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Seagrasses play an important role as ecosystem engineers; they provide shelter to many

animals and improve water quality by filtering out nutrients and by controlling pathogens.

Moreover, their rhizosphere promotes a myriad of microbial interactions and processes,

which are dominated by microorganisms involved in the sulfur cycle. This study

provides a detailed insight into the metabolic sulfur pathways in the rhizobiome of the

seagrass Zostera marina, a dominant seagrass species across the temperate northern

hemisphere. Shotgun metagenomic sequencing revealed the relative dominance of

Gamma- and Deltaproteobacteria, and comparative analysis of sulfur genes identified a

higher abundance of genes related to sulfur oxidation than sulfate reduction. We retrieved

four high-quality draft genomes that are closely related to the gill symbiont of the clam

Solemya velum, which suggests the presence of putative free-living forms of symbiotic

bacteria. These are potentially highly versatile chemolithoautotrophic bacteria, able to

alternate their metabolism between parallel pathways of sulfide oxidation (via sqr and

fcc), nitrate reduction (denitrification or DNRA) and carbon fixation (via CBB or TCA cycle),

depending on the environmental availability of sulfide. Our results support the hypothesis

that seagrass meadows might function as a source of symbionts for invertebrates that

inhabit within or around seagrass meadows. While providing ideal conditions for the

proliferation of these free-living forms of symbionts, seagrasses would benefit from their

genetic versatility, which contributes to sulfide detoxification and ammonium production,

the seagrasses’ preferred nitrogen source.
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INTRODUCTION

Global carbon and sulfur biogeochemical cycles are tightly
coupled in marine sediments, mostly through sulfate reduction,
which is responsible for approximately 50% of the organic carbon
remineralization in anoxic coastal shelf sediments (Jørgensen,
1982). Although marine sediments in general harbor active
biogeochemical cycles, these seem to be further boosted in
seagrass-vegetated areas (Devereux, 2005). The rhizosphere of
seagrasses is a thin layer of sediment surrounding the roots,
which is highly enriched with dissolved organic matter (OM),
mostly originated from photosynthetic products that are released
through the roots (Holmer and Nielsen, 1997; Pérez et al., 2007).
These root exudates create microniches that are distributed
along the rhizosphere according to the availability of the most
energetically favorable terminal electron acceptors for microbial
respiration (Capone and Kiene, 1988; Devereux, 2005), creating
hotspots of microbial activity (Holmer and Nielsen, 1997;
Blaabjerg and Finster, 1998; Donnelly and Herbert, 1999). The
high abundance of sulfate in seawater (Capone and Kiene, 1988)
coupled with OM enrichment in the rhizosphere, enhance the
activity of sulfate reducing bacteria (SRB, Holmer and Nielsen,
1997; Blaabjerg and Finster, 1998; Donnelly and Herbert, 1999).
This results in the production of high levels of sulfide, which pose
a strong threat to seagrass health and survival (Borum et al., 2005;
Pérez et al., 2007). Detoxification of sulfide in the rhizosphere
occurs by different chemical and biological processes. Chemical
oxidation can occur by oxygen released from the seagrass roots
during photosynthesis (Jørgensen andNelson, 2004; Borum et al.,
2005; Frederiksen and Glud, 2006; Holmer et al., 2006), or by
binding to iron resulting in iron sulfide and pyrite (Jørgensen
and Nelson, 2004). Although the majority of studies focus on the
chemical oxidation of sulfide, its biological oxidation by sulfide-
oxidizing bacteria (SOB) also plays an important role in coastal
marine sediments (Jørgensen and Nelson, 2004; Frigaard and
Dahl, 2008).

The microbial communities established in the root and
rhizosphere of seagrasses are mainly dominated by members of
the classes Alpha-, Delta-, Epsilon-, and Gammaproteobacteria,
as well as Bacteroidia (Cifuentes et al., 2000; Jensen et al., 2007;
Green-García and Engel, 2012; Cúcio et al., 2016; Mejia et al.,
2016; Fahimipour et al., 2017). The most abundant bacteria
identified on the root and rhizosphere have been related to sulfate
reduction and sulfur oxidation (Cifuentes et al., 2000; Crump
and Koch, 2008; Cúcio et al., 2016; Fahimipour et al., 2017), and
their importance has been linked to nitrogen fixation and sulfide
detoxification (Donnelly andHerbert, 1999; Cifuentes et al., 2000;
Cúcio et al., 2016). Cifuentes et al. (2000) detected 16S rRNA
genes of sulfur-oxidizing Gammaproteobacteria closely related
to marine endosymbionts in sediments colonized by Zostera
noltii, which highlights the potential for an intimate relationship
between seagrasses and the bacteria in their rhizosphere. Several
reports suggest that seagrass-inhabited sediments harbor hosts
of sulfur-oxidizing and sulfate-reducing endosymbionts, such as
bivalves (Gros et al., 2003; Van der Heide et al., 2012; Dmytrenko
et al., 2014; König et al., 2016) and marine oligochaetes (Dubilier
et al., 2001; Blazejak et al., 2005), as well as some free-living

forms of these symbionts (e.g., Gros et al., 2003; König et al.,
2016).

Zostera marina, also known as eelgrass, is the most
widespread seagrass species in the world (Green and Short,
2003). It is found in subtidal areas up to 15 meters
depth (Borum and Greve, 2004) along temperate coasts
(Green and Short, 2003) throughout the northern hemisphere.
Eelgrasses, as seagrasses in general, are ecosystem engineers.
They provide valuable ecosystem services, such as a habitat,
refuge and nursery ground for many animals, improve
water quality through sediment and organic matter retention,
and by filtering out nutrients and contaminants (Gacia
et al., 1999; Short et al., 2000). Recently it was shown that
seagrasses might even control the abundance of potential
pathogens of marine animals and humans (Lamb et al.,
2017).

In a previous study in which we used 16S rRNA gene
sequencing, we found that bacteria involved in the sulfur
cycle are abundant in the rhizosphere of different European
seagrass species (Cúcio et al., 2016). Although the importance
of biogeochemical sulfur cycling in coastal marine sediments
has been widely studied, to our knowledge, no information
is available about the molecular pathways involved in sulfate
reduction and sulfide oxidation in the seagrass rhizosphere. In
the present study, we investigated the diversity, structure and
gene content of bacterial communities involved in dissimilatory
sulfur cycling in the rhizosphere of Zostera marina, and
hypothesized that the rhizosphere harbors a diverse community
of bacteria involved in the sulfur cycle, which is enriched
in sulfide oxidizers over sulfate reducers. Furthermore, we
reconstructed and characterized four gammaproteobacterial
draft genomes. Shotgun metagenomic sequencing allowed us to
investigate for the first time in detail the molecular pathways
involved in sulfate reduction and sulfide oxidation in the
rhizosphere.

MATERIALS AND METHODS

Sample Collection and Preparation
The rhizosphere of the seagrass Zostera marina was sampled at
Culatra Island (ZmPt-Faro, Portugal, 36◦59′56.0′′ N 7◦49′31.7′′

W) and Pointe de Cléguer (ZmFr-Roscoff, France, 48◦43′37.1′′

N 3◦58′35.9′′ W), in 2013 as described and used in Cúcio
et al. (2016). Briefly, sampling consisted of randomly collecting
cores (15 cm diameter) of Z. marina (n = 5), from which 4–6
shoots were carefully separated and shaken to remove loose
sediment. The rhizosphere was retrieved by washing the roots
in 0.2 µm-filtered seawater, and was subsequently transported
to the laboratory in cool boxes. Upon arrival in the laboratory,
meiofauna and plant detritus were removed whenever present,
and samples were treated in a homogenizer (Stomacher 80
Laboratory Blender, Seward Medical) to loosen the bacteria from
the sediment particles. After 3 homogenizing cycles of 1min
at normal speed, the supernatant was centrifuged for 30min at
10,000 g (Costa et al., 2006), and the resulting pellet was used for
DNA extractions.
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Metagenomic Sequencing
Extraction of genomic DNA from the rhizosphere bacteria
was performed using the PowerSoil DNA Isolation Kit (MO
BIO Laboratories, Inc., Carlsbad, CA, USA), according to
manufacturer’s instructions. Part of the DNA resulting from this
extraction was used in our previous publication as 5 individual
replicates per location (Cúcio et al., 2016), and due to the
highly comparable community composition among the samples
within location (Cúcio et al., 2016), all replicates of each location
were pooled to create two rhizosphere samples for shotgun
metagenomic analysis, one from Portugal (Pt) and another from
France (Fr). The quality of the genomic DNA was determined
by agarose electrophoresis, and the quantification was performed
with a dsDNA HS Assay Kit on a Qubit 2.0 Fluorometer.

The genomic DNA of the two samples was sequenced by the
Beijing Genomics Institute (BGI, Hong Kong, China) in one lane
of paired-end sequences with an insert size of 170 bp, using an
Illumina HiSeq 2000 PE 100 sequencer.

Metagenomic Analysis
The quality of the metagenomic reads was checked with
FastQC (Babraham Bioinformatics, http://www.bioinformatics.
babraham.ac.uk/projects/fastqc), and trimmed using CLC
GenomicsWorkbench (v8.5.1, CLCbio) with a quality score limit
of 0.05, and a maximum allowance of 2 ambiguous nucleotides.

