1.0
18 18 0 0.33 1.0
19 19 0 0.66 1.0
20 16 0 1.0 1.0

7.2. Meshes 83

u
Point1

u u
LINE2

u u@@@
@

@
@
@

@
@

u

u

u

u

Tri3

u u

u u

u

u

u

u

Rec4

u u@@@
@

@
@

@
@
@

u

u

u

u

J
J
J
JJ

u
u

�
�

�
�

��

e
e

Z
Z

Z
Z

Z
Z

u
u

Tet4

u u

u u

u

u

u

u

�
�

�
�

��

e
e

�
�

�
�

�
�

u
u

�
�

�
�

�
�

u
u

�
�

�
�

�
�

u
u

e e

u u

e

e

u

u

Hex8

1 1 2

3

1 2

4

1

3

2

4

1 2

3

5

1

6

2

8

4

7

3

FIGURE 7.3: Elements of order 1

84 Chapter 7. The Module esys.finley

u
Point1

u u u
LINE3

u u u@@@
@

@
@
@

@
@

u
u

u

u
u
u

Tri6

u u u

u u u

u
u
u

u
u
u

Rec8

u u u@@@
@

@
@

@
@
@

u
u

u

u
u
u

J
J
J
JJ

u
u

u
�

��
�

��

e
e

e
Z
Z

Z
Z

Z
Z

u
u

u

Tet10

u u u

u u u

u
u
u

u
u
u

�
��

�
��

e
e

e
�

�
�
�

�
�

u
u

u

�
�

�
�

�
�

u
u

u
�

�
�
�

�
�

u
u

u
e e e

u u u

e
e
e

u
u
u

Hex20

1 1 3 2

3

6

1

5

2
4 5

4

8

1

7
3

6

2

5

4

8

1

9

2

7 6

3

10

9

5

13

1

17
6

14

2

11

8

16

4

19
7

15

3

12 10

20 18

FIGURE 7.4: Elements of order 2

7.2. Meshes 85

u u u

u u u

u
u
u

u
u
u

u

Rec9
5

4

8

1

7
3

6

2

9

FIGURE 7.5: Additional shape functions

86 Chapter 7. The Module esys.finley

setSolverMethod DIRECT PCG GMRES TFQMR MINRES PRES20 BICGSTAB LUMPING

setReordering X
setRestart X 20

setTruncation X 5

setIterMax X X X X X X
setTolerance X X X X X X
setAbsoluteTolerance X X X X X X
setReordering X

Table 7.2: Solvers available for esys.finley and the PASO package and the relevant op-
tions in SolverOptions. MKL supports SolverOptions.MINIMUM FILL IN and
SolverOptions.NESTED DISSECTION reordering. Currently the UMFPACK interface does not sup-
port any reordering.

setPreconditioner NO PRECONDITIONER AMG JACOBI GAUSS SEIDEL REC ILU RILU ILU0 DIRECT
status: later later X X X later X later
setCoarsening X
setLevelMax X
setCoarseningThreshold X
setMinCoarseMatrixSize X
setNumSweeps X X
setNumPreSweeps X
setNumPostSweeps X
setInnerTolerance
setDropTolerance
setDropStorage
setRelaxationFactor X
adaptInnerTolerance
setInnerIterMax

Table 7.3: Preconditioners available for esys.finley and the PASO package and the relevant options in
SolverOptions.

7.2.1 Linear Solvers in SolverOptions

Table 7.2 and Table 7.3 show the solvers and preconditioners supported by esys.finley through the PASO
library. Currently direct solvers are not supported under MPI. By default, esys.finley is using the iterative
solvers SolverOptions.PCG for symmetric and SolverOptions.BICGSTAB for non-symmetric prob-
lems. If the direct solver is selected which can be useful when solving very ill-posedequations esys.finley
uses the MKL solver package. If MKL is not available UMFPACK is used. If UMFPACK is not available a suitable
iterative solver from the PASO is used.

7.2.2 Functions

ReadMesh(fileName,integrationOrder=-1)
creates a Domain object form the FEM mesh defined in file fileName. The file must be given the
esys.finley file format. If integrationOrder is positive, a numerical integration scheme chosen which
is accurate on each element up to a polynomial of degree integrationOrder . Otherwise an appropriate
integration order is chosen independently.

load(fileName)
recovers a Domain object from a dump file created by the eateseates a Domain object form the FEM
mesh defined in file fileName. The file must be given the esys.finley file format. If integrationOrder
is positive, a numerical integration scheme chosen which is accurate on each element up to a polynomial of
degree integrationOrder . Otherwise an appropriate integration order is chosen independently.

Rectangle(n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1,
periodic0=False,periodic1=False,useElementsOnFace=False,optimize=False)

Generates a Domain object representing a two dimensional rectangle between (0, 0) and (l0, l1) with or-
thogonal edges. The rectangle is filled with n0 elements along the x0-axis and n1 elements along the
x1-axis. For order=1 and order=2 Rec4 and Rec8 are used, respectively. In the case of useElementsOn-
Face=False, Line2 and Line3 are used to subdivide the edges of the rectangle, respectively. In the case
of useElementsOnFace=True (this option should be used if gradients are calculated on domain faces),

7.2. Meshes 87

Rec4Face and Rec8Face are used on the edges, respectively. If integrationOrder is positive, a numerical in-
tegration scheme chosen which is accurate on each element up to a polynomial of degree integrationOrder .
Otherwise an appropriate integration order is chosen independently. If periodic0=True, periodic boundary
conditions along the x0-directions are enforced. That means when for any solution of a PDE solved by
esys.finley the value on the line x0 = 0 will be identical to the values on x0 = l0. Correspondingly,
periodic1=False sets periodic boundary conditions in x1-direction. If optimize=True mesh node rela-
beling will be attempted to reduce the computation and also ParMETIS will be used to improve the mesh
partition if running on multiple CPUs with MPI.

Brick(n0,n1,n2,order=1,l0=1.,l1=1.,l2=1., integrationOrder=-1,
periodic0=False,periodic1=False,periodic2=False,useElementsOnFace=False,optimize=False)

Generates a Domain object representing a three dimensional brick between (0, 0, 0) and (l0, l1, l2) with
orthogonal faces. The brick is filled with n0 elements along the x0-axis, n1 elements along the x1-axis and
n2 elements along the x2-axis. For order=1 and order=2 Hex8 and Hex20 are used, respectively. In the case
of useElementsOnFace=False, Rec4 and Rec8 are used to subdivide the faces of the brick, respectively.
In the case of useElementsOnFace=True (this option should be used if gradients are calculated on domain
faces), Hex8Face and Hex20Face are used on the brick faces, respectively. If integrationOrder is positive,
a numerical integration scheme chosen which is accurate on each element up to a polynomial of degree
integrationOrder . Otherwise an appropriate integration order is chosen independently. If periodic0=True,
periodic boundary conditions along the x0-directions are enforced. That means when for any solution
of a PDE solved by esys.finley the value on the plane x0 = 0 will be identical to the values on
x0 = l0. Correspondingly, periodic1=False and periodic2=False sets periodic boundary conditions
in x1-direction and x2-direction, respectively. If optimize=True mesh node relabeling will be attempted
to reduce the computation and also ParMETIS will be used to improve the mesh partition if running on
multiple CPUs with MPI.

GlueFaces(meshList,safetyFactor=0.2,tolerance=1.e-13)
Generates a new Domain object from the list meshList of esys.finley meshes. Nodes in face elements
whose difference of coordinates is less then tolerance times the diameter of the domain are merged. The
corresponding face elements are removed from the mesh.

TODO: explain safetyFactor and show an example.

JoinFaces(meshList,safetyFactor=0.2,tolerance=1.e-13)
Generates a new Domain object from the list meshList of esys.finley meshes. Face elements whose
nodes coordinates have difference is less then tolerance times the diameter of the domain are combined to
form a contact element The corresponding face elements are removed from the mesh.

TODO: explain safetyFactor and show an example.

88 Chapter 7. The Module esys.finley

APPENDIX

A

Misc

A.1 Einstein Notation

Compact notation is used in equations such continuum mechanics and linear algebra; it is known as Einstein
notation or the Einstein summation convention. It makes the conventional notation of equations involing tensors
more compact, by shortening and simplifying them.

There are two rules which make up the convention:

firstly, the rank of the tensor is represented by an index. For example, a is a scalar; bi represents a vector; and cij
represents a matrix.

Secondly, if an expression contains subscripted variables, they are assumed to be summed over all possible values,
from 0 to n. For example, for the following expression:

y = a0b0 + a1b1 + . . .+ anbn (A.1)

can be represented as:

y =
n∑
i=0

aibi (A.2)

then in Einstein notion:

y = aibi (A.3)

Another example:

∇p =
∂p

∂x0
i +

∂p

∂x1
j +

∂p

∂x2
k (A.4)

can be expressed in Einstein notation as:

∇p = p,i (A.5)

where the comma ’,’ indicates the partial derivative.

For a tensor:

σij =

 σ00 σ01 σ02

σ10 σ11 σ12

σ20 σ21 σ22

 (A.6)

The δij is the Kronecker δ-symbol, which is a matrix with ones for its diagonal entries (i = j) and zeros for the
remaining entries (i 6= j).

89

δij =
{

1, if i = j
0, if i 6= j

(A.7)

A.2 Changes from previous releases

2.0 to 3.0

• The major change here was replacing numarray with numpy. For general instructions on converting
scripts to use numpy see http://www.stsci.edu/resources/software hardware/numarray/numarray2numpy.pdf.
The specific changes to esys.escript are:

– getValueOfDataPoint() which returned a numarray.array has been replaced by getTupleForData-
Point() which returns a python tuple containing the components of the data point. In the case of ma-
tricies or higher ranked data, the tuples will be nested. Use numpy.array(data.getTupleForDataPoint())
if a numpy.ndarray object is required.

– getValueOfGlobalDataPoint has similarly been replaced by getTupleForGlobalDataPoint().

