
For Review Only

 1 

Effectiveness of various sorbents and biological oxidation in the removal of arsenic species from 1 

groundwater 2 

 3 
Anna Corsini1, Lucia Cavalca1, Gerard Muyzer1,2, Vincenza Andreoni1, Patrizia Zaccheo3, * 4 
1 Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS) Università degli 5 
Studi di Milano, Milano, Italy, anna.corsini@unimi.it; lucia.cavalca@unimi.it; 6 
vincenza.andreoni@unimi.it  7 
2 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE 8 
Amsterdam, The Netherlands, G.Muijzer@uva.nl  9 
3 Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), 10 
Università degli Studi di Milano, Milano, Italy,  11 
* corresponding author patrizia.zaccheo@unimi.it 12 
 13 

Environmental Context 14 

Arsenic contamination of aquifers is a worldwide public health concern and several technologies 15 

have been developed to reduce arsenic concentrations below the limit imposed by World Health 16 

Organization. We investigated the efficiency of new and conventional materials for arsenic removal 17 

from groundwater and found that iron-based sorbents have great affinity for arsenic even if 18 

groundwater composition can depress their ability to bind arsenic. Moreover, we showed that the 19 

use of microorganisms can enhance the efficiency of adsorption in the removal of arsenic from 20 

groundwater. 21 

 22 

Abstract 23 

Batch experiments were conducted to evaluate As(III) and As(V) adsorption capacity of five 24 

sorbents (i.e., biochar, chabazite, ferritin-based material, goethite and nano zero-valent iron) in 25 

artificial systems at autoequilibrium pH (MilliQ water without adjusting the pH) and at circa neutral 26 

pH (i.e., Tris-HCl, pH 7.2). At autoequilibrium pH, the effects of sorbents on removal of 200 µg L-1 27 

As ranged from very high efficiency for iron-based sorbents to ineffectiveness for biochar and 28 
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chabazite. When tested at circa neutral pH, the sorbents were capable to remove between 17% and 29 

100% of As(III) and between 3% and 100% of As(V) in the following order of sorbents: biochar < 30 

chabazite < ferritin-based material < goethite < nano zero-valent iron. The study also highlighted 31 

that chabazite, a ferritin-based material, and nano zero-valent iron oxidized As(III) to As(V) and 32 

that the ferritin-based material was also able to reduce As(V) to As(III). When tested in naturally 33 

arsenic-contaminated groundwater, a marked decrease in the removal effectiveness of nano zero-34 

valent iron and goethite occurred (60% and 12%, respectively), due to possible competition with 35 

phosphates and manganese. 36 

The usefulness of a biological oxidation step was evaluated in one-phase process (As(III) bio-37 

oxidation in conjunction with As(V) adsorption) and in two-phase process (As(III) bio-oxidation 38 

followed by As(V) adsorption), both in As(III)-spiked Tris-HCl and in natural groundwater 39 

systems. As(III) oxidation was performed by resting cells of Aliihoeflea sp. strain 2WW, and 40 

arsenic adsorption by goethite. In the one-phase process As removal in Tris-HCl was >95%, while 41 

in groundwater it decreased to 85%. More effective was the two-phase process that removed up to 42 

95% As in groundwater leaving in solution 6 µg L-1 arsenic, thus meeting the limit of 10 µg L-1 43 

imposed by World Health Organization. 44 

These results can be used in the scaling up of a two-phase treatment, with bacterial oxidation of 45 

arsenic used in combination with goethite sorption. 46 

 47 

Introduction 48 

Extensive arsenic pollution in groundwater affects highly populated areas in such a serious way that 49 

arsenic became one of the major public health problems. Consequently a wide range of technologies 50 

has been tried for the removal of arsenic from drinking water; the most common techniques utilize 51 

the processes of oxidation, co-precipitation, adsorption onto sorptive media, ion exchange and 52 

membrane techniques.[1,2] Among these, the adsorption of arsenic onto natural and synthetic 53 

materials have been broadly studied and it represents one of the most common treatment 54 
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technologies practiced by the public drinking water systems in large municipal treatment plants and 55 

in small devices for small communities.  56 

The adsorption of arsenic onto natural and synthetic materials is a low cost, high efficiency process. 57 