Taxonomic assignment of metagenomic reads was carried out
using Kaiju (http://kaiju.binf.ku.dk), using the non-redundant
protein database NCBI BLAST nr as reference database (Menzel
et al., 2016). “Greedy” run mode was applied with a minimum
match score of 70, and an allowance of five mismatches (Menzel
et al., 2016). High-quality metagenomic paired-end reads were
assembled using IDBA-UD (v1.1.1, Peng et al., 2012), with pre-
correction for improved efficiency of highly uneven sequencing
depth, and k-mer sizes from 40 to 100. To obtain more insights
into the eelgrass rhizobiome and to increase the amount of
information for coverage and binning, both metagenomes were
further co-assembled using MEGAHIT (v1.0.3-6, Li et al., 2015),
using a minimum k-mer size of 25 incremented in steps of
10 on each iteration. Hereinafter, results obtained from the
individually assembled metagenomes are referred to by the
name of their sampling location (i.e., “Portugal” or “ZmPt”, and
“France” or “ZmFr”), and results obtained from the co-assembled
metagenomes are referred to as “co-assembly”.

Protein-coding genes were predicted with Prodigal (Hyatt
et al., 2010), and tRNAs with tRNAscan-SE (Lowe and Eddy,
1997). Annotation of protein-coding genes was performed
with BLAST against COGs (Tatusov et al., 2003), TIGRfams
(Haft et al., 2001), and NCBI’s non-redundant database. In
parallel, annotation of functional genes was also performed
using the KEGG (Kyoto Encyclopedia of Genes and Genomes)
Orthologs (KO) database in the KEGG’s online annotation
tool, GhostKOALA (Kanehisa et al., 2016). For those genes
that can participate in both oxidative and reductive pathways
of the sulfur cycle (Table 1), the function was confirmed by
phylogenetic placement in reference trees, as well as according to
the percentage of similarity to the closest hit attributed by BLAST
during annotation, using a minimum identity of 75%.

TABLE 1 | Summary of marker genes for the (dissimilatory) sulfur metabolism

present in the metagenomes of the rhizobiomes of Zostera marina.

Process KEGG Gene name Gene symbol

Thiosulfate

oxidation

K17223 Sulfur-oxidizing protein soxX

K17224 Sulfur-oxidizing protein soxB

K17226 Sulfur-oxidizing protein soxY

K17227 Sulfur-oxidizing protein soxZ

K17222 Sulfur-oxidizing protein soxA

Sulfide oxidation K17229 Flavocytochrome c (sulfide

dehydrogenase)

fccB

K17218 Sulfide:quinone

oxidoreductase

sqr

Dissimilatory

sulfate

reduction/sulfite

oxidation

K00958 Sulfate

adenylyltransferase/ATP

sulfurylase

sat

K00394 Adenylylsulfate reductase aprA

K00395 Adenylylsulfate reductase aprB

K11180 Dissimilatory sulfite

reductase

dsrA

K11181 Dissimilatory sulfite

reductase

dsrB

Thiosulfate/polysulfide

reduction

K08352 Thiosulfate

reductase/Polysulfate

reductase

pshA/psrA

The presence of specific eukaryotic sequences was investigated
based on raw reads, using the MG-RAST server (v4, Meyer et al.,
2008).

Phylogenetic Reconstruction of Sulfur
Genes
Databases of the marker genes for dissimilatory sulfur processes
(“sulfur” genes) adenylylsulfate reductase (aprA) and sulfate
adenylyltransferase (sat) were built using reference alignments
of the ortholog clusters ENOG4105CFK and ENOG4107RIQ,
respectively, retrieved from the eggNOG phylogenomic database
(v4.5, Huerta-Cepas et al., 2016). A database of sulfide:quinone
oxidoreductase/flavocytochrome c (sqr/fcc) orthologs was
generated with sequences used in previous work performed
by Marcia et al. (2010) and Han and Perner (2015). To
complement the databases with genetic information about
symbiotic bacteria, amino acid sequences of the proteins
aprA, sat, sqr and fccB from symbionts were obtained from
the Nucleotide database of NCBI (https://www.ncbi.nlm.
nih.gov) by searching the terms “<gene of interest> AND
symbiont.” A reference alignment for these proteins was
performed on the online multiple sequence alignment tool
Clustal Omega (Sievers et al., 2011). To build the phylogenetic
tree for the sulfur gene dissimilatory sulfite reductase dsrAB,
we used the reference database published by Müller et al.
(2015).

Contigs annotated as orthologs of each gene were manually
aligned to the reference alignments of their respective database in
the ARB alignment tool (Ludwig et al., 2004), and phylogenetic
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trees were calculated using an approximately maximum-
likelihood method in FastTree v2.1.3 (Price et al., 2010). Contigs
that did not align to the reference databases used were not
included in this analysis.

Reconstruction and Analysis of Draft
Genomes
Assembled contigs (>1 kb) from ZmPt, ZmFr and co-assembly,
were binned according to their pentanucleotide frequency using
VizBin (Laczny et al., 2015). Taxonomic affiliation, completeness,
contamination, strain heterogeneity and coverage of draft
genomes were determined with the software CheckM (v1.0.5,
Parks et al., 2015). Furthermore, assembled genomes were
manually inspected to verify that the operons/gene cassettes
are consistent in their structure. We retrieved about 20 draft
genomes, but only selected those that had a completeness
of > 70% and a contamination of <5%. To identify the
potential for CO2 fixation, we searched for the carbon fixation
marker genes cbbL, cbbS and cbbM from the Calvin-Benson-
Bassham cycle (CBB), and korAB, frdA, porAB, and aclAB
from the reverse tricarboxylic acid cycle (rTCA). The presence
of nitrate-reducing and anammox bacteria was investigated
through the presence/absence of genes involved in denitrification
(narG, napAB, nirS, nirK, norC, and nosZ), dissimilatory
nitrate reduction to ammonium (DNRA; nrfA), and anaerobic
ammonium oxidation (Anammox; hzo, and hao). Nitrogenase-
encoding genes nifH, nifD and nifK were also searched for, in
order to identify nitrogen-fixing bacteria. Furthermore, sulfur
metabolism was assessed by investigating the presence of the
sulfur genes mentioned in the previous section, and summarized
in Table 1. The search for these genes was performed based on
their KO identifiers and gene/protein names.

RESULTS

Metagenomic sequencing resulted in approximately 98 and 91
million high-quality paired-end reads from the rhizospheres
sampled in Portugal (ZmPt) and France (ZmFr), respectively.
The metagenome ZmPt yielded better quality results than the
metagenome ZmFr, i.e., more than twice as many contigs larger
than 1 kb and a N50 of 1,150 bp, compared to a N50 of 1,097 bp
in ZmFr (Table 2). The co-assembly resulted in a total of 76,983
contigs larger than 1 kb and a N50 of 1,768 bp, higher values than
those observed for ZmPt and ZmFr (Table 2). The average G+C
content of the contigs from ZmPt, ZmFr and the co-assembly was
55.61, 50.79, and 54.20%, respectively (Table 2).

Bacterial Community Structure
Based on the most abundant bacterial classes identified among
classified reads, the community structure, as revealed by
taxonomic assignment of raw sequence reads, was highly similar
between Portugal and France. The percentage of unclassified
reads was similar in both metagenomes (37.36% in ZmPt and
38.57% in ZmFr). Nearly 98% of the classified reads from both
metagenomes could be assigned to Bacteria, whereas < 2%
of the reads were assigned to Archaea, and 0.1–0.2% of the
reads had a viral origin. Based on classified reads, the bacterial

TABLE 2 | Characteristics of the metagenomes from the rhizobiomes of Zostera

marina sampled in Portugal (ZmPt), France (ZmFr), and the co-assembly of both.

ZmPt ZmFr Co-assembly

Number of reads 98.260.754 90.801.712 187.697.064

Total number of contigs 65.565 25.656 76.983

Number of contigs (>1 kb) 22.841 9.111 76.983

Largest contig (b) 49.295 95.707 95.727

Total assembly length (b) 75.339.575 27.968.619 139.542.364

Mean GC (%) 55.61 50.79 54.20

N50 1.150 1.097 1.768

communities were dominated by Gammaproteobacteria (25.3%
for ZmPt, and 21.6% for ZmFr), followed by Deltaproteobacteria
(20.0% for ZmPt, and 16.3% for ZmFr), and Alphaproteobacteria
(7.9% for ZmPt, and 12.2% for ZmFr) (Figure 1, Supplementary
Table 1). The most abundant classes were comparable between
sites. However, a larger difference was found in the number
of reads from the less abundant classes, such as Flavobacteriia,
Anaerolineae, Gemmatimonadetes, Epsilonproteobacteria,
Caldinae, Acidimicrobiia, Dehalococcoidia, Ardenticatenia,
Mollicutes, and Thermoflexia (Supplementary Table 1). The order
Desulfobacterales equally dominated the Deltaproteobacteria
in both sites, whereas Chromatiales, the most dominant order
of the Gammaproteobacteria in the metagenomes, harbored
nearly two-fold more reads in Portugal than in France (Figure 1,
Supplementary Table 2).

To provide genome and ecosystem level insight in the general
rhizosphere of Z. marina we co-assembled the metagenomes
from Portugal and France. By mapping the reads from both
metagenomes to the co-assembly, we identified a higher coverage
in Portugal than in France (Figure 2). Furthermore, although
most reads were not shared between sites, three clusters of the co-
assembly formed a clear exception, as their coverage was high for
both metagenomes (clusters 1, 2, and 3, highlighted in Figure 2).
Assembly of the reads of each cluster followed by phylogenetic
placement with CheckM allowed the identification of cluster
1 as a member of the family Desulfobacteraceae within the
Deltaproteobacteria and cluster 2 and 3 as Gammaproteobacteria.