– integrate(data) now returns a numpy.ndarray instead of a numarray.array.

Any python methods which previously accepted numarray objects will accept numpy objects instead.

• The way solver options are defined for LinearPDE objects has been changed. There is now a
SolverOptions object attached to the LinearPDE object which is handeling the options of solvers
used to solve the PDE. The following changes apply:

– The setTolerance and setAbsoluteTolerance methods have
been removed. Use now getSolverOptions().setTolerance and
getSolverOptions().setAbsoluteTolerance

– The setSolverPackage and setSolverMethod methods have been removed. Use now
getSolverOptions().setPackage, getSolverOptions().setSolverMethod and
getSolverOptions().setPreconditioner.

– The setSolverPackage and setSolverMethod methods have been removed. Use now
getSolverOptions().setPackage, getSolverOptions().setSolverMethod and
getSolverOptions().setPreconditioner.

– The static class variables defining packages, solvers and preconditioners have been removed and are
now accessed via the corresponding static class variables in SolverOptions. For instance use
SolverOptions.PCG instead of LinearPDE.PCG to select the preconditioned conjugate gradi-
ent method.

– The getSolution takes now no argument. Use the corresponding methods of the
SolverOptions object returned by getSolverOptions() to set values, e.g. use
getSolverOptions().setVerbosityOn() instead of argument verbose=True and
getSolverOptions().setIterMax(1000) instead of argument iter max=1000

• The esys.pyvisi module from previous releases has been deprecated and will no longer be supported.
It is still present in the source code and can still be used if you compile esys.escript from source. It
will not be available in binary releases. Its use is discouraged. The documentation for esys.pyvisi can
be found in Appendix B.

90 Appendix A. Misc

A.3 escript references

If you use escript in your research we would appreciate a citation (of course we do not require this). Possible
references include:

@article{GROSS2006,
author = {L. Gross and L. Bourgouin and A. J. Hale and H.-B Muhlhaus},
title = {Interface Modeling in Incompressible Media
using Level Sets in Escript},
journal = {Physics of the Earth and Planetary Interiors},
year = 2007,
volume = {163},
pages = {23--34},
month = {Aug.},
doi = {doi:10.1016/j.pepi.2007.04.004},

}

@article{GROSS2007,
author = {L. Gross and B. Cumming and K. Steube and D. Weatherley},
title = {A Python Module for PDE-Based Numerical Modelling},
journal = {PARA},
year = {2007},
volume = {4699},
pages = {270--279},
doi = {doi:10.1007/978-3-540-75755-9},
publisher = {Springer}

}

A.3. escript references 91

92

APPENDIX

B

The Module esys.pyvisi

Warning: The Module esys.pyvisi is no longer supported and will be
removed from future releases.
Warning: The Module esys.pyvisi is not supported under MPI .

B.1 Introduction

esys.pyvisi is a Python module that is used to generate 2D and 3D visualizations for escript and its PDE
solver finley. The module provides an easy to use interface to the VTK library (http://www.vtk.org/) to render
(generate) surface maps and contours for scalar fields, arrows and streamlines for vector fields, and ellipsoids
for tensor fields. There are three approaches for rendering an object. (1) Online - object is rendered on-screen
with interaction capability (i.e. zoom and rotate), (2) Offline - object is rendered off-screen (no pop-up window)
and (3) Display - object is rendered on-screen but with no interaction capability (on-the-fly animation). All three
approaches have the option to save the rendered object as an image (e.g. jpeg) and subsequently converting a
series of images into a movie (mpeg).

The following outlines the general steps to use Pyvisi:

1. Create a Scene instance - a window in which objects will be rendered on.

2. Create a data input instance (i.e. DataCollector or ImageReader) - reads the source data for visual-
ization.

3. Create a data visualization object (i.e. Map, Velocity, Ellipsoid, Contour, Carpet,
StreamLine, etc.) - creates a visual representation of the source data.

4. Create a Camera or Light instance - controls the viewing angle and lighting effects.

5. Render the object - using either the Online, Offline or Display approach.

6. Generate movie - converts a series of images into a movie. (optional)

scene→ data input→ data visualization→ camera / light→ render → movie

B.2 esys.pyvisi Classes

The following subsections give a brief overview of the important classes and some of their corresponding methods.
Please refer to http://esys.esscc.uq.edu.au/docs.html for full details.

B.2.1 Scene Classes

This section details the instances used to setup the viewing environment.

93

Scene class

class Scene(renderer = Renderer.ONLINE, num viewport = 1, x size = 1152, y size = 864)
A scene is a window in which objects are to be rendered on. Only one scene needs to be created. However,
a scene may be divided into four smaller windows called viewports (if needed). Each viewport in turn can
render a different object.

The following are some of the methods available:
setBackground(color)

Set the background color of the scene.

render(image name = None)
Render the object using either the Online, Offline or Display mode.

Camera class

class Camera(scene, viewport = Viewport.SOUTH WEST)
A camera controls the display angle of the rendered object and one is usually created for a Scene. However,
if a Scene has four viewports, then a separate camera may be created for each viewport.

The following are some of the methods available:
setFocalPoint(position)

Set the focal point of the camera.

setPosition(position)
Set the position of the camera.

azimuth(angle)
Rotate the camera to the left and right. The angle parameter is in degrees.

elevation(angle)
Rotate the camera up and down (angle must be between -90 and 90).

backView()
Rotate the camera to view the back of the rendered object.

topView()
Rotate the camera to view the top of the rendered object.

bottomView()
Rotate the camera to view the bottom of the rendered object.

leftView()
Rotate the camera to view the left side of the rendered object.

rightView()
Rotate the camera to view the right side of the rendered object.

isometricView()
Rotate the camera to view an isometric projection of the rendered object.

dolly(distance)
Move the camera towards (greater than 1) the rendered object. However, it is not possible to move the
camera away from the rendered object with this method.

Light class

class Light(scene, viewport = Viewport.SOUTH WEST)
A light controls the lighting effect for the rendered object and is set up in a similar way to Camera.

The following are some of the methods available:
setColor(color)

Set the light color.

94 Appendix B. The Module esys.pyvisi

setFocalPoint(position)
Set the focal point of the light.

setPosition(position)
Set the position of the light.

setAngle(elevation = 0, azimuth = 0)
An alternative to set the position and focal point of the light by using elevation and azimuth.

B.2.2 Input Classes

This subsection details the instances used to read and load the source data for visualization.

DataCollector class

class DataCollector(source = Source.XML)
A data collector is used to read data either from an XML file (using setFileName()) or from an escript
object directly (using setData()). Writing XML files is expensive but has the advantage that the results
can be analyzed easily after the simulation has completed.

The following are some of the methods available:
setFileName(file name)

Set the XML file name to read.

setData(**args)
Create data using the <name>=<data>pairing. The method assumes that the data is given in the appropri-
ate format.

setActiveScalar(scalar)
Specify the scalar field to load.

setActiveVector(vector)
Specify the vector field to load.

setActiveTensor(tensor)
Specify the tensor field to load.

ImageReader class

class ImageReader(format)
An image reader is used to read data from an image in a variety of formats.

The following is one of the methods available:
setImageName(image name)

Set the filename of the image to be loaded.

Text2D class

class Text2D(scene, text, viewport = Viewport.SOUTH WEST)
This class is used to insert two-dimensional text for annotations (e.g. titles, authors and labels).

The following are some of the methods available:
setFontSize(size)

Set the 2D text size.

boldOn()
Use bold font style for the text.

setColor(color)
Set the color of the 2D text.

Including methods from Actor2D.

B.2. esys.pyvisi Classes 95

B.2.3 Data Visualization Classes

This subsection details the instances used to process and manipulate the source data. The typical usage of some
of the classes is also shown. See Section B.5 for sample images generated with these classes.

One point to note is that the source can either be point or cell data. If the source is cell data, a conversion to point
data may or may not be required, in order for the object to be rendered correctly. If a conversion is needed, the
’cell to point’ flag (see below) must be set to ’True’, otherwise to ’False’ (which is the default). On occasions,
an inaccurate object may be rendered from cell data even after conversion.

Map class

class Map(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR, cell to point = False,
outline = True)

Class that shows a scalar field on a domain surface. The domain surface can either be color or gray-scale,
depending on the lookup table used.

The following are some of the methods available:
Methods from Actor3D and DataSetMapper.

A typical usage of Map is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.pyvisi import Scene, DataCollector, Map, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 800
Y_SIZE = 800

SCALAR_FIELD_POINT_DATA = "temperature"
SCALAR_FIELD_CELL_DATA = "temperature_cell"
FILE_3D = "interior_3D.xml"
IMAGE_NAME = "map.jpg"
JPG_RENDERER = Renderer.ONLINE_JPG

Create a Scene with four viewports.
s = Scene(renderer = JPG_RENDERER, num_viewport = 4, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from a XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA)

Create a Map for the first viewport.
m1 = Map(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST,

lut = Lut.COLOR, cell_to_point = False, outline = True)
m1.setRepresentationToWireframe()

Create a Camera for the first viewport
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)
c1.isometricView()

Create a second DataCollector reading from the same XML file but specifying
a different scalar field.
dc2 = DataCollector(source = Source.XML)
dc2.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))

96 Appendix B. The Module esys.pyvisi

dc2.setActiveScalar(scalar = SCALAR_FIELD_CELL_DATA)

Create a Map for the third viewport.
m2 = Map(scene = s, data_collector = dc2, viewport = Viewport.NORTH_EAST,

lut = Lut.COLOR, cell_to_point = True, outline = True)

Create a Camera for the third viewport
c2 = Camera(scene = s, viewport = Viewport.NORTH_EAST)

Render the object.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME))

MapOnPlaneCut class

class MapOnPlaneCut(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR,
cell to point = False, outline = True)

This class works in a similar way to Map, except that the result is a slice of the scalar field produced by
cutting the map with a plane. The plane can be translated and rotated to its desired position.

The following are some of the methods available:
Methods from Actor3D, Transform and DataSetMapper.