A wide range of materials for aqueous arsenic removal is available nowadays. Sorbent based on 58 

iron oxides/hydroxides and on activated alumina are the most common conventional materials; 59 

other metal oxides-based sorbents, such as manganese dioxides, titanium dioxide, zirconium oxides, 60 

have been proposed, together with clays, natural zeolites and calcite.[3]  61 

A broad range of materials that are coming from agricultural or industrial processes, and that are 62 

easily accessible and low-cost have been evaluated in the screening of new sorbents. Materials 63 

derived from biological sources have also been studied as low cost sorbents, such as loaded orange 64 

waste gel,[4] agricultural residue rice polish,[5] iron-modified bamboo charcoal,[6] bagasse fly ash.[7] 65 

Some fresh and immobilized plant biomasses gained a significant interest for their ability to 66 

passively adsorb arsenite, thereby avoiding the pre-oxidation step.[8,9] Mineral byproducts such as 67 

magnesia-loaded fly ash cenospheres and manganese-loaded fly ash cenospheres,[10] Zr(IV) iron 68 

modified red mud [11] have also been reported as promising sorbents for the removal of arsenic.  69 

Metallic iron as zero-valent iron nanoparticles has been used in the past for the treatment of As-70 

contaminated groundwater and also as a reactive medium in a number of field scale experiments.[12] 71 

Similarly to inorganic iron nanoparticles, iron storage proteins (i.e. ferritin) are nanostructures that 72 

can encapsulate in the form of a nano-cage several compounds, such as phosphate.[13] To the best of 73 

our knowledge, no evidence have been reported on arsenic removal capability of ferritin. 74 

The main disadvantages of As adsorption onto solid materials are the direct competition for 75 

available adsorption sites between arsenic and other oxyanions in the water,[14] and the general need 76 

of a pre-oxidation step to transform arsenite to arsenate.[12] 77 

In fact, the two more common forms of arsenic in water show completely different patterns of 78 

dissociation, as a consequence of the predominance of the neutral species H3AsO3 for arsenite 79 

[As(III)] at pH 2-8 and of the single negatively charged H2AsO4 for arsenate [As(V)] at pH values 80 
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3-6.[15] Arsenite is therefore more difficult to be removed by the positively charged surfaces of 81 

sorbents. This is a crucial point because the revised drinking water standard for arsenic imposes to 82 

reduce arsenic concentrations to less than 10 µg L-1 [16] and consequently there is a dramatic demand 83 

for oxidation technologies that effectively convert arsenite into arsenate prior to its removal.[17] 84 

Biological oxidation of As(III) by microorganism has recently received lot of attention as a 85 

sustainable alternative to the use of chemical oxidants.[18,20]  86 

In the present study natural minerals (goethite, chabazite), a pyrolysis byproduct (biochar) and iron-87 

based nanomaterials (ferritin-based material and zerovalent iron) were examined at their best 88 

effective dose for their ability and selectivity in removing As(III) and As(V) from water. The aim of 89 

the first part of the work was to explore the potential of conventional and novel materials as 90 

sorbents for As(III) and As(V) and their oxidizing power with respect to As(III). We performed 91 

batch experiments in two conditions: (i) without controlling pH in order to evaluate the sorbents in 92 

the actual case of small devices with a high ratio sorbent/water; (ii) at circa neutral pH simulating 93 

real groundwater conditions. Furthermore, in order to evaluate the interaction between chemical 94 

removal by sorbents and As(III) biological oxidation, the effect of an As oxidizer selected bacterial 95 

strain on the sorption properties of a high effective As(V) sorbent was evaluated in the artificial 96 

system and then assessed on a natural As-rich groundwater.  97 

 98 

Materials and methods 99 

 100 

Sorbents and chemicals 101 

Sorption experiments were conducted with five materials: biochar, chabazite, ferritin-based material 102 

goethite (FeOOH), and nano zero-valent iron (Fe0) NZVI. Biochar was from Agrindustria snc, and 103 

derived from pyrolysis of pinewood; the sample used in adsorption experiments was milled and 104 

successively prehydrated in Tris-HCl buffer (5 mM, pH 7.2) or MilliQ water for 24hrs. 105 
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The chabazite-rich tuff was obtained by Verdi S.p.A. and contained 60% (w/w), chabazite, 25% 106 

(w/w) volcanic glass and traces of phillipsite, K-feldspar and biotite, with particles <200µm. 107 

Biochar and chabazite were free from significant amount of soluble arsenic (<0.5 µg L-1 and 4 µg L-108 
1 for biochar and chabazite, respectively). 109 