Diversity of Sulfur Genes in the
Rhizobiome of Z. marina
A total of 263 high-quality sulfur-related gene copies were
retrieved from the rhizosphere of ZmPt, from which 90% were
assigned to the oxidative sulfur cycle with an average total
coverage of 125x, in contrast to reductive genes, which only had
an average total coverage of 35x (Figure 3).

The most abundant oxidation pathway in ZmPt was sulfide
oxidation via sqr with a total coverage of 187x, followed by
sulfite oxidation via aprAB, and thiosulfate oxidation via the
sox complex (Figure 3). On the other hand, aprAB dominated
the pool of reductive genes, with a total coverage of 70x
(Figure 3). Only 65 sulfur-related gene copies were identified in
the rhizosphere of ZmFr (Figure 3), of which 77% were assigned
to genes involved in oxidative pathways. Nevertheless, reductive
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FIGURE 1 | Community composition of the microbiomes from the rhizosphere of Zostera marina from Portugal (ZmPt) and France (ZmFr). Taxonomic classification of

metagenomic reads of bacterial classes (bar charts), and orders of the two most abundant classes, the Gamma- and the Deltaproteobacteria (pie charts). All

unassigned reads, as well as those unclassified at higher taxonomic ranks were excluded from the analysis. Taxonomy assignment was performed on raw reads in the

software program Kaiju (Menzel et al., 2016).

FIGURE 2 | Mapping of reads to the co-assembled metagenomes.

Visualization of the contigs from Portugal (blue, ZmPt) and France (green,

ZmFr) mapped against the co-assembled metagenomes, represented in a log

scale with a maximum of 2.2 for the former and 3.2 for the latter, respectively.

The GC content is also represented, with a maximum of 73%. The dendogram

was calculated based on sequence composition and differential coverage of

raw reads.

sulfur pathways dominated ZmFr in terms of coverage (average
coverage of 20x vs. 24x for oxidative and reductive sulfur genes,
respectively, Figure 3).

Phylogenetic analysis allowed the distinction of dsrAB
(Figure 4), aprAB (Supplementary Figure 1) and sat
(Supplementary Figure 2) genes from oxidative and reductive
microorganisms. Contig sequences aligning to sequences in
the reverse operating dsrAB database were mostly affiliated
to the Gammaproteobacteria, whereas those aligning to the
direct operating dsrAB were affiliated to the Deltaproteobacteria.
Several contigs were grouping with symbiotic bacteria, such as a
cluster of five contigs closely related to the endosymbiont of the
polychaete Oligobrachia haakonmosbiensis (contigs FR-20896a,
PT-3377ab, PT-61199b, PT-1051a, and PT-10561ab). Eight other
contigs were directly related to endosymbionts of the oligochaete
worms Olavius algarvensis and O. ilvae (contigs PT-42780ab,
PT-47632ab, PT-7484ab, PT-55619ab as Gammaproteobacteria,
and contigs FR-942b, FR-17686a, FR-8850b, and PT-27360ab
as Deltaproteobacteria). Moreover, three other contigs were
related to Candidatus Thiobios zoothamnicoli (contig PT-954ab,
PT-562ab, and PT-16897a), an ectosymbiont of the ciliate
Zoothamnium niveum (Figure 4).

As the taxonomic resolution obtained from the dsrAB
tree is not extremely high due to the large number of
uncultured bacteria to which our sequences aligned,
sister lineages containing species such as Thioalkalivibrio
thiocyanoxidans, Thiothrix nivea, and Allochromatium
vinosum, allowed the placement of our sequences in the
orders Chromatiales and Thiotrichales (Figure 4). On the
reductive side of the phylogeny, however, a more detailed
identification was possible for members of the families
Desulfovibrionaceae, Desulfobulbaceae and Desulfobacteraceae
(Figure 4).
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FIGURE 3 | Diversity of sulfur genes in the rhizobiome of Zostera marina. Distribution of genes involved in the (dissimilatory) sulfur metabolism throughout the

metagenomes of the rhizosphere of Z. marina sampled in Portugal (ZmPt) and France (ZmFr). The partial coverage of each gene copy of the marker genes is showed

per cell according to the color label, and the total coverage of each marker gene in the metagenome is indicated at the bottom of the heat-map in absolute values.

Reconstructed Draft Genomes
Metagenomic binning resulted in 4 draft genomes isolated from
ZmPt, which ranged in genome size from ∼1.9 to ∼3.1Mb, and
GC content between 53.6 and 62.7% (Table 3).With a coverage of
16x, Pt_3f was the most abundant organism among the recovered
draft genomes, whereas Co_1 was the least abundant with a 10x
coverage (Table 3).

Genes for the oxidation of reduced sulfur compounds were
identified in all draft genomes, and additionally Co_1 and
Co_2 contained sgpA, one of the genes encoding proteins
for sulfur globule envelopes. Co_1 and Pt_3f contained the
genes necessary for the complete oxidation of sulfide to sulfate
(Table 4). Furthermore, Co_1 was the draft genome with the
highest number of genes involved in nitrogen cycling, including
the following two pathways: i) denitrification to dinitrogen,
and ii) dissimilatory nitrate reduction to ammonium (DNRA).
Nitrogenase-encoding genes nifH, nifD and nifK were absent in
all draft genomes. Genes for two carbon fixation pathways were

identified in Co_1, Co_2, and Pt_2d (cbbL and cbbS from the CBB
cycle, and korAB, frdA, sdhA, sdhC, and porAB from rTCA cycle),
whereas in Pt_3f genes for the CBB cycle were absent (Table 4).
Comparative sequence analysis attributed these draft genomes to
the family Chromatiaceae, and placed them in close proximity to
the Solemya velum gill symbiont (IMG_2502171186; Figure 5).

DISCUSSION

Bacterial Community Structure
Marine plants anchored in anoxic sediments harbor a steep
redox gradient around their roots that creates microniches
for different types of bacteria (Holmer and Nielsen, 1997;
Blaabjerg and Finster, 1998; Devereux, 2005). By using
16S rRNA amplicon sequencing, we have found that the
seagrass rhizosphere microbiome (“rhizobiome”) is enriched
by Gamma- and Deltaproteobacteria (Cúcio et al., 2016).
Although Gammaproteobacteria contains an extremely large and
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FIGURE 4 | Diversity of dissimilatory sulfite reductase (dsrAB) genes. Phylogenetic tree of dsrAB marker genes present in the rhizobiomes of Zostera marina from

Portugal (red, prefix PT) and France (blue, prefix FR). Contigs labeled with suffix “–a” correspond to sequences annotated to dsrA, “–b” to dsrB, and “–ab” to

concatenated dsrAB. Sequences were concatenated whenever dsrA and dsrB were assembled in the same contig. Contigs were aligned at the protein level to the

dsrAB reference alignment published by Müller et al. (2015) using the ARB alignment tool. The phylogenetic tree was inferred using the approximate

maximum-likelihood method in FastTree2 (Price et al., 2010). The green background indicates sequences involved in oxidative processes, the blue background

sequences involved in reductive processes. Bootstrap values are indicated. Scale bar indicates percentage sequence difference.
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TABLE 3 | General features of reconstructed draft genomes analyzed with CheckM.

ID Sister lineage GC

(%)

Genome

size (Mb)

Number

of genes

Completion

(%)

Contamination

(%)

Strain

heterogeneity

(%)

Coverage

Co_1 Gammaproteobacteria;

Chromatiales

62.56 2.59 2724 79.30 1.57 10 10x

Co_2 Gammaproteobacteria;

Chromatiales

62.71 2.25 2248 87.89 2.10 42.11 12x

Pt_2e Gammaproteobacteria;

Chromatiales

56.12 1.97 2154 70.36 2.58 54.55 12x

Pt_3f Gammaproteobacteria;

Chromatiales

53.61 3.14 3188 89.54 2.41 21.43 16x

metabolically versatile group of bacteria, their importance in the
sulfur cycle is indicated by the high abundance of members of
the orders Chromatiales and Thiotrichales in the metagenomes.
Members of the order Chromatiales are mainly phototrophic
sulfur oxidizers (Imhoff, 2005). Even though most of these
purple sulfur bacteria (PSB) require light as an energy source,
some are able to grow chemotrophically under micro-oxic
conditions in the absence of light (Imhoff, 2005). Chromatiales
have been previously shown to be dominant in the rhizosphere
of seagrasses (Cúcio et al., 2016) and salt marsh plants (Thomas
et al., 2014). Some of the most abundant bacteria among the
Chromatiales (Thiohalocapsa sp. and Lamprocystis purpurea)
identified in the rhizosphere of Zostera marina from Portugal,
are bacteria that can grow in the dark as chemolithoautotrophs
or chemoorganotrophs using sulfide/thiosulfate and pyruvate,
respectively, as electron donors (Eichler and Pfennig, 1988;
Caumette et al., 1991). While profiting from the oxygen that
is released from the roots during daytime (Borum et al.,
2005; Frederiksen and Glud, 2006), these bacteria can actively
consume the sulfide from the rhizosphere, and so contribute to
a detoxification of the root area.

