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Abstract—Self-Excited Induction Generators (SEIGs) are 

increasingly used, in the distribution networks, as a key segment 

in the wind generation as Small Scale Embedded Generation 

(SSEG). The operation stability of stand-alone SEIG is 

constrained by the local load conditions, and that can be achieved 
by maintaining the load’s active and reactive power at optimal 

values [1]. The changes in power are dependent on customers’ 

demand and any deviation from the pre-calculated optimum 

setting may affect the machine’s operating voltage and frequency. 

In this paper, the Electrochemical Battery is used as an Energy 
Storage System (ESS) to play the kernel role in regulating the 

voltage magnitude and frequency for stand-alone SEIG during 

load changes, where a Controlled Current Source is used to 

charge and discharge the battery. 

Keywords--Energy storage systems, islanded operation, 
renewable resources, self-excited induction generator. 

 

I.  INTRODUCTION 

Among the different types of the generators used in the 

applications of the wind energy, the self-excited induction 

generator (SEIG) became the key segment in Small Scale 

Embedded Generation (SSEG). It could be the better option for 

low/medium speed applications in the future and specially in  

wind energy systems (WESs) [2]. This is due to its low cost, 

simple construction, low maintenance requirements. As the 

induction generator doesn’t have a separate field winding, a 

capacitor bank is required to build up the terminal voltage. The 

main difficulty of SEIG is the lack of ability to control the 

machine terminal voltage and frequency under un-predicted 

load and speed conditions. Many research have dealt with the 

topics of the characteristics of the isolated self-excited  

operation of the induction generators [3] - [5], wind generation 

stability [6]- [8], and the islanded operation of the SEIG under 

random settings of local active and reactive load [9], [10]. 

Other studies focused on compensating the variations of the 

customer loads [11] - [13]. In other interesting literatures, 

different electronic converter topologies and control 

architectures have been studied to maintain the stable operation 

of the standalone SEIG [14], [15]. This work is an 

improvement of the study [1], which has illustrated that the 

voltage magnitude and frequency of stand-alone SEIG can be 

maintained within their statutory limits, if the locally  

connected load is kept constant as a percentage ratio of the IG 

rating. These optimal ratios are 84.73% for the active power, 

and 50.81% for the reactive power. The objective of this paper 

is to design a control circuit able to keep the power drawn from 

the induction generator at the pre-calculated optimal values, 

during the variation of the customer load demand. To achieve 

this goal, a Matlab/Simulik Model has been built, presenting 

both of the power circuit, including induction generator, main  

grid, local load, ESS that is fed by a bidirectional converter, 

and the control circuit, including the controlled current source 

and the control scheme required for the desired operation. 

 

II. SEIG UNDER OPTIMAL OPERATION 

Figure 1 shows a Simulink model for (2.3 KVA) SEIG 

connected to a main grid via a circuit breaker (CB). A three 

phase capacitor bank is connected in parallel to the generator 

stator terminals, providing a reactive power of (1.1686 KVAr) 

to present the optimal reactive power required to balance the 

local grid. An active load of (1.9488 KW) is shunt connected 

to this grid to present the optimal active power consumed by 

the local customers.  

The circuit breaker should be closed at first, insuring the 

machine magnetic field to be built up. Figure 2 shows that the 

voltage magnitude and frequency are within their permissible 

values [16], when the local grid is disconnected from the main  

grid during the time interval (1 – 9) Sec, keeping the optimal 

load to be fed only from the stand-alone SEIG. 

 

 
Fig. 1.  SEIG in optimal load operation 
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Fig. 2.  Voltage and frequency in optimal load operation 

 

III. CONTROL AND WORKING PRINCIPLE 

At the instant of disconnecting the main grid; the local active 

and reactive power should be maintained at their optimal 

values:  
𝑃𝑂 = 0.8473 × 𝑆𝐺                                              (1) 

 𝑄𝑂 = 0.5081 × 𝑆𝐺                                         (2) 
Where: SG is the Induction Generator rating (VA). 

The difference between the optimal and the load active power 

is measured and sent to drive the Controlled Current Source, 

which is in turn, will absorb/inject the same amount of power 

from/into the grid in order to charge/discharge the battery. 

Meanwhile, the battery SoC is sensed and the logic controller 

for the control principle is shown in Figure 3.A, where: 
 If the difference in power (𝑑𝑃 = 𝑃𝑂𝑝𝑡𝑖𝑚𝑎𝑙 − 𝑃𝐿𝑜𝑎𝑑 ) is 

positive, (𝑃𝐿𝑜𝑎𝑑 < 𝑃𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ), and if the battery (SoC) is 

less than its maximum level, a switch (S1) only will close 

charging the battery until the (SoC) reaches its maximu m 

value, then (S1) will open and a switch (S2) only will be 

closed to dissipate the power into the dummy load. 

 If the difference in power (𝑑𝑃 = 𝑃𝑂𝑝𝑡𝑖𝑚𝑎𝑙 − 𝑃𝐿𝑜𝑎𝑑 ) is 

negative, (𝑃𝐿𝑜𝑎𝑑 > 𝑃𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ), and if the battery (SoC) is 

greater than its minimum limit of depth of discharge, the 

switch (S1) only will close discharging the battery until the 

(SoC) reaches its minimum limit, then (S1) will open and a 

switch (S3) only will be closed to supply the load from an 

ancillary source. 