Ferritin-based material was provided by BiAqua B.V. (The Netherlands) and the protein is 110 

stabilized onto sand, used as carrier (2.74 mg ferritin g-1 dry sand). 111 

The goethite used in this study was from Sigma Aldrich, and had a specific surface area of 11.6 112 

m2g-1. 113 

A commercial zero-valent iron (NANOFER 25) was supplied by the NANOIRON s.r.o and 114 

consisted of aqueous dispersion of Fe0 nanoparticles stabilized by an inorganic modifier. 115 

Arsenate and arsenite solution were prepared by spiking MilliQ water and Tris-HCl buffer (5 mM, 116 

pH 7.2) with 200 µg L-1 As(III) or As(V) from stock solutions of 1000 µg L-1 NaAsO2 or 117 

Na2HAsO4. (Sigma). 118 

 119 

Groundwater sample 120 

The groundwater sample used in the experiments was collected from an As-contaminated well in 121 

the Northern part of Italy (Cremona, Lombardy). Physico-chemical characterization revealed that 122 

the groundwater sample was anoxic (with an Eh value of -113 mV, and no dissolved oxygen) and 123 

had the following physicochemical characteristics: temperature of 15 °C; pH value of 7.6; CaCO3 124 

282 mg L-1; organic C 2.11 µg L-1; dissolved S-SO4 267 µg L-1; dissolved P- PO4 312 µg L-1; 125 

dissolved N-NO3 685 µg L-1; dissolved N-NH4 2680 µg L-1; dissolved Fe 760 µg L-1; dissolved Mn 126 

97 µg L-1. The arsenic concentration in the sample was 171 µg L-1, with As(III) as the main As 127 

species. 128 

 129 

Resting cells preparation 130 
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The biological arsenite oxidation step was carried out by addition of resting cells of Aliihoeflea sp. 131 

strain 2WW. Resting cells of the strain were able to oxidize As(III) in Tris-HCl.[21] 132 

The bacterial strain was grown for 48 h in mineral medium (BBWM) supplemented with sodium 133 

lactate (40 mmol L-1) (BBWM-L) at 30°C in shaking condition at 150 rpm. BBWM consisted of: 134 

solution A (g L-1): KH2PO4 0.04; K2HPO4 0.04; NaCl 1.0; (NH4)2SO4 0.4; trace element solution 2 135 

mL. The pH of solution A was 6.5. Solution B (g L-1): CaCl2 0.2; MgSO4 0.2. Solutions A and B 136 

were sterilized separately by autoclaving. Equal volumes of solutions A and B were mixed after 137 

cooling and then supplemented with 1% (v/v) vitamin solution. Vitamin solution was filter 138 

sterilized and contained (mg L-1): p-aminobenzoic acid 5; biotin 5; folic acid 2; pyridoxine-HCl 1; 139 

riboflavin 5; thiamine 5; nicotinic acid 5; panthotenic acid 5; vitamin B12 0.1. The pH was adjusted 140 

to 8.0. After growth, cells were centrifuged at 10,000 rpm, 10 °C for 30 min. Cell pellet was washed 141 

three times with Tris-HCl (5 mM, pH 7.2) and resuspended in Tris-HCl (5 mM, pH 7.2). This cell 142 

suspension served as inoculum in order to obtain a final cell density of about 107 cell mL-1. 143 

 144 

Adsorption experiments in artificial and natural systems 145 

Sorbents were tested at their most effective dose, identified in a preliminary screening carried out 146 

with different amounts of each sorbent. Based on these results, the following quantities of sorbents 147 

(g 50 mL-1) were used: biochar 0.2, chabazite 1.0, goethite 0.2, ferritin-based material 11.4 and 148 

zero-valent iron (NZVI) 0.05.  149 

Adsorption experiments in artificial systems were performed in polypropylene tubes with the 150 

addition of 50 mL Tris-HCl (5mM pH 7.2) or MilliQ water, spiked with 200 µg L-1 As(III) or 151 

As(V), chosen on the base of arsenic content of the groundwater used in the present study. Batch 152 

experiments were prepared in aerobic condition, with the exception of those with NZVI that were 153 

filled under anaerobic condition in Nitrogen Dry Box (Plas Labs, Inc.) to prevent Fe0 oxidation. The 154 

tubes were closed with cotton plug in order to allow gaseous exchange. 155 
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Adsorption experiments in natural systems were performed with 50 mL natural As-contaminated 156 

groundwater in the presence of goethite (0.2, 1.0 g) and of NZVI (0.05 g). 157 

A preliminary check of a time course of the groundwater pH had shown a dramatic increase in pH 158 

values during 24 h of exposure to air (from 7.8 to 8.5), due to the evolution of dissolved CO2 159 