Nearly half of the class Deltaproteobacteria in our
metagenomes was composed by members of the order
Desulfobacterales. Ten percent of this order in ZmPt
(corresponding to 5% of the Deltaproteobacteria and 2% of
the Proteobacteria) were assigned to the species Desulfosarcina
cetonica. The genus Desulfosarcina was among the most
abundant taxa of the Deltaproteobacteria in the rhizosphere of
the seagrasses Zostera marina, Z. noltii and Cymodocea nodosa
(Cúcio et al., 2016).Desulfosarcina cetonica is a complete oxidizer
that is able to utilize sulfate, thiosulfate and/or elemental sulfur
as electron acceptors for the oxidation of a wide range of organic
compounds, including acetone, benzoate, ethanol, lactate,
and acetate (Galushko and Rozanova, 1991). As previously
discussed by Cúcio et al. (2016), the presence of SRB capable of
ethanol oxidation in the rhizosphere might represent a trade-off
between plant and bacteria, in which the latter, although it
produces sulfide, contributes to another mean of detoxification
of the rhizosphere by consuming the ethanol released by the
roots. Another deltaproteobacterium present in ZmPt was
the (uncultured) PSCGC 5451, which was sequenced in a
project targeting hydrocarbon degradation in marine sediments
(GOLD–JGI). This strain, like several other SRB found (namely

those belonging to the family Desulfobacteraceae), have
been described to degrade hydrocarbons (Kleindienst et al.,
2014). Desulfobacteraceae were also dominant among other
Deltaproteobacteria on belowground compartments of the
tropical seagrass Halophila stipulaceae (Mejia et al., 2016).

The overall community composition at the class level was
similar in both locations, contradicting previous findings in salt
marshes and seagrass meadows (Thomas et al., 2014; Cúcio
et al., 2016). We consider that this discrepancy is likely to
be associated with three reasons, i) different sequencing depth
between the samples, as indicated by large variation in coverage
(visible in Figure 2), (ii) biases inherent to PCR amplification
in the former studies, and iii) to the high number (ca. 38%) of
unclassified reads in the present study, whichmasks the presence,
c.q. dominance of unknown bacteria. Furthermore, shotgun
metagenomic sequencing does not feature the biases inherent
to PCR amplification used in previous studies. Furthermore, the
difference in the GC content found between both metagenomes
(55.6 and 50.8% in ZmPt and ZmFr, respectively, Table 2),
suggests that they harbor different microbial communities.
Notwithstanding this fact, some sequences were abundant in
both metagenomes (see clusters 1, 2, and 3, and encircled regions
in Figure 2), highlighting an overrepresentation of some bacteria
in these metagenomes, in particular in ZmFr. Cluster 1, in
particular, was identified as a member of the Desulfobacteracae.
Previous determination of the core rhizobiome of seagrasses
(Cúcio et al., 2016) identified the Desulfobacteraceae as the most
abundant family within the core rhizobiome; therefore it is not
surprising that these bacteria are highly represented in both
locations.

Diversity of Sulfur Genes in the
Rhizobiome of Z. marina
Although the importance of biological oxidation of sulfide in
the rhizosphere of seagrasses has not yet been fully understood
(Sayama et al., 2005; Preisler et al., 2007; Lenk et al., 2011), Luther
et al. (2011) have demonstrated that biological sulfide oxidation
rates are three or more orders of magnitude higher than abiotic
rates, indicating the importance of sulfide oxidizing bacteria in
the rhizosphere of seagrasses.

Overall, we observed a higher diversity and abundance of
sulfur genes involved in oxidation than in reduction, such as
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the gene sqr encoding the enzyme sulfide:quinone reductase
(Figure 3, Supplementary Figure 3). The gene sqr and its
homolog fccAB, are essential for sulfide oxidation. They can be
present in one or multiple copies per genome (e.g., Reinartz et al.,
1998; Chan et al., 2009), and are characterized and divided into
six different types, which exhibit different affinities to sulfide
(Marcia et al., 2010). According to phylogenetic placement of
the contig sequences annotated as SQR, we identified a majority
of sequences clustering with the SQR types VI, I, and III.
(Supplementary Figure S3). SQR type VI, responsible for growth
on sulfide as the only electron donor (Chan et al., 2009), was
the most abundant sulfur gene in ZmPt. This type has been
shown to be transcribed under sulfide concentrations up to
8mM in Chlorobium tepidum (Chan et al., 2009), indicating that
sulfide-oxidizing bacteria present in the rhizosphere of Z. marina
might be adapted to perform sulfide oxidation under high
sulfide concentrations (Han and Perner, 2015). Nevertheless, the
presence of other types of SQR in the rhizosphere of Z. marina
with affinity to sulfide at the micromolar level, as well as a high
diversity of FCC (Brune, 1995; Marcia et al., 2010), suggest that
sulfide oxidizing bacteria possess a diverse set of genes which
allow them to thrive under a large range of sulfide concentrations.
Such versatility enables these bacteria to successfully explore the
complex redox gradient and settle in specific microniches of the
rhizosphere.

The oxidation of sulfide via SQR and/or FCC, as well as
the oxidation of thiosulfate via the Sox multi-enzyme complex,
result in the formation of sulfur globules as an intermediate
product (Dahl and Prange, 2006; Eichinger et al., 2014). Although
sulfur globule formation is not yet fully understood, the pathway
for thiosulfate oxidation via SoxB seems to result in the
accumulation of sulfur intra- or extracellularly (Dahl and Prange,
2006; Hensen et al., 2006; Eichinger et al., 2014). A study on
endosymbiotic bacteria suggested that the formation of sulfur
globules actively contributes to the detoxification of sulfide from
the cells of the host (Eichinger et al., 2014), and functions
as a reservoir of energy for the bacterium itself. Furthermore,
reduced sulfur compounds are preferentially utilized as electron
donors rather than organic compounds (Grimm et al., 2011).
Intra- and extracellular sulfur globules are oxidized via the
reverse-operating dissimilatory sulfite reductase, encoded by
the genes rdsrAB (Dahl et al., 2005; Dahl and Prange, 2006;
Hensen et al., 2006; Müller et al., 2015), which were abundant
in ZmPt (Figure 3). The well represented presence of all these
genes allowed us to speculate that bacteria in the seagrass
rhizosphere are well adapted to varying concentrations and
different types of reduced sulfur compounds, and furthermore,
the high abundance of rdsrAB genes might represent an
advantageous side mechanism for SOB to obtain energy (Müller
et al., 2015).

Another abundant gene involved in oxidation, as determined
by phylogenetic analysis (Figure 3, Supplementary Figure S1),
was the APS reductase-encoding gene aprA. This is the reverse-
operating homologous gene of the aprA found in sulfate-
reducing prokaryotes (Meyer and Kuever, 2007a,b), which is
essential for the oxidation of sulfite to an APS intermediate and
is further oxidized to sulfate by the ATP sulfurylase (Sat).
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FIGURE 5 | Phylogenetic affiliation of reconstructed draft genomes. Draft genomes were aligned to genomes in the CheckM reference tree (Parks et al., 2015).

Subsequently, sequences were selected and the final phylogeny was calculated using the approximate maximum-likelihood method in FastTree2 (Price et al., 2010).

Bootstrap values are indicated. Scale bar indicates percentage sequence difference.

Symbiont-Related Bacteria in the
Rhizosphere of Z. marina
The functional genes dsrAB, aprAB, and soxB are commonly used
to infer the phylogenetic affiliation of SRB and SOB (Meyer and
Kuever, 2007b; Meyer et al., 2007; Müller et al., 2015). Whereas
aprAB and soxB genes have suffered several events of lateral gene
transfer (LGT) among SRB and SOB (Meyer and Kuever, 2007b;
Meyer et al., 2007), the dsrAB gene is highly conserved in both
groups, and its phylogeny is congruent with that of the 16S rRNA
gene (Müller et al., 2015). Despite that a majority of sequences
of dsrAB clustered with those of uncultured bacteria (Figure 4),
indicating the presence of a high diversity of unknown bacteria
in the rhizosphere of Z. marina, another number of sequences
analyzed in our study clustered in close proximity to those of
well-known photo- and chemolithoautotrophic bacteria, such as
Allochromatium vinosum (Kämpf and Pfennig, 1980), and (endo)
symbionts of several marine invertebrates (Figure 4). Likewise,
sequences of other target genes involved in oxidation processes,
such as dsrAB, aprA, sat, sqr, and fcc also clustered closely
with sequences from chemolithoautotrophic and endosymbiotic
bacteria (Figure 4, Supplementary Figures S1–S3). In particular,
several assembled sequences closely clustered with those of the
gamma- and deltaproteobacterial endosymbionts of the gutless
worm Olavius algarvensis (Figure 4). The gammaproteobacterial
endosymbionts are SOB that have genes for autotrophic CO2

fixation and accumulation of sulfur globules, and provide

their gutless host with their vital nutrition (Woyke et al.,
2006).

Three out of the four draft genomes isolated from the
rhizosphere of Z. marina clustered in proximity to a sulfur-
oxidizing gill symbiont of the clam Solemya velum. Gros et al.

(2003) also found multiple 16S rDNA sequences identical

to Codakia orbicularis symbiont. Nevertheless, no eukaryotic

genes from this clam or from O. algarvensis were detected
in our metagenomes, suggesting that these bacteria might

be free-living forms of these symbionts. Free-living forms of

endosymbionts of the clam Codakia orbicularis (Lucinidae)

were previously identified in seagrass meadows (Gros et al.,
2003; König et al., 2016). Furthermore, Gros et al. (1996,

2012) demonstrated that this clam is able to acquire its
chemoautotrophic gill endosymbionts from the environment,

although the release of these bacteria from the host to the
environment has, to our knowledge, never been observed for
these clams (Brissac et al., 2009). Symbionts of members of
the family Solemyidae were initially thought to be exclusively
vertically transmitted (Krueger et al., 1996), nevertheless recent

evidence suggests a very dynamic mode of transmission,
which further includes horizontal/environmental acquisition
(Dmytrenko et al., 2014). Though little information is available
about the transmission of chemoautotrophic symbionts of gutless
oligochaetes, such as O. algarvensis, some evidence supports
both vertical (Giere and Langheld, 1987) and environmental
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FIGURE 6 | Conceptual model of sulfur, nitrogen and carbon fixation pathways in one of the reconstructed genomes, CO_1, obtained from the rhizosphere of Zostera

marina. At aerobic conditions and low sulfide concentrations fcc is used to oxidize sulfide with oxygen, while at high sulfide concentrations sqr is used to oxidize

sulfide. In both cases, the Calvin cycle (CBB) is used to fix CO2. However, at microaerobic and anaerobic conditions and low sulfide concentrations fcc is oxidizing

sulfide via denitrification (purple), while at high sulfide concentrations sqr is oxidizing sulfide via DNRA (dissimilatory nitrate reduction to ammonium represented in

blue). At these conditions carbon is fixed using the TCA-cycle. The ammonium produced in the DNRA is used as a nitrogen source by the seagrasses. The dashed

arrow represents the proposed interactions between the sulfur and nitrogen cycle in which sulfide reduces nitrite to nitric acid.

transmission (Dubilier et al., 2006). Hence, there seem to be
several indications suggesting that seagrass meadows could
harbor a pool of fauna endosymbionts in a free-living
state.