MapOnPlaneClip class

class MapOnPlaneClip(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR,
cell to point = False, outline = True)

This class works in a similar way to MapOnPlaneCut, except that the defined plane is used to clip the
scalar field.

The following are some of the methods available:
Methods from Actor3D, Transform, Clipper and DataSetMapper.

MapOnScalarClip class

class MapOnScalarClip(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR,
cell to point = False, outline = True)

This class works in a similar way to Map, except that it only shows parts of the scalar field matching a scalar
value.

The following are some of the methods available:
Methods from Actor3D, Clipper and DataSetMapper.

MapOnScalarClipWithRotation class

class MapOnScalarClipWithRotation(scene, data collector, viewport = Viewport.SOUTH WEST, lut =
Lut.COLOR, cell to point = False)

This class works in a similar way to Map except that it shows a 2D scalar field clipped using a scalar value
and subsequently rotated around the z-axis to create a 3D looking effect. This class should only be used
with 2D data sets and NOT 3D.

The following are some of the methods available:
Methods from Actor3D, Clipper, Rotation and DataSetMapper.

Velocity class

class Velocity(scene, data collector, arrow = Arrow.TWO D, color mode = ColorMode.VECTOR, viewport
= Viewport.SOUTH WEST, lut = Lut.COLOR, cell to point = False, outline = True)

This class is used to display a vector field using arrows. The arrows can either be color or gray-scale,
depending on the lookup table used. If the arrows are colored, there are two possible coloring modes, either

B.2. esys.pyvisi Classes 97

using vector data or scalar data. Similarly, there are two possible types of arrows, either two-dimensional or
three-dimensional.

The following are some of the methods available:
Methods from Actor3D, Glyph3D, MaskPoints and DataSetMapper.

VelocityOnPlaneCut class

class VelocityOnPlaneCut(scene, data collector, arrow = Arrow.TWO D, color mode = Color-
Mode.VECTOR, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR,
cell to point = False, outline = True)

This class works in a similar way to MapOnPlaneCut, except that it shows a vector field using arrows cut
using a plane.

The following are some of the methods available:
Methods from Actor3D, Glyph3D, Transform, MaskPoints and DataSetMapper.

A typical usage of VelocityOnPlaneCut is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules
from esys.pyvisi import Scene, DataCollector, VelocityOnPlaneCut, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 400

VECTOR_FIELD_CELL_DATA = "velocity"
FILE_3D = "interior_3D.xml"
IMAGE_NAME = "velocity.jpg"
JPG_RENDERER = Renderer.ONLINE_JPG

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from a XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))
dc1.setActiveVector(vector = VECTOR_FIELD_CELL_DATA)

Create VelocityOnPlaneCut.
vopc1 = VelocityOnPlaneCut(scene = s, data_collector = dc1,

viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.VECTOR,
arrow = Arrow.THREE_D, lut = Lut.COLOR, cell_to_point = False,
outline = True)

vopc1.setScaleFactor(scale_factor = 0.5)
vopc1.setPlaneToXY(offset = 0.5)
vopc1.setRatio(2)
vopc1.randomOn()

Create a Camera.
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)
c1.isometricView()
c1.elevation(angle = -20)

Render the object.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME))

98 Appendix B. The Module esys.pyvisi

VelocityOnPlaneClip class

class VelocityOnPlaneClip(scene, data collector, arrow = Arrow.TWO D, color mode = Color-
Mode.VECTOR, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR,
cell to point = False, online = True)

This class works in a similar way to MapOnPlaneClip, except that it shows a vector field using arrows
clipped using a plane.

The following are some of the methods available:
Methods from Actor3D, Glyph3D, Transform, Clipper, MaskPoints and DataSetMapper.

Ellipsoid class

class Ellipsoid(scene, data collector, viewport = Viewport = SOUTH WEST, lut = Lut.COLOR,
cell to point = False, outline = True)

Class that shows a tensor field using ellipsoids. The ellipsoids can either be color or gray-scale, depending
on the lookup table used.

The following are some of the methods available:
Methods from Actor3D, Sphere, TensorGlyph, MaskPoints and DataSetMapper.

EllipsoidOnPlaneCut class

class EllipsoidOnPlaneCut(scene, data collector, viewport = Viewport.SOUTH WEST, lut =
Lut.COLOR, cell to point = False, outline = True)

This class works in a similar way to MapOnPlaneCut, except that it shows a tensor field using ellipsoids
cut using a plane.

The following are some of the methods available:
Methods from Actor3D, Sphere, TensorGlyph, Transform, MaskPoints and DataSetMapper.

EllipsoidOnPlaneClip class

class EllipsoidOnPlaneClip(scene, data collector, viewport = Viewport.SOUTH WEST, lut =
Lut.COLOR, cell to point = False, outline = True)

This class works in a similar way to MapOnPlaneClip, except that it shows a tensor field using ellipsoids
clipped using a plane.

The following are some of the methods available:
Methods from Actor3D, Sphere, TensorGlyph, Transform, Clipper, MaskPoints and
DataSetMapper.

A typical usage of EllipsoidOnPlaneClip is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules
from esys.pyvisi import Scene, DataCollector, EllipsoidOnPlaneClip, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 400

TENSOR_FIELD_CELL_DATA = "stress_cell"
FILE_3D = "interior_3D.xml"
IMAGE_NAME = "ellipsoid.jpg"
JPG_RENDERER = Renderer.ONLINE_JPG

B.2. esys.pyvisi Classes 99

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from a XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))
dc1.setActiveTensor(tensor = TENSOR_FIELD_CELL_DATA)

Create an EllipsoidOnPlaneClip.
eopc1 = EllipsoidOnPlaneClip(scene = s, data_collector = dc1,

viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = True,
outline = True)

eopc1.setPlaneToXY()
eopc1.setScaleFactor(scale_factor = 0.2)
eopc1.rotateX(angle = 10)

Create a Camera.
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)
c1.bottomView()
c1.azimuth(angle = -90)
c1.elevation(angle = 10)

Render the object.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME))

Contour class

class Contour(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR, cell to point =
False, outline = True)

Class that shows a scalar field using contour surfaces. The contour surfaces can either be color or gray-scale,
depending on the lookup table used. This class can also be used to generate isosurfaces.

The following are some of the methods available:
Methods from Actor3D, ContourModule and DataSetMapper.

A typical usage of Contour is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules
from esys.pyvisi import Scene, DataCollector, Contour, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 400

SCALAR_FIELD_POINT_DATA = "temperature"
FILE_3D = "interior_3D.xml"
IMAGE_NAME = "contour.jpg"
JPG_RENDERER = Renderer.ONLINE_JPG

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading a XML file.

100 Appendix B. The Module esys.pyvisi

dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA)

Create three contours.
ctr1 = Contour(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST,

lut = Lut.COLOR, cell_to_point = False, outline = True)
ctr1.generateContours(contours = 3)

Create a Camera.
cam1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)
cam1.elevation(angle = -40)

Render the object.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME))

ContourOnPlaneCut class

class ContourOnPlaneCut(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR,
cell to point = False, outline = True)

This class works in a similar way to MapOnPlaneCut, except that it shows a scalar field using contour
surfaces cut using a plane.

The following are some of the methods available:
Methods from Actor3D, ContourModule, Transform and DataSetMapper.

ContourOnPlaneClip class

class ContourOnPlaneClip(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR,
cell to point = False, outline = True)

This class works in a similar way to MapOnPlaneClip, except that it shows a scalar field using contour
surfaces clipped using a plane.

The following are some of the methods available:
Methods from Actor3D, ContourModule, Transform, Clipper and DataSetMapper.

StreamLine class

class StreamLine(scene, data collector, viewport = Viewport.SOUTH WEST, color mode = Color-
Mode.VECTOR, lut = Lut.COLOR, cell to point = False, outline = True)

Class that shows the direction of particles of a vector field using streamlines. The streamlines can either
be color or gray-scale, depending on the lookup table used. If the streamlines are colored, there are two
possible coloring modes, either using vector data or scalar data.

The following are some of the methods available:
Methods from Actor3D, PointSource, StreamLineModule, Tube and DataSetMapper.

A typical usage of StreamLine is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.pyvisi import Scene, DataCollector, StreamLine, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400

B.2. esys.pyvisi Classes 101

Y_SIZE = 400

VECTOR_FIELD_CELL_DATA = "temperature"
FILE_3D = "interior_3D.xml"
IMAGE_NAME = "streamline.jpg"
JPG_RENDERER = Renderer.ONLINE_JPG

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from a XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))

Create streamlines.
sl1 = StreamLine(scene = s, data_collector = dc1,

viewport = Viewport.SOUTH_WEST, color_mode = ColorMode.SCALAR,
lut = Lut.COLOR, cell_to_point = False, outline = True)

sl1.setTubeRadius(radius = 0.02)
sl1.setTubeNumberOfSides(3)
sl1.setTubeRadiusToVaryByVector()
sl1.setPointSourceRadius(0.9)

Create a Camera.
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)
c1.isometricView()

Render the object.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME))

Carpet class

class Carpet(scene, data collector, viewport = Viewport.Viewport.SOUTH WEST, warp mode = Warp-
Mode.SCALAR, lut = Lut.COLOR, cell to point = False, outline = True)

This class works in a similar way to MapOnPlaneCut, except that it shows a scalar field cut on a plane
and deformed (warped) along the normal. The plane can either be color or gray-scale, depending on the
lookup table used. Similarly, the plane can be deformed either using scalar data or vector data.

The following are some of the methods available:
Methods from Actor3D, Warp, Transform and DataSetMapper.