Consequently, batch experiments with natural As-contaminated water were prepared under 160 

anaerobic condition in Nitrogen Dry Box (Plas Labs, Inc.) and tubes were closed with plastic plugs. 161 

The effect of biological arsenite oxidation was evaluated in artificial and natural systems. Resting 162 

cells of Aliihoeflea sp. strain 2WW were added to 50 mL Tris-HCl or contaminated groundwater 163 

either in the absence or presence of goethite. A set of tubes with goethite only and one without 164 

addition of inoculum and goethite were used as controls. 165 

A one- and two-phase process was compared by adding the bacterial cells either together with 0.2 166 

and 1.0 g goethite (one-phase treatment) or by adding the bacterial cells 48 h before the addition of 167 

0.2 and 1.0 g goethite followed by 48 h incubation (two-phase treatment). 168 

All the experiments were incubated on a rotary shaker in the dark at 15 °C, chosen on the base of 169 

groundwater temperature measured on site. The pH was monitored at the beginning and at the end 170 

of the experiments using a Radiometer Copenhagen PHM210-pH meter. At the end of the 171 

experiments 20 mL of the suspensions were collected from each tube, centrifuged, filtered over 172 

nitrocellulose membranes (∅ 0.22 µm) and acidified with HNO3 to achieve a final concentration of 173 

2% (v/v). 174 

 175 

Analytical methods 176 

Total arsenic was determined in 5 mL of samples previously acidified with HNO3. For speciation of 177 

arsenic forms, As(V) and As(III) species were separated on the basis of their selective retention on a 178 

WATERS Sep-Pak® Plus Acell Plus QMA cartridge (Waters, MA, USA): As(V) is retained in the 179 

cartridge, while allowing As(III) to pass through and to be collected. The procedure was performed 180 

according to Kim et al.: [22] 5 mL of non-acidified samples were passed through the cartridge and 181 
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the flow-through (containing As(III)) was collected. The cartridge retaining As(V) was then washed 182 

with 0.16M HNO3 to elute As(V) from it.  183 

Arsenic contents (total As, As(III) and As(V)) were determined by inductively coupled plasma–184 

mass spectrometry (ICP-MS) (Agilent technologies, USA). Standards of As for concentrations 185 

ranging from 0 to 1 mg L-1 were prepared from sodium arsenite NaAsO2 (Sigma Aldrich, USA). 186 

For all the measures by ICP–MS an aliquot of a 2 mg/L of an internal standard solution (45Sc, 89Y, 187 
159Tb, Agilent technologies, USA) was added both to samples and calibration curve to give a final 188 

concentration of 20 mg L-1. The instrument was tuned daily with a multi-element tuning solution for 189 

optimised signal-to-noise ratio. 190 

Dissolved Mg, Ca, Mn, Fe and P content in the contaminated groundwater sample before and after 191 

the one-phase process were determined by ICP-MS; procedure was the same as that used for 192 

determining total arsenic. 193 

 194 

Statistical analysis 195 

Data represent the mean values obtained from at least three replicates of each experiments. The 196 

values were subjected to Student t-test (p<0.05) and to one-way ANOVA with Tukey-b test using 197 

the SPSS version 20.0.  198 

 199 

Results 200 

 201 

As(III) and As(V) removal by sorbents in artificial systems 202 

Batch test studies with sorbents were conducted at autoequilibrium pH (MilliQ water) and at neutral 203 

pH (Tris-HCl solution). 204 

Sorbents modified the pH of As-spiked MilliQ water at different values: pH 10.2 (biochar), pH 8.7 205 

(chabazite), pH 6.4 (ferritin-based material), pH 5.8 (goethite) and pH 8.7 (NZVI). The effects of 206 

sorbents on As(III) and As(V) removal from MilliQ water are reported in Figures 1a and 1b, 207 
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respectively. Removal of arsenic from biochar and chabazite had no significant effect on As(III) 208 

and As(V) mobility; on the contrary ferritin-based material, goethite and NZVI were able to remove 209 

both As(III) and As(V). Ferritin-based material and goethite showed a higher affinity for As(V) 210 

than As(III); while no detectable As remained in both the As(III) and As(V)-spiked solutions after 211 

1h contact with NZVI. Checking a 50-fold concentrated As-spiked MilliQ solutions added with 212 