Some seagrasses can, at least partly, cope with high levels
of sulfide through a three-stage symbiosis between a Lucinidae
clam and their chemolithoautotrophic gill symbionts (Van der
Heide et al., 2012). However, this does not include meadows
devoid of clams. Due to the large proportion of reads annotated
as symbiotic bacteria and the absence of invertebrate hosts
in our metagenome, we support the hypothesis of Brissac

et al. (2009), which states that seagrass meadows function
as a source of endosymbionts. Horizontal (environmental)
symbiont transmission requires an inoculum of free-living
bacteria (reviewed in Bright and Bulgheresi, 2010), which
might originate by detaching from their symbiotic association
upon the host’s death, as recently shown in Riftia pachyptila by
Klose et al. (2015). We hypothesize that these bacteria could
accumulate and proliferate in the rhizosphere of seagrasses,
until they are brought to the water column by bioturbators, for
instance, and inoculate putative hosts in the periphery of the
seagrass meadow.
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Reconstructed Symbiont-Related Draft
Genomes
Like the gill symbiont of Solemya velum, all four draft genomes
recovered in our study possessed genes necessary for carbon
fixation, as well as a repertoire of genes for the complete oxidation
of sulfide to its most oxidized form sulfate (Table 4; Stewart et al.,
2011), thereby confirming that these organisms can function
as chemolithoautotrophs. Furthermore, they are also genetically
equipped to perform nitrate reduction (Table 4), indicating that
they may be able to couple sulfide oxidation to nitrate reduction,
as previously described for bacteria such as Thioploca sp. and
Beggiatoa sp. (Fossing et al., 1995; Otte et al., 1999; Sayama, 2001;
Sayama et al., 2005).

A vast range of genes involved in the sulfur and nitrogen
cycles, as well as carbon fixation, were identified in Co_1
(Table 4). The presence of alternative pathways in sulfur
reactions (sulfate, thiosulfate, sulfur oxidation), carbon fixation
mechanisms (CO2 fixation via the CBB and carbon fixation via
the TCA cycle) and nitrate reduction pathways (denitrification,
DNRA) in this draft genome, are likely an advantageous trait
in a dynamic environment as the seagrass rhizosphere. For this
reason, we propose a conceptual model for the presence and
function of Co_1-like free-living forms of symbiotic bacteria,
in the rhizosphere of seagrasses (Figure 6). Having such a
complete set of genes in its genome potentially gives this
bacterium the ability to exploit a large variety of substrates,
which is particularly important if it needs to thrive as free-
living as well as in symbiotic associations. For instance, this
bacterium is able to synthesize organic matter under oxic via
the CBB cycle, and under micro-oxic/anoxic conditions via
the TCA cycle (Figure 6). To our knowledge, the presence of
these two pathways simultaneously has only been described
in the endosymbionts of the hydrothermal vent worms Riftia
pachyptila and Tevnia jerichonana, and represents an adaptation
to transient conditions marked by the amount of energy available
(Markert et al., 2007; Gardebrecht et al., 2012). Similar to
the gill symbiont of Solemya velum (Stewart et al., 2011),
this microorganism is capable of oxidizing sulfide at low
and high environmental concentrations using FCC and SQR,
respectively (Brune, 1995; Marcia et al., 2010). Moreoever, it
might be able to store sulfur intracellularly as suggested by
the presence of the gene sgpA. Sulfide concentrations in the
rhizosphere of seagrasses can be very dynamic and particularly
respond to light/dark regimes, mainly due to the lower oxygen
release in the dark, compared to light conditions (e.g., Pagès
et al., 2012). Given its ability to thrive in such conditions,
this bacterium also has the genetic setup necessary to switch
their usage between nitrogen compounds, according to the
availability of sulfide. Brunet and Garcia-Gil (1996) found
evidence that under low sulfide concentrations denitrification
is favored, whereas under high levels of sulfide, DNRA is
more likely to proceed (as sulfide inhibits the final two
steps of denitrification, Figure 6). In this regard, high sulfide
concentrations may benefit the seagrass (below the threshold
of sulfide detrimental for the fitness of the plant), by inducing
the production of ammonium, which is the seagrasses’ preferred

nitrogen source (Alexandre et al., 2015). Like sulfide, ammonium
concentrations in the rhizosphere increase during dark periods
(Pagès et al., 2012). Although these authors attributed higher
NH+

4 concentrations to a decrease in seagrass uptake, according
to our conceptual model, high sulfide concentrations sustain
DNRA, which results in the release of ammonium during the
night.

Notwithstanding the fact that nitrate reduction via DNRA
is favored by environmental conditions (Sayama, 2001), Co_1
possesses genes that encode nitric oxide and nitrous oxide
reductases. The presence of these genes indicates that this
organism could have the potential to completely denitrify nitrate
to dinitrogen, however we did not find the genes that encode
the nitrite reductase responsible for the reduction of nitrite to
nitric oxide (nir, Figure 6). Either nir genes were not captured
due to the limited sequencing depth (this genome is missing
approximately 20% of its genes), or they are naturally not present
in Co_1. While we cannot rule out the first possibility, complete
denitrification with the concomitant absence of nir genes in
Co_1 could be bridged by the reduction of nitrite to nitric
oxide through interaction with sulfide (Figure 6, Grossi, 2009;
Cortese-Krott et al., 2015). This abiotic reaction could be of
major importance for the seagrasses, because it would allow
the double detoxification of two toxic components, H2S and
NO−

2 .
The present study unveiled the so-far unknown diversity of

sulfur genes present in the rhizosphere of the seagrass Zostera
marina, and supported the hypothesis that the rhizobiome is
enriched with sulfur-oxidizing bacteria. We found indications
supported by phylogenetic inference that the rhizosphere
hosts highly versatile bacteria related to symbionts of marine
invertebrates that are capable of exploiting a wide range
of sulfur and nitrogen compounds, using alternate pathways
that are favorable under different environmental conditions.
We suggested a conceptual model for the sulfur, nitrogen
and carbon fixation metabolism of these organisms in the
rhizosphere of seagrasses. The draft genomes recovered further
supported the presence of chemolithoautotrophic bacteria closely
related to free-living forms of symbionts, that are able to
couple the complete oxidation of sulfide to sulfate with
nitrate reduction to ammonium. The dominance of these
bacteria should be determined by other techniques, such
as fluorescent in situ hybridisation (FISH) or qPCR, and
their contribution to the well-being of seagrasses needs to
be unraveled in future studies by characterization of their
activity.

DATA AVAILABILITY

The raw sequence reads have been deposited as dataset
SRP126211 in the NCBI Sequence Read Archive (SRA).

AUTHOR CONTRIBUTIONS

CC, AE, and GM designed the study and collected the samples;
CC performed all lab experiments, and data analysis together

Frontiers in Marine Science | www.frontiersin.org 12 May 2018 | Volume 5 | Article 171

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Cúcio et al. Sulfur Bacteria in the Rhizosphere of Zostera marina

with LO; CC wrote the manuscript and all authors contributed
to the discussion of the results and to the final version of the
manuscript.

FUNDING

This work was supported by grants from the European Union
(MaCuMBA and ASSEMBLE 8) to GM and CC,
the ERC Advanced Grant PARASOL (No. 322551)
to GM and LO, the European Science Foundation
ConGenOmics program (No. 6349) to CC, and fellowships
SFRH/BPD/63/03/2009 and SFRH/BPD/107878/2015
of Fundação para a Ciência e Tecnologia (FCT)
to AE.

ACKNOWLEDGMENTS

We thank Francisco Rodríguez-Valera, Mário Lopez-Lopez,
and Rohit Ghai for an introduction into metagenomic
analysis, Emily D. Melton for helpful discussions about
microbial sulfur metabolism, Tom Berben for very
helpful contribution to scripting, and Nicole Dubilier
for insightful comments on the final version of the
manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2018.00171/full#supplementary-material

REFERENCES

Alexandre, A., Hill, P. W., Jones, D. L., and Santos, R. (2015). Dissolved organic

nitrogen: a relevant complementary source of nitrogen for the seagrass Zostera

marina. Limnol. Oceanogr. 60, 1477–1483. doi: 10.1002/lno.10084

Blaabjerg, V., and Finster, K. (1998). Sulphate reduction associated with roots and

rhizomes of the marine macrophyte Zostera marina. Aquat. Microb. Ecol. 15,

311–314. doi: 10.3354/ame015311

Blazejak, A., Erséus, C., Amann, R., and Dubilier, N. (2005). Coexistence of

bacterial sulfide oxidizers, sulfate reducer, and spirochetes in a gutless worm

(Oligochaeta) from the Peru margin. Appl. Environ. Microbiol. 71, 1553–1561.

doi: 10.1128/AEM.71.3.1553-1561.2005

Borum, J., and Greve, T. (2004). “The four European seagrass species”, in European

Seagrasses: An Introduction to Monitoring and Management, eds J. Borum,

C. M. Duarte, D. Krause-Jensen, and T. M. Greve (Copenhagen: The M&MS

Project), 1–7.