A typical usage of Carpet is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.pyvisi import Scene, DataCollector, Carpet, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 400

SCALAR_FIELD_CELL_DATA = "temperature_cell"
FILE_3D = "interior_3D.xml"
IMAGE_NAME = "carpet.jpg"
JPG_RENDERER = Renderer.ONLINE_JPG

102 Appendix B. The Module esys.pyvisi

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from a XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))
dc1.setActiveScalar(scalar = SCALAR_FIELD_CELL_DATA)

Create a Carpet.
cpt1 = Carpet(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST,

warp_mode = WarpMode.SCALAR, lut = Lut.COLOR, cell_to_point = True,
outline = True)

cpt1.setPlaneToXY(0.2)
cpt1.setScaleFactor(1.9)

Create a Camera.
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)
c1.isometricView()

Render the object.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME))

Legend class

class Legend(scene, data collector, viewport = Viewport.SOUTH WEST, lut = Lut.COLOR, legend = Legend-
Type.SCALAR)

Class that shows a scalar field on a domain surface. The domain surface can either be color or gray-scale,
depending on the lookup table used

The following are some of the methods available:
Methods from Actor3D, ScalarBar and DataSetMapper.

Rectangle class

class Rectangle(scene, viewport = Viewport.SOUTH WEST)
Class that generates a rectangle box.

The following are some of the methods available:
Methods from Actor3D, CubeSource and DataSetMapper.

Image class

class Image(scene, image reader, viewport = Viewport.SOUTH WEST)
Class that displays an image which can be scaled (upwards and downwards) and has interaction capability.
The image can also be translated and rotated along the X, Y and Z axes. One of the most common use of
this feature is pasting an image on a surface map.

The following are some of the methods available:
Methods from Actor3D, PlaneSource and Transform.

A typical usage of Image is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.pyvisi import Scene, DataCollector, Map, ImageReader, Image, Camera
from esys.pyvisi import GlobalPosition
from esys.pyvisi.constant import *

B.2. esys.pyvisi Classes 103

import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 400

SCALAR_FIELD_POINT_DATA = "temperature"
FILE_3D = "interior_3D.xml"
LOAD_IMAGE_NAME = "flinders.jpg"
SAVE_IMAGE_NAME = "image.jpg"
JPG_RENDERER = Renderer.ONLINE_JPG

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from a XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))

Create a Map.
m1 = Map(scene = s, data_collector = dc1, viewport = Viewport.SOUTH_WEST,

lut = Lut.COLOR, cell_to_point = False, outline = True)
m1.setOpacity(0.3)

Create an ImageReader (in place of DataCollector).
ir = ImageReader(ImageFormat.JPG)
ir.setImageName(image_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \

LOAD_IMAGE_NAME))

Create an Image.
i = Image(scene = s, image_reader = ir, viewport = Viewport.SOUTH_WEST)
i.setOpacity(opacity = 0.9)
i.translate(0,0,-1)
i.setPoint1(GlobalPosition(2,0,0))
i.setPoint2(GlobalPosition(0,2,0))

Create a Camera.
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)

Render the image.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, SAVE_IMAGE_NAME))

Logo class

class Logo(scene, image reader, viewport = Viewport.SOUTH WEST)
Class that displays a static image, in particular a logo (e.g. company symbol) and has NO interaction
capability. The position and size of the logo can be specified.

The following are some of the methods available:
Methods from ImageReslice and Actor2D.

Movie class

class Movie(parameter file = ”make movie”)
This class is used to create movies out of a series of images. The parameter specifies the name of a file that
will contain the required information for the ’ppmtompeg’ command which is used to generate the movie.

The following are some of the methods available:

104 Appendix B. The Module esys.pyvisi

imageRange(input directory, first image, last image)
Use this method to specify that the movie is to be generated from image files with filenames in a certain
range (e.g. ’image000.jpg’ to ’image050.jpg’).

imageList(input directory, image list)
Use this method to specify a list of arbitrary image filenames from which the movie is to be generated.

makeMovie(movie)
Generate the movie with the specified filename.

A typical usage of Movie is shown below.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.pyvisi import Scene, DataCollector, Map, Camera, Velocity, Legend
from esys.pyvisi import Movie, LocalPosition
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 800
Y_SIZE = 800

SCALAR_FIELD_POINT_DATA = "temp"
FILE_2D = "tempvel-"
IMAGE_NAME = "movie"
JPG_RENDERER = Renderer.OFFLINE_JPG

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from a XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA)

Create a Map.
m1 = Map(scene = s, data_collector = dc1,

viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
outline = True)

Create a Camera.
cam1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)

Create a movie.
mov = Movie()
lst = []

Read in one file one after another and render the object.
for i in range(938, 949):

dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \
FILE_2D + "%06d.vtu") % i)

s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, \
IMAGE_NAME + "%06d.jpg" % i))

lst.append(IMAGE_NAME + "%06d.jpg" % i)

Images (first and last inclusive) from which the movie is to be generated.
mov.imageRange(input_directory = PYVISI_EXAMPLE_IMAGES_PATH,

first_image = IMAGE_NAME + "000938.jpg",

B.2. esys.pyvisi Classes 105

last_image = IMAGE_NAME + "000948.jpg")

Alternatively, a list of images can be specified.
#mov.imageList(input_directory = PYVISI_EXAMPLE_IMAGES_PATH, image_list = lst)

Generate the movie.
mov.makeMovie(os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, "movie.mpg"))

B.2.4 Coordinate Classes

This subsection details the instances used to position rendered objects.

LocalPosition class

class LocalPosition(x coor, y coor)
Class that defines a position (X and Y) in the local 2D coordinate system.

GlobalPosition class

class GlobalPosition(x coor, y coor, z coor)
Class that defines a position (X, Y and Z) in the global 3D coordinate system.

B.2.5 Supporting Classes

This subsection details the supporting classes and their corresponding methods inherited by the input (see Sec-
tion B.2.2) and data visualization classes (see Section B.2.3).

Actor3D class

Class that defines a 3D actor.

The following are some of the methods available:

setOpacity(opacity)
Set the opacity (transparency) of the 3D actor.

setColor(color)
Set the color of the 3D actor.

setRepresentationToWireframe()
Set the representation of the 3D actor to wireframe.

Actor2D class

Class that defines a 2D actor.

The following are some of the methods available:

setPosition(position)
Set the position (XY) of the 2D actor. Default position is the lower left hand corner of the window / viewport.

Clipper class

Class that defines a clipper.

106 Appendix B. The Module esys.pyvisi

The following are some of the methods available:

setInsideOutOn()
Clips one side of the rendered object.

setInsideOutOff()
Clips the other side of the rendered object.

setClipValue(value)
Set the scalar clip value (instead of using a plane) for the clipper.

ContourModule class

Class that defines the contour module.

The following are some of the methods available:

generateContours(contours = None, lower range = None, upper range = None)
Generate the specified number of contours within the specified range. In order to generate a single isosur-
face, the ’lower range’ and ’upper range’ must be set to the same value.

Glyph3D class

Class that defines 3D glyphs.

The following are some of the methods available:

setScaleModeByVector()
Set the 3D glyph to scale according to the vector data.

setScaleModeByScalar()
Set the 3D glyph to scale according to the scalar data.

setScaleFactor(scale factor)
Set the 3D glyph scale factor.

TensorGlyph class

Class that defines tensor glyphs.

The following are some of the methods available:

setScaleFactor(scale factor)
Set the scale factor for the tensor glyph.

setMaxScaleFactor(max scale factor)
Set the maximum allowable scale factor for the tensor glyph.

PlaneSource class

Class that defines a plane source. A plane source is defined by an origin and two other points, which form the
axes (X and Y).

The following are some of the methods available:

setOrigin(position)
Set the origin of the plane source.

B.2. esys.pyvisi Classes 107

setPoint1(position)
Set the first point from the origin of the plane source.

setPoint2(position)
Set the second point from the origin of the plane source.

PointSource class

Class that defines the source (location) to generate points. The points are generated within the radius of a sphere.

The following are some of the methods available:

setPointSourceRadius(radius)
Set the radius of the sphere.

setPointSourceCenter(center)
Set the center of the sphere.

setPointSourceNumberOfPoints(points)
Set the number of points to generate within the sphere (the larger the number of points, the more streamlines
are generated).

Sphere class

Class that defines a sphere.

The following are some of the methods available:

setThetaResolution(resolution)
Set the theta resolution of the sphere.

setPhiResolution(resolution)
Set the phi resolution of the sphere.

StreamLineModule class

Class that defines the streamline module.

The following are some of the methods available:

setMaximumPropagationTime(time)
Set the maximum length of the streamline expressed in elapsed time.

setIntegrationToBothDirections()
Set the integration to occur both sides: forward (where the streamline goes) and backward (where the
streamline came from).

Transform class

Class that defines the orientation of planes.

The following are some of the methods available:

translate(x offset, y offset, z offset)
Translate the rendered object along the x, y and z-axes.

rotateX(angle)
Rotate the plane around the x-axis.

108 Appendix B. The Module esys.pyvisi

rotateY(angle)
Rotate the plane around the y-axis.

rotateZ(angle)
Rotate the plane around the z-axis.

setPlaneToXY(offset = 0)
Set the plane orthogonal to the z-axis.

setPlaneToYZ(offset = 0)
Set the plane orthogonal to the x-axis.

setPlaneToXZ(offset = 0)
Set the plane orthogonal to the y-axis.

Tube class

Class that defines the tube wrapped around the streamlines.

The following are some of the methods available:

setTubeRadius(radius)
Set the radius of the tube.

setTubeRadiusToVaryByVector()
Set the radius of the tube to vary by vector data.

setTubeRadiusToVaryByScalar()
Set the radius of the tube to vary by scalar data.

Warp class

Class that defines the deformation of a scalar field.

The following are some of the methods available:

setScaleFactor(scale factor)
Set the displacement scale factor.

MaskPoints class

Class that defines masking of points. This is useful to prevent the rendered object from being cluttered with
arrows or ellipsoids.

The following are some of the methods available:

setRatio(ratio)
Mask every n’th point.

randomOn()
Enables randomization of the points selected for masking.

ScalarBar class

Class that defines a scalar bar.