Three DC current paths are required to achieve the above 

described principle, for charging/discharging the battery, 

dissipating the power in a dummy load and supplying the 

power from an ancillary source. Figure 3.B shows the DC side 

requirement for this operation principle, where the three 

circuits in addition to the Controlled Current Source are 

presented. The reactive power is also regulated during this 

operation because of using voltage magnitude regulator to 

drive the gates of the voltage controlled voltage source 

converter based on PWM scheme [17] [18]. 

 
Fig. 3.  A) The logic controller,  B) The DC side circuits to ensure stable 

operation 

 

IV. SYSTEM SIMULATION 

A Matlab/Simulink model is built to simulate the above 

described circuit and to carry out the required study. The 

induction generator ratings and parameters are chosen to be: 

 𝑆𝐺 = 2.3 𝐾𝑉𝐴, 𝑉𝐿𝐿
= 230 𝑉,𝑓 = 50 𝐻𝑧 , 

 𝑅𝑠 = 1.115 Ω,    𝑅𝑟 = 1.083 Ω, 
 𝐿𝑠 = 𝐿𝑟 = 0.00597 H, 𝐿𝑚 = 0.2037 H, 
   𝐽 = 2 × 10−4 kg. m2 

The load active power is set to be equal to the optimal value: 

𝑃𝑂 = 0.8473 × 𝑆𝐺 = 0.8473 × 2300 = 1948.8 𝑊 

And the optimal reactive power is: 

𝑄𝑂 = 0.5081 × 𝑆𝐺 = 0.5081 × 2300 = 1168.6 𝑉𝐴𝑟 

The maximum permissible limit for the battery state of 

charge (SoC) is chosen to be (95%), and its limit of depth of 

discharge is set at (20%).  

Three scenarios have been studied, assuming an increase of 

load active power, decrease of load active power and finally an 

increase in both load active and reactive power. 

A. Increase of load active power 
The first scenario is to increase the load active power by 

three steps; each is by 10% of the optimal value, assuming no 

reactive power changes, as shown in figure 4. The main grid  

will disconnect at the time (t=1 sec) to reconnect again at (t=21 

Sec). The first step of the additional load will take place at (t=3 

Sec), and will be followed by the two other increases with time 

intervals of three seconds, to start to decrease later by the same 

time rate at (t=12 Sec). At (t=18 Sec), the load will reach again 



 
 

its optimal value. The battery (SoC) is set to be slightly higher 

than (20%) which is the minimum limit of depth of discharge. 

Figure 5 shows that the voltage and the frequency are within  

their permissible values during these changes, and figure 6 

shows that both active and reactive of the self-excited 

induction generator load remains constant during this load 

changes at the optimal values of equations (1) and (2). Figure 

7 shows that the battery stopped discharging when the SoC 

reached its minimum rate of depth of discharge (20%), and the 

control circuit will feed the load from the ancillary energy 

source. The currents from the battery and from the ancillary  

source are shown in figure 8. 

 
Fig. 4.  Increase of load active power 

 
Fig. 5.  Voltage and frequency during the increase of the load active power 

 
Fig. 6.  The active and reactive power from the SEIG 

 
Fig. 7.  Battery State of Charge during the increase of load active power 

 

 
Fig. 8.  DC Side Currents during the increase of load active power 

 

B. Decrease of load active power 

In this scenario, the load active power decreases by three 

steps, each is by 10%, with no change in load reactive power, 

as shown in figure 9. The battery (SoC) is set to be slightly 

lower than 95% which is assumed to be the maximum charging 

rate. The voltage magnitude and frequency for this case is 

shown in figure 10. Figure 11 shows that the active and reactive 

power drawn from the IG remain at their optimal values.The 

battery charging process will stop when the battery (SoC) 

reaches its maximum desired value (95%), as shown in figure 

12, and the control circuit will dissipate the difference in power 

into the dummy load, as shown in the figure 13. 



 
 

Fig. 9.  Decrease of load active power 

Fig. 10.  Voltage and frequency during the decrease of load active power 

 
Fig. 11.  Active and reactive power from the SEIG 

 
Fig. 12.  Battery State of Charge during the decrease of load active power 

 
Fig. 13.  DC Side Currents during the decrease of load active power 

C. Increase of load active and reactive power 

In this scenario, both active and reactive power increase by 

three steps of 10%. The time intervals and rates in this case are 

the same as the previous two cases. Figure 14 shows the change 

in load active and reactive power, where the voltage and the 

frequency are shown in the figure 15. 

 

 
Fig. 14.  Increasing of load active and reactive power 

 
Fig. 15.  Voltage and frequency in case of increasing P and Q 



 
 

V. CONCLUSION 

The study presented in this paper illustrates the possibility 

for islanding operation of SSEG base on SEIG supported by 

ESS. The study showed a control principle to keep the drawn 

active and reactive power at their optimal values. The 

difference between the load power and the optimal values is 

calculated and a Controlled Current Source is used to 

absorb/inject this difference with the DC side of bidirectional 

power converter to ensure the stability of operation, charging 

and discharging a battery system. The battery state of charge is 

always sensed, and the charging/discharging process will stop 

when it reaches the predetermined maximum and min imum 

levels, respectively. A local dummy load and ancillary stand-

by emergency generator are used to dissipate and inject the 

required power in either of these cases, respectively. a 

Matlab/Simulink model is built to achieve the described 

principle, and the results show that the voltage magnitude and 

frequency are within their permissible values for all the 

simulated scenarios . 
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