Borum, J., Pedersen, O., Greve, T.M., Frankovich, T. A., Zieman, J. C., Fourqurean,

F. W., et al. (2005). The potential role of plant oxygen and sulphide dynamics

in die-off events in tropical seagrass, Thalassia testudinum. J. Ecol. 93, 148–158.

doi: 10.1111/j.1365-2745.2004.00943.x

Bright,M., and Bulgheresi, S. (2010). A complex journey: transmission ofmicrobial

symbionts. Nat. Rev. Microbiol. 8, 218–230. doi: 10.1038/nrmicro2262

Brissac, T., Gros, O., and Merçot, H. (2009). Lack of endosymbiont

release by two Lucinidae (Bivalvia) of the genus Codakia: consequences

for symbiotic relationships. FEMS Microbiol. Ecol. 67, 261–267.

doi: 10.1111/j.1574-6941.2008.00626.x

Brune, D. C. (1995). “Sulfur compounds as photosynthetic electron donors,” in

Anoxygenic Photosynthetic Bacteria, eds R. E. Blankenship, M. T. Madigan, and

C. E. Bauer (Dordrecht: Kluwer), 847–870.

Brunet, R. C., and Garcia-Gil, L. J. (1996). Sulfide-induced dissimilatory nitrate

reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol.

Ecol. 21, 131–138. doi: 10.1111/j.1574-6941.1996.tb00340.x

Capone, D. G., and Kiene, R. P. (1988). Comparison of microbial dynamics in

marine and freshwater sediments: contrasts in anaerobic carbon metabolism.

Limnol. Oceanogr. 33. 725–749. doi: 10.4319/lo.1988.33.4_part_2.0725

Caumette, O., Baulaigue, R., andMatheron, R. (1991). Thiocapsa halophile sp. nov.,

a new halophilic phototrophic purple sulfur bacterium. Arch. Microbiol. 155,

170–176. doi: 10.1007/BF00248613

Chan, L. K., Morgan-Kiss, R. M., and Hanson, T. E. (2009). Functional analysis of

three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. J.

Bacteriol. 191, 1026–1034. doi: 10.1128/JB.01154-08

Cifuentes, A., Antón, J., Benlloch, S., Donnelly, A., Herbert, R. A., and

Rodríguez-Valera, F. (2000). Prokaryotic diversity in Zostera noltii-

colonized marine sediments. Appl. Environ. Microbiol. 66, 1715–1719.

doi: 10.1128/AEM.66.4.1715-1719.2000

Cortese-Krott, M. M., Fernandez, B. O., Kelm, M., Butler, A. R., and Feelisch, M.

(2015). On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide

46, 14–24. doi: 10.1016/j.niox.2014.12.009

Costa, R., Götz, M., Mrotzek, N., Lottmann, J., Berg, G., and Smalla, K. (2006).

Effects of site and plant species on rhizosphere community structure as revealed

by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56, 236–249.

doi: 10.1111/j.1574-6941.2005.00026.x

Crump, B. C., and Koch, E. W. (2008). Attached bacterial populations shared by

four species of aquatic angiosperms. Appl. Environ. Microbiol. 74, 5948–5957.

doi: 10.1128/AEM.00952-08

Cúcio, C., Engelen, A. E., Costa, R., and Muyzer, G. (2016). Rhizosphere

microbiomes of European seagrasses are selected by the plant, but are not

species specific. Front. Microbiol. 7:440. doi: 10.3389/fmicb.2016.00440

Dahl, C., Engels, S., Pott-Sperling, A. S., Schulte, A., Sander, J., Lübbe, Y.,

et al. (2005). Novel genes of the dsr gene cluster and evidence for close

interaction of Dsr proteins during sulfur oxidation in the phototrophic

sulfur bacterium Allochromatium vinosum. J. Bacteriol. 187, 1392–1404.

doi: 10.1128/JB.187.4.1392-1404.2005

Dahl, C., and Prange, A. (2006). “Bacterial sulfur globules: occurrence, structure

and metabolism,” in Microbiology Monographs, Inclusions in Prokaryotes, Vol.

1, ed J. M. Shively (Berlin; Heidelberg: Springer), 21–51.

Devereux, R. (2005). “Seagrass rhizospheremicrobial communities,” in Interactions

Between Macro- andMicroorganisms in Marine Sediments, eds E. Kristensen, R.

R. Haese, and J. E. Kostka (Washington, DC: American Geophysical Union),

199–216.

Dmytrenko, O., Russel, S. L., Loo, W. T., Fontanez, K. M., Liao, L., Roeselers, G.,

et al. (2014). The genome of the intracellular bacterium of the coastal bivalve,

Solemya velum: a blueprint for thriving in and out of symbiosis. BMCGenomics

15:924. doi: 10.1186/1471-2164-15-924

Donnelly, A. P., and Herbert, R. A. (1999). Bacterial interactions in the rhizosphere

of seagrass communities in shallow coastal lagoons. J. Appl. Microbiol. 85,

151–160. doi: 10.1111/j.1365-2672.1998.tb05294.x

Dubilier, N., Blazejak, A., and Rühland, C. (2006). “Symbioses between bacteria

and gutless marine oligochaetes,” in Molecular Basis of Symbiosis. Progress in

Molecular and Subcellular Biology, Vol. 41, ed J. Overmann (Berlin; Heidelberg:

Springer), 251–275.

Dubilier, N., Mülders, C., Ferdelman, T., de Beer, D., Pernthaler, A., Klein, M., et al.

(2001). Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an

oligochaete worm. Nature 411, 298–302. doi: 10.1038/35077067

Eichinger, I., Schmitz-Esser, S., Schmid, M., Fisher, C. R., and Bright,

M. (2014). Symbiont-driven sulfur crystal formation in a thiotrophic

symbiosis from deep-sea hydrocarbon seeps. Env. Microbiol. Rep. 6, 364–372.

doi: 10.1111/1758-2229.12149

Eichler, B., and Pfennig, N. (1988). A new purple sulfur bacterium from stratified

freshwater lakes, Amoebobacter purpureus sp. nov.. Arch. Microbiol. 149,

395–400. doi: 10.1007/BF00425577

Fahimipour, A. K., Kardish, M. R., Lang, J. M., Green, J. L., and Eisen J. A.,

Stachowicz, J. J. (2017). Global-scale structure of the eelgrass microbiome.Appl.

Environ. Microb. 83, e-03391–e-03316. doi: 10.1128/AEM.03391-16

Fossing, H., Gallardo, V. A., Jørgensen, B. B., Hüttel, M., Nielsen, L. P., Schulz, H.,

et al. (1995). Concentration and transport of nitrate by the mat-forming

Frontiers in Marine Science | www.frontiersin.org 13 May 2018 | Volume 5 | Article 171

https://www.frontiersin.org/articles/10.3389/fmars.2018.00171/full#supplementary-material
https://doi.org/10.1002/lno.10084
https://doi.org/10.3354/ame015311
https://doi.org/10.1128/AEM.71.3.1553-1561.2005
https://doi.org/10.1111/j.1365-2745.2004.00943.x
https://doi.org/10.1038/nrmicro2262
https://doi.org/10.1111/j.1574-6941.2008.00626.x
https://doi.org/10.1111/j.1574-6941.1996.tb00340.x
https://doi.org/10.4319/lo.1988.33.4_part_2.0725
https://doi.org/10.1007/BF00248613
https://doi.org/10.1128/JB.01154-08
https://doi.org/10.1128/AEM.66.4.1715-1719.2000
https://doi.org/10.1016/j.niox.2014.12.009
https://doi.org/10.1111/j.1574-6941.2005.00026.x
https://doi.org/10.1128/AEM.00952-08
https://doi.org/10.3389/fmicb.2016.00440
https://doi.org/10.1128/JB.187.4.1392-1404.2005
https://doi.org/10.1186/1471-2164-15-924
https://doi.org/10.1111/j.1365-2672.1998.tb05294.x
https://doi.org/10.1038/35077067
https://doi.org/10.1111/1758-2229.12149
https://doi.org/10.1007/BF00425577
https://doi.org/10.1128/AEM.03391-16
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Cúcio et al. Sulfur Bacteria in the Rhizosphere of Zostera marina

sulphur bacterium Thioploca. Nature 374, 713–715. doi: 10.1038/37

4713a0

Frederiksen, M. S., and Glud, R. N. (2006). Oxygen dynamics in the rhizosphere of

Zostera marina: a two-dimensional planar optode study. Limnol. Oceanogr. 51,

1072–1083. doi: 10.4319/lo.2006.51.2.1072

Frigaard, N. U., and Dahl, C. (2008). Sulfur metabolism in

phototrophic sulfur bacteria. Adv. Microb. Physiol. 54, 103–200.

doi: 10.1016/S0065-2911(08)00002-7

Gacia, E., Granata, T. C., and Duarte, C. M. (1999). An approach to measurement

of particle flux and sediment retention within seagrass (Posidonia oceanica)

meadows. Aquat. Bot. 65, 255–268. doi: 10.1016/S0304-3770(99)00044-3

Galushko, A. S., and Rozanova, E. P. (1991).Desulfobacterium cetonicum sp. nov.: a

sulfate-reducing bacteriumwhich oxidizes fatty acids and ketones. Microbiology

60, 742–746.