The following are some of the methods available:

B.2. esys.pyvisi Classes 109

setTitle(title)
Set the title of the scalar bar.

setPosition(position)
Set the local position of the scalar bar.

setOrientationToHorizontal()
Set the orientation of the scalar bar to horizontal.

setOrientationToVertical()
Set the orientation of the scalar bar to vertical.

setHeight(height)
Set the height of the scalar bar.

setWidth(width)
Set the width of the scalar bar.

setLabelColor(color)
Set the color of the scalar bar’s label.

setTitleColor(color)
Set the color of the scalar bar’s title.

ImageReslice class

Class that defines an image reslice which is used to resize static (no interaction capability) images (i.e. logo).

The following are some of the methods available:

setSize(size)
Set the size factor of the image. The value must be between 0 and 2. Size 1 (one) keeps the image in its
original size (which is the default).

DataSetMapper class

Class that defines a data set mapper.

The following are some of the methods available:

setScalarRange(lower range, upper range)
Set the minimum and maximum scalar range for the data set mapper. This method is called when the range
has been specified by the user. Therefore, the scalar range read from the source will be ignored.

CubeSource class

Class that defines a cube source. The center of the cube source defines the point from which the cube is to be
generated and the X, Y and Z lengths define the length of the cube from the center point. If X length is 3, then the
X length to the left and right of the center point is 1.5 respectively.

The following are some of the methods available:

setCenter(center)
Set the cube source center.

setXLength(length)
Set the cube source length along the x-axis.

setYLength(length)
Set the cube source length along the y-axis.

110 Appendix B. The Module esys.pyvisi

setZLength(length)
Set the cube source length along the z-axis.

Rotation class

Class that sweeps 2D data around the z-axis to create a 3D looking effect.

The following are some of the methods available:

setResolution(resolution)
Set the resolution of the sweep for the rotation, which controls the number of intermediate points.

setAngle(angle)
Set the angle of rotation.

B.3 More Examples

This section provides examples for some common tasks.

B.3.1 Reading a Series of Files

The following script shows how to generate images from a time series using two data sources.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.pyvisi import Scene, DataCollector, Contour, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 300

SCALAR_FIELD_POINT_DATA_1 = "lava"
SCALAR_FIELD_POINT_DATA_2 = "talus"
FILE_2D = "phi_talus_lava."

IMAGE_NAME = "seriesofreads"
JPG_RENDERER = Renderer.ONLINE_JPG

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from an XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA_1)

Create a Contour.
mosc1 = Contour(scene = s, data_collector = dc1,

viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
outline = True)

mosc1.generateContours(0)

Create a second DataCollector reading from the same XML file

B.3. More Examples 111

but specifying a different scalar field.
dc2 = DataCollector(source = Source.XML)
dc2.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA_2)

Create a second Contour.
mosc2 = Contour(scene = s, data_collector = dc2,

viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
outline = True)

mosc2.generateContours(0)

Create a Camera.
cam1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)

Read in one file after another and render the object.
for i in range(99, 104):

dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \
FILE_2D + "%04d.vtu") % i)

dc2.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, \
FILE_2D + "%04d.vtu") % i)

s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, \
IMAGE_NAME + "%04d.jpg") % i)

B.3.2 Creating Slices of a Data Source

The following script shows how to save a series of images that slice the data at different points by gradually
translating the cut plane.

"""
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.pyvisi import Scene, DataCollector, MapOnPlaneCut, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_MESHES_PATH = "data_meshes"
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 400

SCALAR_FIELD_POINT_DATA = "temperature"
FILE_3D = "interior_3D.xml"
IMAGE_NAME = "seriesofcuts"
JPG_RENDERER = Renderer.ONLINE_JPG

Create a Scene.
s = Scene(renderer = JPG_RENDERER, num_viewport = 1, x_size = X_SIZE,

y_size = Y_SIZE)

Create a DataCollector reading from an XML file.
dc1 = DataCollector(source = Source.XML)
dc1.setFileName(file_name = os.path.join(PYVISI_EXAMPLE_MESHES_PATH, FILE_3D))
dc1.setActiveScalar(scalar = SCALAR_FIELD_POINT_DATA)

Create a MapOnPlaneCut.
mopc1 = MapOnPlaneCut(scene = s, data_collector = dc1,

viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, cell_to_point = False,
outline = True)

mopc1.setPlaneToYZ(offset = 0.1)

112 Appendix B. The Module esys.pyvisi

Create a Camera.
c1 = Camera(scene = s, viewport = Viewport.SOUTH_WEST)
c1.isometricView()

Render the object with multiple cuts using a series of translations.
for i in range(0, 5):

s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, IMAGE_NAME +
"%02d.jpg") % i)

mopc1.translate(0.6,0,0)

B.3.3 Reading Data Directly from escript Objects

The following script shows how to combine Pyvisi code with escript code to generate visualizations on the fly.

"""
Author: Lutz Gross, l.gross@uq.edu.au
Author: John Ngui, john.ngui@uq.edu.au
"""

Import the necessary modules.
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
from esys.pyvisi import Scene, DataCollector, Map, Camera
from esys.pyvisi.constant import *
import os

PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images"
X_SIZE = 400
Y_SIZE = 400
JPG_RENDERER = Renderer.ONLINE_JPG

#... set some parameters ...
xc = [0.02,0.002]
r = 0.001
qc = 50.e6
Tref = 0.
rhocp = 2.6e6
eta = 75.
kappa = 240.
tend = 5.
initialize time, time step size and counter ...
t=0
h=0.1
i=0

generate domain ...
mydomain = Rectangle(l0=0.05, l1=0.01, n0=250, n1=50)
open PDE ...
mypde = LinearPDE(mydomain)
mypde.setSymmetryOn()
mypde.setValue(A=kappa*kronecker(mydomain), D=rhocp/h, d=eta, y=eta*Tref)
set heat source: ...
x = mydomain.getX()
qH = qc*whereNegative(length(x-xc)-r)

set initial temperature
T=Tref

Create a Scene.
s = Scene(renderer = JPG_RENDERER, x_size = X_SIZE, y_size = Y_SIZE)

B.3. More Examples 113

Create a DataCollector reading directly from escript objects.
dc = DataCollector(source = Source.ESCRIPT)

Create a Map.
m = Map(scene = s, data_collector = dc, \

viewport = Viewport.SOUTH_WEST, lut = Lut.COLOR, \
cell_to_point = False, outline = True)

Create a Camera.
c = Camera(scene = s, viewport = Viewport.SOUTH_WEST)

start iteration
while t < 0.4:

i += 1
t += h
mypde.setValue(Y=qH+rhocp/h*T)
T = mypde.getSolution()

dc.setData(temp = T)

Render the object.
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, \

"diffusion%02d.jpg") % i)

114 Appendix B. The Module esys.pyvisi

B.4 Useful Keys

This section lists keyboard shortcuts available when interacting with rendered objects using the Online approach.

Key Description
Keypress ’c’ / ’a’ Toggle between the camera (’c’) and object (’a’) mode. In camera mode, mouse events affect

the camera position and focal point. In object mode, mouse events affect the rendered object’s
element (i.e. cut surface map, clipped velocity field, streamline, etc) that is under the mouse
pointer.

Mouse button 1 Rotate the camera around its focal point (if in camera mode) or rotate the rendered object’s
element (if in object mode).

Mouse button 2 Pan the camera (if in camera mode) or translate the rendered object’s element (if in object
mode).

Mouse button 3 Zoom the camera (if in camera mode) or scale the rendered object’s element (if in object
mode).

Keypress 3 Toggle the render window in and out of stereo mode. By default, red-blue stereo pairs are
created.

Keypress ’e’ / ’q’ Exit the application if only one file is to be read, or read and display the next file if multiple
files are to be read.

Keypress ’s’ Modify the representation of the rendered object to surfaces.
Keypress ’w’ Modify the representation of the rendered object to wireframe.
Keypress ’r’ Reset the position of the rendered object to the center.

Table B.1: Useful keys in Online render mode

B.4. Useful Keys 115

B.5 Sample Output

This section shows sample images produced with the various classes of Pyvisi. The source code to produce these
images is included in the Pyvisi distribution.

Map MapOnPlaneCut MapOnPlaneClip

MapOnScalarClip MapOnScalarClipWithRotation Streamline

Velocity VelocityOnPlaneCut VelocityOnPlaneClip

Ellipsoid EllipsoidOnPlaneCut EllipsoidOnPlaneClip

116 Appendix B. The Module esys.pyvisi

Contour ContourOnPlaneCut ContourOnPlaneClip

Carpet Rectangle Image

Text Logo Legend

B.5. Sample Output 117

118

INDEX

*, 38
**, 38
+, 38
-, 38
/, 38

eq () (Domain method), 36
eq () (FunctionSpace method), 37
ne () (Domain method), 36
ne () (FunctionSpace method), 37
str () (Data method), 40
str () (Domain method), 36, 37

A (data in), 47
acceptConvergenceFailure() (SolverOptions

method), 59
acos() (in module esys.escript), 44
acosh() (in module esys.escript), 45
adaptInnerTolerance() (SolverOptions

method), 59
addItem() (PropertySet method), 67
addItems() (Design method), 68
AGGREGATION COARSENING (SolverOptions at-

tribute), 61
algebraic Multi-grid, 53, 57, 58, 61
AMG, 53, 57, 58, 61
AMG (SolverOptions attribute), 60
Arc (class in esys.pycad), 65
asin() (in module esys.escript), 44
asinh() (in module esys.escript), 45
atan() (in module esys.escript), 44
atanh() (in module esys.escript), 45
atm (data in), 47
atmosphere, 46
Atto (data in), 48
azimuth() (Camera method), 94

backView() (Camera method), 94
backward Euler, 9
BezierCurve (class in esys.pycad), 65
BICGSTAB (SolverOptions attribute), 60
BiCGStab, 59, 87
boldOn() (Text2D method), 95
bottomView() (Camera method), 94
boundary condition

natural, 10, 20, 51
boundary conditions

periodic, 82
boundary value problem, 2

BVP, 2, 4
Brick() (in module), 88
BSpline (class in esys.pycad), 65

C (data in), 47
Camera (class in), 94
Carpet (class in), 102
Celsius, 46
Celsius (data in), 47
Centi (data in), 48
CGS (SolverOptions attribute), 60
characteristic function, 4, 5, 10, 51
checkSymmetry() (LinearPDE method), 54
CHOLEVSKY (SolverOptions attribute), 59
clearItems() (Design method), 68
clearItems() (PropertySet method), 67
clip() (in module esys.escript), 42
close() (FileWriter method), 48
closed (FileWriter attribute), 49
cm (data in), 46
cohesion factor, 74
constraint, 10, 20, 51
contact conditions, 80
ContinuousFunction() (in module esys.escript),