Gardebrecht, A., Markert, S., Sievert, S. M., Felbeck, H., Thürmer, A., Albrecht, D.,

et al. (2012). Physiological homogeneity among the endosymbionts of Riftia

pachyptila and Tevnia jerichonana revealed by proteogenomics. ISME J. 6,

766–776. doi: 10.1038/ismej.2011.137

Giere, O., and Langheld, C. (1987). Structural organisation, transfer and biological

fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93, 641–650.

doi: 10.1007/BF00392801

Green, E. P., and Short, F. T. (2003). World Atlas of Seagrasses. Berkeley, CA:

University of California Press.

Green-García, A. M., and Engel, A. S. (2012). Bacterial diversity of siliciclastic

sediments in a Thalassia testudinum meadow and the implications for

Lucinisca nassula chemosymbiosis. Estuar. Coast. Shelf Sci. 112, 153–161.

doi: 10.1016/j.ecss.2012.07.010

Grimm, F., Franz, B., and Dahl, C. (2011). Regulation of dissimilatory sulfur

oxidation in the purple sulfur bacterium Allochromatium vinosum. Front.

Microbiol. 2:51. doi: 10.3389/fmicb.2011.00051

Gros, O., Darrasse, A., Durand, P., Frenkiel, L., and Mouëza, M. (1996).

Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont

in the tropical lucinid bivalve Codakia orbicularis. Appl. Environ. Microb. 62,

2324–2330.

Gros, O., Elisabeth, N. H., Gustave, S. D., Caro, A., and Dubilier, N. (2012).

Plasticity of symbiont acquisition throughout the life cycle of the shallow-water

tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ. Microbiol. 14,

1584–1595. doi: 10.1111/j.1462-2920.2012.02748.x

Gros, O., Liberge, M., Heddi, A., Khatchadourian, C., and Felbeck, H. (2003).

Detection of free-living forms of sulfide-oxidizing gill endosymbionts in the

lucinid habitat (Thalassia testudinum environment). Appl. Environ. Microb. 69,

6264–6267. doi: 10.1128/AEM.69.10.6264-6267.2003

Grossi, L. (2009). Hydrogen sulfide induces nitric oxide release from nitrite. Bioorg.

Med. Chem. Lett. 19, 6092–6094. doi: 10.1016/j.bmcl.2009.09.030

Haft, D. H., Loftus, B. J., Richardson, D. L., Yang, F., Eisen, J. A., Paulsen, I. T., et al.

(2001). TIGRFAMs: a protein family resource for the functional identification

of proteins. Nucleic Acids Res. 29, 41–43. doi: 10.1093/nar/29.1.41

Han, T., and Perner, M. (2015). The globally widespread genus Sulfurimonas:

versatile energy metabolisms and adaptations to redox clines. Front. Microbiol.

6:989. doi: 10.3389/fmicb.2015.00989

Hensen, D., Sperling, D., Trüper, H. G., Brune, D. C., and Dahl, C. (2006).

Thiosulphate oxidation in the phototrophic sulphur bacteriumAllochromatium

vinosum.Mol. Microbiol. 62, 794–810. doi: 10.1111/j.1365-2958.2006.05408.x

Holmer, M., and Nielsen, S. L. (1997). Sediment sulfur dynamics related to

biomass-density patterns in Zostera marina (eelgrass) beds. Mar. Ecol. Prog.

Ser. 146, 163–171. doi: 10.3354/meps146163

Holmer, M., Pedersen, O., and Ikejima, K. (2006). Sulfur cycling and sulfide

intrusion in mixed Southeast Asian tropical seagrass meadows. Bot. Mar. 49,

91–102. doi: 10.1515/BOT.2006.013

Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C.,

et al. (2016). eggNOG 4.5: a hierarchical orthology framework with improved

functional annotation for eukaryotic, prokaryotic and viral sequences. Nucleic

Acids Res. 44, D286–D293. doi: 10.1093/nar/gkv1248

Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L.

J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site

identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119

Imhoff, J. F. (2005). “Chromatiales ord. nov.,” in Bergey’s Manual of Systematic

Bacteriology, The Proteobacteria Part B, The Gammaproteobacteria, eds D. J.

Brenner, N. R. Krieg, J. T. Staley, and G. M. Garrity (New York, NY: Springer),

1–59.

Jensen, S. I., Kühl, M., and Priem,é, A. (2007). Different bacterial communities

associated with the roots and bulk sediment of the seagrass Zostera marina.

FEMS Microbiol. Ecol. 62, 108–117. doi: 10.1111/j.1574-6941.2007.00373.x

Jørgensen, B. B. (1982). Mineralization of organic matter in the sea bed – the role

of sulphate reduction. Nature 296, 643–645. doi: 10.1038/296643a0

Jørgensen, B. B., and Nelson, D. C. (2004). “Sulfide oxidation in marine sediments:

Geochemistry meets microbiology,” in Sulfur Biogeochemistry-Past and Present,

eds J. P. Amend, K. J. Edwards, and T. W. Lyons (Boulder, CO: Geological

Society of America), 63–81.

Kämpf, C., and Pfennig, N. (1980). Capacity for Chromatiaceae for

chemotrophic growth. Specific respiration rates of Thiocystis violacea and

Chromatium vinosum. Arch. Microbiol. 127, 125–135. doi: 10.1007/BF004

28016

Kanehisa,M., Sato, Y., andMorishima, K. (2016). BlastKOALA andGhostKOALA:

KEGG tools for functional characterization of genome and metagenome

sequences. J. Mar. Biol. 428, 726–731. doi: 10.1016/j.jmb.2015.11.006

Kleindienst, S., Herbst, F. A., Stagars, M., von Netzer, F., von Bergen,

M., Seifert, J., et al. (2014). Diverse sulfate-reducing bacteria of the

Desulfosarcine/Desulfococcus clade are the key alkane degraders atmarine seeps.

ISME J. 8, 2029–2044. doi: 10.1038/ismej.2014.51

Klose, J., Polz, M. F., Wagner, M., Schimak, M. P., Gollner, S., and Bright, M.

(2015). Endosymbionts escape dead hydrothermal vent tubeworms to enrich

the free-living population. Proc. Natl. Acad. Sci. U.S.A. 112, 11300–11305.

doi: 10.1073/pnas.1501160112

König, S., Gros, O., Heiden, S. E., Hinzke, T., Thürmer, A., Poehlein, A.,

et al. (2016). Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat.

Microbiol. 2:16193. doi: 10.1038/nmicrobiol.2016.193

Krueger, D. M., Gustafson, R. G., and Cavanaugh, C. M. (1996). Vertical

transmission of chemoautotrophic symbionts in the bivalve Solemya velum

(Bivalvia: Protobranchia). Biol. Bull. 190, 195–202. doi: 10.2307/1542539

Laczny, C. C., Sternal, T., Plugaru, V., Gawron, P., Atashpendar, A.,

Matgossian, H. H., et al. (2015). VizBin – an application for reference-

independent visualization and human-augmented binning of metagenomic

data.Microbiome 3:1. doi: 10.1186/s40168-014-0066-1

Lamb, J. B., van de Water, J. A., Bourne, D. G., Altier, C., Hein, M. Y.,

Fiorenza, E. A., et al. (2017). Seagrass ecosystems reduce exposure to

bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733.

doi: 10.1126/science.aal1956

Lenk, S., Arnds, J., Zerjatke, K., Musat, N., Amann, R., and Muβmann, M. (2011).

Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon

fixation in a coastal, intertidal sediment. Environ. Microbiol. 13, 758–774.

doi: 10.1111/j.1462-2920.2010.02380.x

Li, D., Liu, C. M., Luo, R., Sadakane, K., and Lam, T. W. (2015). MEGAHIT:

an ultra-fast single-node solution for large and complex metagenomics

assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

doi: 10.1093/bioinformatics/btv033

Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved

detection of transfer RNA genes in genome sequence. Nucl. Acids Res. 25,

955–964. doi: 10.1093/nar/25.5.0955

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al.

(2004). ARB: a software environment for sequence data. Nucleic Acids Res. 32,

1363–1371. doi: 10.1093/nar/gkh293

Luther, G. W. III., Findlay, A. J., Macdonald, D. J., Owings, S. M., Hanson,

T. E., Beinart, R. A., et al. (2011). Thermodynamics and kinetics of

sulfide oxidation by oxygen: a look at inorganically controlled reactions and

biologicallymediated processes in the environment. FEMSMicrobiol. Ecol. 2:62.

doi: 10.3389/fmicb.2011.00062

Marcia, M., Ermler, U., Peng, G., and Michel, H. (2010). A new structure-

based classification of sulfide:quinone oxidoreductases. Proteins 78, 1073–1083.

doi: 10.1002/prot.22665

Markert, S., Arndt, C., Felbeck, H., Becher, D., Sievert, S. M., Hügler, M., et al.

(2007). Physiological proteomics of the uncultured endosymbiont of Riftia

pachyptila. Science 315, 247–250. doi: 10.1126/science.1132913

Mejia, A. Y., Rotini, A., Lacasella, F., Bookman, R., Thaller, M., Shem-Tov, R.,

et al. (2016). Assessing the ecological status of seagrasses using morphology,

biochemical descriptors and microbial community analysis. A study in

Frontiers in Marine Science | www.frontiersin.org 14 May 2018 | Volume 5 | Article 171

https://doi.org/10.1038/374713a0
https://doi.org/10.4319/lo.2006.51.2.1072
https://doi.org/10.1016/S0065-2911(08)00002-7
https://doi.org/10.1016/S0304-3770(99)00044-3
https://doi.org/10.1038/ismej.2011.137
https://doi.org/10.1007/BF00392801
https://doi.org/10.1016/j.ecss.2012.07.010
https://doi.org/10.3389/fmicb.2011.00051
https://doi.org/10.1111/j.1462-2920.2012.02748.x
https://doi.org/10.1128/AEM.69.10.6264-6267.2003
https://doi.org/10.1016/j.bmcl.2009.09.030
https://doi.org/10.1093/nar/29.1.41
https://doi.org/10.3389/fmicb.2015.00989
https://doi.org/10.1111/j.1365-2958.2006.05408.x
https://doi.org/10.3354/meps146163
https://doi.org/10.1515/BOT.2006.013
https://doi.org/10.1093/nar/gkv1248
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1111/j.1574-6941.2007.00373.x
https://doi.org/10.1038/296643a0
https://doi.org/10.1007/BF00428016
https://doi.org/10.1016/j.jmb.2015.11.006
https://doi.org/10.1038/ismej.2014.51
https://doi.org/10.1073/pnas.1501160112
https://doi.org/10.1038/nmicrobiol.2016.193
https://doi.org/10.2307/1542539
https://doi.org/10.1186/s40168-014-0066-1
https://doi.org/10.1126/science.aal1956
https://doi.org/10.1111/j.1462-2920.2010.02380.x
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/nar/25.5.0955
https://doi.org/10.1093/nar/gkh293
https://doi.org/10.3389/fmicb.2011.00062
https://doi.org/10.1002/prot.22665
https://doi.org/10.1126/science.1132913
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Cúcio et al. Sulfur Bacteria in the Rhizosphere of Zostera marina

Halophila stipulaceae (Forsk.) Aschers meadows in the northern Red Sea. Ecol.

Indic. 60, 1150–1163. doi: 10.1016/j.ecolind.2015.09.014

Menzel, P., Ng, K. L., and Krogh, A. (2016). Fast and sensitive taxonomic

classification for metagenomics with Kaiju. Nat. Commun. 7:11257.

doi: 10.1038/ncomms11257

Meyer, B., Imhoff, J. F., and Kuever, J. (2007). Molecular analysis of the distribution

and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution

of the Sox sulfur oxidation enzyme system. Environ. Microbiol. 9, 2957–2977.

doi: 10.1111/j.1462-2920.2007.01407.x

Meyer, B., and Kuever, J. (2007a). Phylogeny of the alpha and beta subunit

of the dissimilatory adenosine-5’-phosphosulfate (APS) reductase

from sulfate-reducing prokaryotes – origin and evolution of the

dissimilatory sulfate-reduction pathway. Microbiology 153, 2026–2044.

doi: 10.1099/mic.0.2006/003152-0

Meyer, B., and Kuever, J. (2007b). Molecular analysis of the distribution

and phylogeny of dissimilatory adenosine-5’-phosphosulphate reductase-

encoding genes (aprBA) among sulfur-oxidizing prokaryotes.Microbiology 153,

3478–3498. doi: 10.1099/mic.0.2007/008250-0

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., et al.

(2008). The metagenomics RAST server – a public resource for the automatic

phylogenetic and functional analysis of metagenomes. BMC Bioinformatics

9:386. doi: 10.1186/1471-2105-9-386

Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester,M., and Loy, A. (2015). Phylogenetic

and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases.

ISME J. 9, 1152–1165. doi: 10.1038/ismej.2014.208

Otte, S., Kuenen, J. G., Nielsen, L. P., Paerl, H. W., Zopfi, J., Schulz, H. N., et al.

(1999). Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples.

Appl. Environ. Microbiol. 65, 3148–3157.

Pagès, A., Welsh, D. T., Robertson, D., Panther, J. G., Schäfer, J., et al. (2012).

Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of

phosphate and ammonium in the rhizosphere of Zostera capricorni. Estuar.

Coast. Shelf Sci. 115, 282–290. doi: 10.1016/j.ecss.2012.09.011

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G.

W. (2015). CheckM: assessing the quality of microbial genomes recovered

from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055.

doi: 10.1101/gr.186072.114

Peng, Y., Leung, H. C., Yiu, S. M., and Chin, F. Y. (2012). IDBA-UD: a de

novo assembler for single-cell and metagenomic sequencing data with highly

uneven depth. Bioinformatics 28, 1420–1428. doi: 10.1093/bioinformatics/

bts174

Pérez, M., Invers, O., Ruiz, J. M., Frederiksen, M. S., and Holmer, M. (2007).

Physiological responses of the seagrass Posidonia oceanica to elevated organic

matter content in sediments: an experimental assessment. J. Exp. Mar. Biol.

Ecol. 344, 149–160. doi: 10.1016/j.jembe.2006.12.020

Preisler, A., de Beer, D., Lichtschlag, A., Lavik, G., Boetius, A., and Jørgensen, B.

B. (2007). Biological and chemical sulfide oxidation in a Beggiatoa inhabited

marine sediment. ISME J. 1, 341–353. doi: 10.1038/ismej.2007.50

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 – Approximately

maximum-likelihood trees for large alignments. PLoS ONE 5:e9490.

doi: 10.1371/journal.pone.0009490

Reinartz, M., Tschäpe, J., Brüser, T., Trüper, H. G., and Dahl, C. (1998). Sulfide

oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch.

Microbiol. 170, 59–68. doi: 10.1007/s002030050615

Sayama, M. (2001). Presence of nitrate-accumulating sulfur bacteria and their

influence on nitrogen cycling in a shallow coastal marine sediment. Appl.

Environ. Microbiol. 67, 3481–3487. doi: 10.1128/AEM.67.8.3481-3487.2001

Sayama, M., Risgaard-Petersen, N., Nielsen, L. P., Fossing, H., and

Christensen, P. B. (2005). Impact of bacterial NO−

3 transport on

sedimentary biogeochemistry. Appl. Environ. Microbiol. 71, 7575–7577.

doi: 10.1128/AEM.71.11.7575-7577.2005

Short, F. T., Burdick, D. M., Short, C. A., Davis, R. C., and Morgan, P. A.

(2000). Developing success criteria for restored eelgrass, saltmarsh and mud

flat habitats. Ecol. Eng. 15, 239–252. doi: 10.1016/S0925-8574(00)00079-3

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011).

Fast, scalable generation of high-quality protein multiple sequence alignments

using Clustal Omega.Mol. Syst. Biol. 7:539. doi: 10.1038/msb.2011.75

Stewart, F. J., Dmytrenko, O., DeLong, E. F., and Cavanaugh, C. M. (2011).

Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of

Solemya velum. Front. Microbiol. 2:134. Doi:10.3389/fmicb.2011.00134

Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin,

E. V., et al. (2003). The COG database: an updated version includes eukaryotes.

BMC Bioinformatics 4:41. doi: 10.1186/1471-2105-4-41

Thomas, F., Giblin, A. E., Cardon, Z. G., and Sievert, S. M. (2014).

Rhizosphere heterogeneity shapes abundance and activity of sulfur-

oxidizing bacteria in vegetated salt marsh sediments. Front. Microbiol.

5:309. doi: 10.3389/fmicb.2014.00309

Van der Heide, T., Govers, L. L., de Fouw, J., Olff, H., van der Geest, M., van

Katwijk, M. M., et al. (2012). A three-stage symbiosis forms the foundation of

seagrass ecosystems. Science 336, 1432–1434. doi: 10.1126/science.1219973

Woyke, T., Teeling, H., Ivanova, N. N., Huntemann, M., Richter, M., Gloeckner,

F. O., et al. (2006). Symbiosis insights through metagenomic analysis of a

microbial consortium. Nature 443, 950–955. doi: 10.1038/nature05192

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Cúcio, Overmars, Engelen and Muyzer. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Marine Science | www.frontiersin.org 15 May 2018 | Volume 5 | Article 171

https://doi.org/10.1016/j.ecolind.2015.09.014
https://doi.org/10.1038/ncomms11257
https://doi.org/10.1111/j.1462-2920.2007.01407.x
https://doi.org/10.1099/mic.0.2006/003152-0
https://doi.org/10.1099/mic.0.2007/008250-0
https://doi.org/10.1186/1471-2105-9-386
https://doi.org/10.1038/ismej.2014.208
https://doi.org/10.1016/j.ecss.2012.09.011
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1016/j.jembe.2006.12.020
https://doi.org/10.1038/ismej.2007.50
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1007/s002030050615
https://doi.org/10.1128/AEM.67.8.3481-3487.2001
https://doi.org/10.1128/AEM.71.11.7575-7577.2005
https://doi.org/10.1016/S0925-8574(00)00079-3
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1186/1471-2105-4-41
https://doi.org/10.3389/fmicb.2014.00309
https://doi.org/10.1126/science.1219973
https://doi.org/10.1038/nature05192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

	Metagenomic Analysis Shows the Presence of Bacteria Related to Free-Living Forms of Sulfur-Oxidizing Chemolithoautotrophic Symbionts in the Rhizosphere of the Seagrass Zostera marina
	Introduction
	Materials and Methods
	Sample Collection and Preparation
	Metagenomic Sequencing
	Metagenomic Analysis
	Phylogenetic Reconstruction of Sulfur Genes
	Reconstruction and Analysis of Draft Genomes

	Results
	Bacterial Community Structure
	Diversity of Sulfur Genes in the Rhizobiome of Z. marina
	Reconstructed Draft Genomes

	Discussion
	Bacterial Community Structure
	Diversity of Sulfur Genes in the Rhizobiome of Z. marina
	Symbiont-Related Bacteria in the Rhizosphere of Z. marina
	Reconstructed Symbiont-Related Draft Genomes

	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