37
Contour (class in), 100
ContourOnPlaneClip (class in), 101
ContourOnPlaneCut (class in), 101
cos() (in module esys.escript), 44
cosh() (in module esys.escript), 45
Courant condition, 17
CurveLoop (class in esys.pycad), 65

Darcy flow, 71
Darcy flux, 71, 73
DarcyFlow (class in), 73
Data (class in esys.escript), 39
data sample

points, 32, 36, 38–42
DataCollector (class in), 95
day (data in), 46
Deca (data in), 48
Deci (data in), 48
DEFAULT (SolverOptions attribute), 59

119

DEFAULT REORDERING (SolverOptions attribute),
60

DEG (data in esys.pycad), 66
DELAUNAY (Design attribute), 68
Design (class in esys.pycad.gmsh), 67
diffusion equation, 8
Dilation (class in esys.pycad), 66
DIRECT (SolverOptions attribute), 59
Dirichlet boundary condition, 4

homogeneous, 2, 5
discontinuity, 31, 51, 52
div() (in module esys.escript), 44
dolly() (Camera method), 94
Domain (class in esys.escript), 35
Druck-Prager, 74
dump() (Data method), 40
dump() (Domain method), 35

eigenvalues() (in module esys.escript), 42
eigenvalues and eigenvectors() (in mod-

ule esys.escript), 42
element, 79

contact, 80, 88
face, 79
reference number, 79

elevation() (Camera method), 94
Ellipsoid (class in), 99
EllipsoidOnPlaneClip (class in), 99
EllipsoidOnPlaneCut (class in), 99
empty Data, 39
Environment

ESCRIPT HOSTFILE, 28
ESCRIPT NUM NODES, 28
ESCRIPT NUM PROCS, 28
ESCRIPT NUM THREADS, 28
ESCRIPT STDFILES, 28, 29
MPI COMM WORLD, 49
OMP NUM THREADS, 3
PATH, 27, 28

esys.escript (extension module), 35
esys.escript.linearPDEs (extension module),

53
esys.pycad (extension module), 64
esys.pycad.gmsh (extension module), 67
esys.pyvisi (extension module), 93
Exa (data in), 47
exp() (in module esys.escript), 45
explicit scheme, 17

Courant condition, 17

F (data in), 47
Fahrenheit (data in), 47
FEM

elements, 79
isoparametrical, 79
mesh, 79

Femto (data in), 48
FileWriter (class in), 48
finite element method, 2, 3

element, 3
FEM, 2
mesh, 3
nodes, 2

finley
Hex20, 81, 88
Hex20Face, 81, 88
Hex20Face Contact, 81
Hex8, 81, 88
Hex8Face, 81, 88
Hex8Face Contact, 81
Line2, 79, 81, 87
Line2 Contact, 80, 81
Line2Face, 81
Line2Face Contact, 81
Line3, 81, 87
Line3 Contact, 81
Line3Face, 81
Line3Face Contact, 81
Point1, 81
Point1 Contact, 81
Rec4, 80, 81, 87, 88
Rec4 Contact, 81
Rec4Face, 81, 88
Rec4Face Contact, 81
Rec8, 81, 87, 88
Rec8 Contact, 81
Rec8Face, 81, 88
Rec8Face Contact, 81
Rec9, 81
Rec9Face, 81
Rec9Face Contact, 81
Tet10, 81
Tet10Face, 81
Tet10Face Contact, 81
Tet4, 81
Tet4Face, 81
Tet4Face Contact, 81
Tri3, 79–81
Tri3Face, 80, 81
Tri3Face Contact, 81
Tri6, 81
Tri6 Contact, 81
Tri6Face, 81
Tri6Face Contact, 81
Tri9, 81
Tri9 Contact, 81

finley (extension module), 79
flush() (FileWriter method), 48
flux, 54
force, internal, 69
Function() (in module esys.escript), 37
FunctionOnBoundary() (in module esys.escript),

37
FunctionOnContactOne() (in module

esys.escript), 37
FunctionOnContactZero() (in module

esys.escript), 37

120 Index

FunctionSpace (class in esys.escript), 36

Gauss-Seidel Scheme, 58
GAUSS SEIDEL (SolverOptions attribute), 60
generalized minimal residual method

GMRES, 70
generateContours() (ContourModule method),

107
getAbsoluteTolerance() (SolverOptions

method), 58
getAbsoluteTolerance() (StokesProblem-

Cartesian method), 71
getCoarsening() (SolverOptions method), 57
getCoarseningThreshold() (SolverOptions

method), 57
getCoefficient() (LinearPDE method), 53
getCommandString() (Design method), 68
getDeviatoricStrain() (Incompress-

ibleIsotropicFlowCartesian method), 76
getDeviatoricStress() (Incompress-

ibleIsotropicFlowCartesian method), 76
getDiagnostics() (SolverOptions method), 56
getDim() (Design method), 67
getDim() (Domain method), 35
getDim() (FunctionSpace method), 36
getDim() (LinearPDE method), 54
getDim() (PropertySet method), 67
getDomain() (Data method), 39
getDomain() (FunctionSpace method), 37
getDomain() (IncompressibleIsotropicFlowCarte-

sian method), 76
getDomain() (LinearPDE method), 54
getDropStorage() (SolverOptions method), 58
getDropTolerance() (SolverOptions method), 58
getElemenofDistribution() (Arc method), 65
getElemenofDistribution() (BSpline

method), 65
getElemenofDistribution() (BezierCurve

method), 65
getElemenofDistribution() (Line method),

64
getElemenofDistribution() (Spline method),

65
getElementOrder() (Design method), 67
getElementSize() (Design method), 67
getEscriptParamInt() (in module), 49
getFlux() (LinearPDE method), 54
getFunctionSpace() (Data method), 39
getFunctionSpaceForCoefficient() (Lin-

earPDE method), 53
getGammaDot() (IncompressibleIsotropicFlow-

Cartesian method), 76
getInnerIterMax() (SolverOptions method), 59
getInnerTolerance() (SolverOptions method),

58
getItems() (Design method), 68
getItems() (PropertySet method), 67
getIterMax() (SolverOptions method), 57

getLevelMax() (SolverOptions method), 57
getManifoldClass() (PropertySet method), 67
getMeshFileName() (Design method), 68
getMeshHandler() (Design method), 68
getMinCoarseMatrixSize() (SolverOptions

method), 57
getMPIRank() (Domain method), 36
getMPIRankWorld() (in module), 49
getMPISize() (Domain method), 36
getMPISizeWorld() (in module), 49
getMPIWorldMax() (in module), 49
getName() (PropertySet method), 67
getName() (SolverOptions method), 56
getNormal() (Domain method), 36
getNormal() (FunctionSpace method), 36
getNumEquations() (LinearPDE method), 54
getNumPostSweeps() (SolverOptions method), 58
getNumPreSweeps() (SolverOptions method), 58
getNumSolutions() (LinearPDE method), 54
getNumSweeps() (SolverOptions method), 58
getOperator() (LinearPDE method), 54
getPackage() (SolverOptions method), 56
getPreconditioner() (SolverOptions method),

56
getPressure() (IncompressibleIsotropicFlow-

Cartesian method), 76
getRank() (Data method), 39
getRelaxationFactor() (SolverOptions

method), 58
getReordering() (SolverOptions method), 57
getRestart() (SolverOptions method), 57
getRightHandSide() (LinearPDE method), 54
getScriptFileName() (Design method), 68
getScriptString() (Design method), 68
getShape() (Data method), 39
getShapeOfCoefficient() (LinearPDE

method), 53
getSize() (Domain method), 36
getSize() (FunctionSpace method), 36
getSolution() (LinearPDE method), 54
getSolverMethod() (SolverOptions method), 56
getSolverOptions() (LinearPDE method), 53
getSolverOptionsDiv() (StokesProblemCarte-

sian method), 71
getSolverOptionsFlux() (DarcyFlow method),

73
getSolverOptionsPressure() (DarcyFlow

method), 73
getSolverOptionsPressure() (StokesProb-

lemCartesian method), 71
getSolverOptionsVelocity() (StokesProb-

lemCartesian method), 71
getStress() (IncompressibleIsotropicFlowCarte-

sian method), 76
getSummary() (SolverOptions method), 56
getSystem() (LinearPDE method), 54
getTag() (Domain method), 36
getTag() (PropertySet method), 67

Index 121

getTagMap() (Design method), 68
getTau() (IncompressibleIsotropicFlowCartesian

method), 76
getTime() (IncompressibleIsotropicFlowCartesian

method), 76
getTolerance() (SolverOptions method), 58
getTolerance() (StokesProblemCartesian

method), 71
getTruncation() (SolverOptions method), 57
getVelocity() (IncompressibleIsotropicFlow-

Cartesian method), 76
getX() (Domain method), 35
getX() (FunctionSpace method), 36
Giga (data in), 47
GlobalPosition (class in), 106
GlueFaces() (in module), 88
GMRES, 57, 60
GMRES (SolverOptions attribute), 60
Gmsh, 63
gnuplot, 18
grad() (in module esys.escript), 44
gram (data in), 47

h (data in), 46
hasConverged() (SolverOptions method), 57
Hecto (data in), 48
Helmholtz (class in esys.escript.linearPDEs), 55
Helmholtz equation, 8, 10
Hz (data in), 47

identityTensor() (in module esys.escript), 40
identityTensor4() (in module esys.escript), 40
ILU0, 60
ILU0 (SolverOptions attribute), 60
ILUT, 58
ILUT (SolverOptions attribute), 60
Image (class in), 103
imageList() (Movie method), 105
imageRange() (Movie method), 105
ImageReader (class in), 95
implicit scheme, 17
incompressible fluid, 69
IncompressibleIsotropicFlowCartesian

(class in), 76
inf() (in module esys.escript), 41
initialize() (StokesProblemCartesian method),

70
inner() (in module esys.escript), 42
integrate() (in module esys.escript), 44
integration order, 87, 88
interpolate() (in module esys.escript), 44
inverse() (in module esys.escript), 41
isEmpty() (Data method), 39
isEmpty() (Operator method), 45
isometricView() (Camera method), 94
isSymmetric() (LinearPDE method), 54
isSymmetric() (SolverOptions method), 58
isUsingLumping() (LinearPDE method), 54
isValidTagName() (Domain method), 36

isVerbose() (SolverOptions method), 59
ITERATIVE (SolverOptions attribute), 59

J (data in), 47
JACOBI (SolverOptions attribute), 60
Jacobi, 58, 59
JoinFaces() (in module), 88
jump() (in module esys.escript), 44

K (data in), 47
keepFiles() (Design method), 68
kg (data in), 47
Kilo (data in), 48
km (data in), 46
kronecker() (in module esys.escript), 40
Kronecker symbol, 10, 14

L2() (in module esys.escript), 44
Lame (class in esys.escript.linearPDEs), 55
Lame coefficients, 14
Lame equation, 20
Laplace operator, 1, 2
lb (data in), 47
leftView() (Camera method), 94
Legend (class in), 103
length() (in module esys.escript), 41
Light (class in), 94
Line (class in esys.pycad), 64
linear solver

AMG, 53, 57, 58, 61
BiCGStab, 59, 87
Gauss-Seidel, 58
GMRES, 57, 60
lumping, 54, 60
minimum fill-in ordering, 87
MINRES, 60
nested dissection ordering, 87
PCG, 53, 59, 60, 72, 87
TFQMR, 60

LinearPDE (class in esys.escript.linearPDEs), 53
listEscriptParams() (in module), 49
load() (in module), 87
load() (in module esys.escript), 39
LocalPosition (class in), 106
log() (in module esys.escript), 45
log10() (in module esys.escript), 45
Logo (class in), 104
Lsup() (in module esys.escript), 41
LUMPING (SolverOptions attribute), 60
lumping, 54, 60

m (data in), 46
makeMovie() (Movie method), 105
Map (class in), 96
MapOnPlaneClip (class in), 97
MapOnPlaneCut (class in), 97
MapOnScalarClip (class in), 97
MapOnScalarClipWithRotation (class in), 97
matplotlib, 5–7, 19

122 Index

Matrix Market, 46
matrix mult() (in module esys.escript), 42
matrix transposed mult() (in module

esys.escript), 43
maximum() (in module esys.escript), 42
maxval() (in module esys.escript), 41
mayavi, 5, 8, 24
Mega (data in), 48
Message Passing Interface

MPI, 7, 27–29, 35, 36, 48, 49
Micro (data in), 48
Milli (data in), 48
minimum() (in module esys.escript), 42
minimum fill-in ordering, 87
MINIMUM FILL IN (SolverOptions attribute), 60
MINRES, 60
MINRES (SolverOptions attribute), 60
minute (data in), 46
minval() (in module esys.escript), 41
MKL, 59, 87
MKL (SolverOptions attribute), 59
mm (data in), 46
mode (FileWriter attribute), 49
momentum equation, 20
Movie (class in), 104
MPIBarrier() (Domain method), 36
MPIBarrierWorld() (in module), 49

N (data in), 47
name (FileWriter attribute), 49
Nano (data in), 48
natural boundary conditions

homogeneous, 80
inhomogeneous, 80

nested dissection, 87
NESTED DISSECTION (SolverOptions attribute), 61
netCDF, 35
NETGEN (Design attribute), 68
Neumann boundary condition

homogeneous, 2, 4
newlines (FileWriter attribute), 49
Newton-Raphson scheme, 75
NO PRECONDITIONER (SolverOptions attribute), 61
NO REORDERING (SolverOptions attribute), 60
node

reference number, 79
nonsymmetric() (in module esys.escript), 41

of() (Operator method), 46
Ohm (data in), 47
onMasterProcessor)() (Domain method), 36
OpenDX, 40
OpenMP, 79

threading, 27, 28
Operator (class in esys.escript), 45
outer() (in module esys.escript), 43
outer normal field, 9

Pa (data in), 47

packages
MKL, 59, 87
PASO, 59, 87
UMFPACK, 59, 87

partial derivative, 2
partial differential equation, 1, 31, 37

PDE, 1, 3
partial differential equations, 79
PASO, 59, 87
PASO (SolverOptions attribute), 59
PASTIX (SolverOptions attribute), 61
PCG, 53, 59, 60, 72, 87
PCG (SolverOptions attribute), 60
periodic boundary conditions, 88
Peta (data in), 47
Pico (data in), 48
PlaneSurface (class in esys.pycad), 65
Point (class in esys.pycad), 64
Poisson, 53
Poisson (class in esys.escript.linearPDEs), 55
Poisson equation, 1–3
pounds, 46
preconditioned conjugate gradient method

PCG, 70
preconditioner

Gauss-Seidel, 58
ILU0, 60
ILUT, 58
Jacobi, 58, 59
RILU, 58

PRES20 (SolverOptions attribute), 60
PropertySet (class in esys.pycad), 66, 67

randomOn() (MaskPoints method), 109
rank, 39
ReadMesh() (in module), 87
REC ILU (SolverOptions attribute), 60
Rectangle() (in module), 87
Rectangle (class in), 103
ReducedSolution() (in module esys.escript), 37
Reflection (class in esys.pycad), 66
render() (Scene method), 94
resetDiagnostics() (SolverOptions method), 56
resetElementDistribution() (Arc method),

65
resetElementDistribution() (BSpline

method), 65
resetElementDistribution() (BezierCurve

method), 65
resetElementDistribution() (Line method),

64
resetElementDistribution() (Spline

method), 64
rightView() (Camera method), 94
RILU, 58
RILU (SolverOptions attribute), 60
Rotatation (class in esys.pycad), 66
rotateX() (Transform method), 108

Index 123

rotateY() (Transform method), 109
rotateZ() (Transform method), 109
RUGE STUEBEN COARSENING (SolverOptions at-

tribute), 61
RuledSurface (class in esys.pycad), 66

saddle point problem, 69
saddle point problems, 31
saveDX() (in module esys.escript), 40
saveMM() (Operator method), 46
saveVTK() (in module esys.escript), 40
Scalar() (in module esys.escript), 39
Scene (class in), 94
Schur complement, 70
SciPy, 19
scripts

‘diffusion.py’, 12, 21
‘helmholtz.py’, 11, 71
‘wave.py’, 18

sec (data in), 46
setAbsoluteTolerance() (DarcyFlow method),

73
setAbsoluteTolerance() (SolverOptions

method), 58
setAbsoluteTolerance() (StokesProblem-

Cartesian method), 71
setAcceptanceConvergenceFailureOff()

(SolverOptions method), 59
setAcceptanceConvergenceFailureOn()

(SolverOptions method), 59
setActiveScalar() (DataCollector method), 95
setActiveTensor() (DataCollector method), 95
setActiveVector() (DataCollector method), 95
setAngle() (Light method), 95
setAngle() (Rotation method), 111
setBackground() (Scene method), 94
setCenter() (CubeSource method), 110
setClipValue() (Clipper method), 107
setCoarsening() (SolverOptions method), 57
setCoarseningThreshold() (SolverOptions

method), 57
setColor() (Actor3D method), 106
setColor() (Light method), 94
setColor() (Text2D method), 95
setData() (DataCollector method), 95
setDebugOff() (LinearPDE method), 53
setDebugOn() (LinearPDE method), 53
setDim() (Design method), 67
setDropStorage() (SolverOptions method), 58
setDropTolerance() (SolverOptions method), 58
setDruckerPragerLaw() (Incompress-

ibleIsotropicFlowCartesian method), 76
setElasticShearModulus() (Incompress-

ibleIsotropicFlowCartesian method), 76
setElementDistribution() (Arc method), 65
setElementDistribution() (BSpline method),

65

setElementDistribution() (BezierCurve
method), 65

setElementDistribution() (Line method), 64
setElementDistribution() (Spline method),

64
setElementOrder() (Design method), 67
setElementSize() (Design method), 67
setEscriptParamInt() (in module), 49
setEtaTolerance=() (IncompressibleIsotrop-

icFlowCartesian method), 76
setFileName() (DataCollector method), 95
setFlowTolerance() (IncompressibleIsotrop-

icFlowCartesian method), 76
setFocalPoint() (Camera method), 94
setFocalPoint() (Light method), 95
setFontSize() (Text2D method), 95
setHeight() (ScalarBar method), 110
setImageName() (ImageReader method), 95
setInnerIterMax() (SolverOptions method), 59
setInnerTolerance() (SolverOptions method),

58
setInnerToleranceAdaptionOff()

(SolverOptions method), 59
setInnerToleranceAdaptionOn() (SolverOp-

tions method), 59
setInsideOutOff() (Clipper method), 107
setInsideOutOn() (Clipper method), 107
setIntegrationToBothDirections()

(StreamLineModule method), 108
setIterMax() (SolverOptions method), 57
setKeepFilesOff() (Design method), 68
setKeepFilesOn() (Design method), 68
setLabelColor() (ScalarBar method), 110
setLevelMax() (SolverOptions method), 57
setMaximumPropagationTime() (Stream-

LineModule method), 108
setMaxScaleFactor() (TensorGlyph method),

107
setMeshFileName() (Design method), 68
setMinCoarseMatrixSize() (SolverOptions

method), 57
setName() (PropertySet method), 67
setNumPostSweeps() (SolverOptions method), 58
setNumPreSweeps() (SolverOptions method), 58
setNumSweeps() (SolverOptions method), 58
setOpacity() (Actor3D method), 106
setOptions() (Design method), 68
setOrientationToHorizontal() (ScalarBar

method), 110
setOrientationToVertical() (ScalarBar

method), 110
setOrigin() (PlaneSource method), 107
setPackage() (SolverOptions method), 56
setPhiResolution() (Sphere method), 108
setPlaneToXY() (Transform method), 109
setPlaneToXZ() (Transform method), 109
setPlaneToYZ() (Transform method), 109
setPoint1() (PlaneSource method), 108

124 Index

setPoint2() (PlaneSource method), 108
setPointSourceCenter() (PointSource

method), 108
setPointSourceNumberOfPoints()

(PointSource method), 108
setPointSourceRadius() (PointSource

method), 108
setPosition() (Actor2D method), 106
setPosition() (Camera method), 94
setPosition() (Light method), 95
setPosition() (ScalarBar method), 110
setPowerLaws() (IncompressibleIsotropicFlow-

Cartesian method), 76
setPreconditioner() (SolverOptions method),

56
setRatio() (MaskPoints method), 109
setRecombination() (PlaneSurface method), 65
setRecombination() (RuledSurface method), 66
setReducedOrderOff() (LinearPDE method), 54
setReducedOrderOn() (LinearPDE method), 54
setRelaxationFactor() (SolverOptions

method), 58
setReordering() (SolverOptions method), 57
setRepresentationToWireframe() (Actor3D

method), 106
setResolution() (Rotation method), 111
setRestart() (SolverOptions method), 57
setScalarRange() (DataSetMapper method), 110
setScaleFactor() (Glyph3D method), 107
setScaleFactor() (TensorGlyph method), 107
setScaleFactor() (Warp method), 109
setScaleModeByScalar() (Glyph3D method),

107
setScaleModeByVector() (Glyph3D method),

107
setScriptFileName() (Design method), 68
setSize() (ImageReslice method), 110
setSolverMethod() (SolverOptions method), 56
setSolverOptions() (LinearPDE method), 54
setSymmetryOff() (LinearPDE method), 54
setSymmetryOff() (SolverOptions method), 59
setSymmetryOn() (LinearPDE method), 54
setSymmetryOn() (SolverOptions method), 58
setTaggedValue() (Data method), 40
setTagMap() (Domain method), 36
setTags() (FunctionSpace method), 37
setThetaResolution() (Sphere method), 108
setTitle() (ScalarBar method), 110
setTitleColor() (ScalarBar method), 110
setTolerance() (DarcyFlow method), 73
setTolerance() (IncompressibleIsotropicFlow-

Cartesian method), 76
setTolerance() (SolverOptions method), 58
setTolerance() (StokesProblemCartesian

method), 71
setTransfiniteMeshing() (PlaneSurface

method), 65

setTransfiniteMeshing() (RuledSurface
method), 66

setTruncation() (SolverOptions method), 57
setTubeRadius() (Tube method), 109
setTubeRadiusToVaryByScalar() (Tube

method), 109
setTubeRadiusToVaryByVector() (Tube

method), 109
setValue() (DarcyFlow method), 73
setValue() (Helmholtz method), 55
setValue() (Lame method), 55
setValue() (LinearPDE method), 53
setValue() (Operator method), 45
setValue() (Poisson method), 55
setVerbosityOff() (SolverOptions method), 59
setVerbosityOn() (SolverOptions method), 59
setWidth() (ScalarBar method), 110
setX() (Domain method), 35
setXLength() (CubeSource method), 110
setYLength() (CubeSource method), 110
setZLength() (CubeSource method), 111
shape, 4, 32, 33, 35, 38, 39
SI units, 46
sign() (in module esys.escript), 45
sin() (in module esys.escript), 44
sinh() (in module esys.escript), 44
slicing, 38
Solution() (in module esys.escript), 37
solution, 17, 37, 55

reduced, 37
solve() (DarcyFlow method), 74
solve() (StokesProblemCartesian method), 70
SolverOptions (class in), 55
solves() (Operator method), 45
Spline (class in esys.pycad), 64
sqrt() (in module esys.escript), 45
SSOR (SolverOptions attribute), 60
Stokes problem, 69, 70
StokesProblemCartesian (class in), 70
StreamLine (class in), 101
stress, 14
stress, initial, 69
summation convention, 2, 9
sup() (in module esys.escript), 41
SUPER LU (SolverOptions attribute), 61
SurfaceLoop (class in esys.pycad), 66
swap axes() (in module esys.escript), 41
symmetric() (in module esys.escript), 41
symmetric PDE, 11, 21
symmetrical, 52

tag, 67
tan() (in module esys.escript), 44
tanh() (in module esys.escript), 45
Tensor() (in module esys.escript), 39
Tensor3() (in module esys.escript), 39
Tensor4() (in module esys.escript), 39
tensor mult() (in module esys.escript), 43

Index 125

tensor transposed mult() (in module
esys.escript), 43

Tera (data in), 47
TETGEN (Design attribute), 68
Text2D (class in), 95
TFQMR, 60
TFQMR (SolverOptions attribute), 60
time integration

explicit, 17
implicit, 17

ton (data in), 47
topView() (Camera method), 94
trace() (in module esys.escript), 41
translate() (Transform method), 108
Translation (class in esys.pycad), 66
transpose() (in module esys.escript), 41
transposed matrix mult() (in module

esys.escript), 43
transposed tensor mult() (in module

esys.escript), 43
TRILINOS (SolverOptions attribute), 61

UMFPACK, 59, 87
UMFPACK (SolverOptions attribute), 59
unitVector() (in module esys.escript), 40
update() (IncompressibleIsotropicFlowCartesian

method), 76
Uzawa scheme, 69

V (data in), 47
Vector() (in module esys.escript), 39
Velocity (class in), 97
velocity, 69
VelocityOnPlaneClip (class in), 99
VelocityOnPlaneCut (class in), 98
Verlet scheme, 15
VisIt, 5, 7
visualization

gnuplot, 18
matplotlib, 5–7, 19
mayavi, 5, 8, 24
OpenDX, 40
VisIt, 5, 7
VTK, 5, 7, 13, 21, 40, 93

Volume (class in esys.pycad), 66
von–Mises stress, 21
VTK, 5, 7, 13, 21, 40, 93

W (data in), 47
wave equation, 13
whereNegative() (in module esys.escript), 45
whereNonNegative() (in module esys.escript), 45
whereNonPositive() (in module esys.escript), 45
whereNonZero() (in module esys.escript), 45
wherePositive() (in module esys.escript), 45
whereZero() (in module esys.escript), 45
write() (FileWriter method), 48
writelines() (FileWriter method), 49

YAIR SHAPIRA COARSENING (SolverOptions at-
tribute), 61

yield condition, 74
Yocto (data in), 48
Yotta (data in), 47
yr (data in), 46

Zepto (data in), 48
Zetta (data in), 47

126 Index

BIBLIOGRAPHY

[1] Right-hand rule.

[2] Mayavi2: The next generation scientific data visualization, 2009.

[3] A. Amirberkyan and L. Gross. Efficient solvers for incompressible fluid flows in geosciences. ANZIAM
Journal, 50:C189–C203, 2008.

[4] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–
137, 2005.

[5] P. G. Ciarlet and J. L. Lions. Handbook of Numerical Analysis, volume 2. North Holland, Amsterdam, 1991.

[6] Scipy Community. Numpy and Scipy Documentation.

[7] The Scipy community. Numpy and Scipy Documentation.

[8] Howard Elman David Kay David Silvester and Andrew Wathen. Efficient preconditioning of the linearized
navier-stokes equations. Journal of Computational and Applied Mathematics, (128):261–279, 2001.

[9] Tim Edwards. Netgen 1.4.

[10] Christophe Geuzaine and Jean-Francois Remacle. Gmsh Reference Manual, 1.12 edition, Aug 2003.

[11] V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations- Theory and Algorithms.
Springer Verlag, Berlin, 1986.

[12] John Hunter, Michael Droettboom, and Darren Dale. matplotlib, July 2009.

[13] Intel’s math kernel library.

[14] MPI. http://www.mpi-forum.org.

[15] Hans-Bernd; Regenauer-Lieb Klaus Muhlhaus. Towards a self-consistent plate mantle model that includes
elasticity: simple benchmarks and application to basic modes of convection. Geophysical Journal Interna-
tional, 163(2):788–800(13), November 2005.

[16] netCDF. http://www.unidata.ucar.edu/software/netcdf.

[17] OpenDX. http://www.opendx.org/.

[18] OpenMP. http://openmp.org.

[19] A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov. Least-squares mixed finite elements for second-order
elliptic problems. SIAM Journal on Numerical Analysis, 31(5):1368–1377, October 1994.

[20] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 20 Park Plaza, Boston,
MA 02116, USA, 1996.

[21] Y. Shapira. Matrix-Based Multigrid. Springer, 2008.

127

[22] Hang Si. TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator,
Jan 2008.

[23] http://www.cise.ufl.edu/research/sparse/umfpack/.

[24] VisIt. https://wci.llnl.gov/codes/visit/home.html.

[25] R. Weiss. Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie Verlag,
Berlin, 1996.

[26] Thomas Williams and Colin Kelley. gnuplot homepage, March 2009.

[27] B. Suchomel Y. Saad. Arms: an algebraic recursive multilevel solver for general sparse linear systems.
Numerical Linear Algebra with Applications, 9(5):1099–1506, 2002.

[28] O. C. Zienkiewicz. The Finite Element Method in Engineering Science. McGraw-Hill, London, second
edition, 1971.

128 Bibliography