0.05 g of NZVI, a higher affinity of NZVI for As(III) than As(V) was found: the remaining As(III) 213 

and As(V) in solution accounted for 4.3 mg L-1 and 6.8 mg L-1, respectively. 214 

Results of As(III) and As(V) adsorption experiments conducted in Tris-HCl buffered solutions are 215 

reported in Figure 2a and 2b, respectively. 216 

Preliminary trials showed that arsenic adsorption onto goethite was not significantly affected by the 217 

presence of Tris-HCl (data not shown). At neutral pH all tested sorbents induced a statistically 218 

significant decrease of As(III) concentration, the most drastic effect being exerted by ferritin-based 219 

material, goethite and NZVI. Similarly to As(III), ferritin-based material, goethite and NZVI 220 

efficiently immobilized As(V), while a slight removal of As(V) by biochar and chabazite was 221 

observed. Goethite showed a greater affinity for As(V) than for As(III). 222 

When As(III) was the initial arsenic species in the buffer solution, As(V) was detected at the end of 223 

the adsorption experiments in the presence of ferritin-based material, NZVI and, to a lesser extent, 224 

chabazite (Table 1), suggesting an abiotic oxidation of As(III). Conversely, As(V) seemed not to be 225 

reduced by sorbents, with the exception of ferritin-based material, that induced a reduction of one 226 

third of the total soluble arsenic recovered in the solution. 227 

 228 
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Adsorption of As(III) and As(V) from natural system by goethite and NZVI 229 

Arsenic removal efficiency of NZVI and goethite was evaluated in groundwater sample. The water 230 

pH in the control and in the treatments with sorbents were as follows: pH 7.5 (control), pH 7.1 231 

(goethite) and pH 7.7 (NZVI). 232 

Control without sorbents did not show changes in the amount and speciation of arsenic (Fig. 3); 233 

these indicated that no apparent changes of arsenic speciation due to biotic or abiotic reactions 234 

occurred in the time of the experiments. The performance of both sorbents was worse in the natural 235 

than in the artificial system: As immobilization by NZVI and by goethite were reduced by 60% and 236 

12%, respectively, as compared with those in MilliQ water. Speciation of the soluble arsenic at the 237 

sampling time indicated that NZVI promoted a complete oxidation of remaining As(III), while no 238 

detectable As(V) was recovered in the goethite treatment, thus confirming the absence of chemical 239 

or biological activities towards arsenic in the presence of goethite. 240 

 241 

Effect of bio-oxidation of As(III) on As removal in artificial and natural systems 242 

Due to the inability of goethite to oxidize As(III) in the groundwater, thus leading to arsenic 243 

concentration higher than the WHO limit, a biological As(III) oxidation step was considered in one- 244 

and two-phase experiments. 245 

Preliminary one-phase experiment in As(III)-spiked Tris-HCl solution (Fig. 4a), indicated that the 246 

combination of As(III) bio-oxidation and adsorption by goethite resulted in a high efficient removal 247 

of As (>95%), decreasing soluble As concentration to 8 µg L-1. At the end of the experiment, As(V) 248 

was the only detectable arsenic form in solution, indicating that the ability of the cells to oxidize 249 

As(III) was not affected by the presence of goethite. Resting cells of strain 2WW converted As(III) 250 

to As(V) completely, whereas goethite without cells removed approximately 85% of initial As(III). 251 

One-phase treatment was tested in natural system (i.e., As(III) contaminated groundwater) (Fig. 4b). 252 

Strain 2WW was able to completely oxidize 150 µg L-1 As(III) present in groundwater; in the 253 

absence of 2WW cells, goethite adsorbed As(III) present in the groundwater at a comparable level 254 
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of artificial system (85% removal). The combined As(III) bio-oxidation and adsorption process was 255 

not able to enhance arsenic removal, as observed in artificial system. This effect may be attributable 256 

to competition of other ions for goethite sorption sites. Changes in groundwater ion compositions 257 

during the time course of the experiment are reported in Table 2. A dramatic decrease of soluble 258 

iron concentration occurred in all tubes at the end of the incubation, while manganese and 259 

phosphorous concentration decreased in the presence of goethite. Neither calcium nor magnesium 260 

was removed in any treatment and dissolved carbon concentrations were negligible (data not 261 

shown). When the amount of goethite was increased from 0.2 g 50 mL-1 to 1.0 g 50 mL-1, no dose 262 

effect on As removal was evidenced either in the presence and in the absence of 2WW cells. 263 

The two-phase system approach applied to natural system was tested in the presence of two 264 

different goethite doses: 0.2 and 1.0 g 50 mL-1 (Figure 5). In the presence of goethite 0.2 g 50 mL-1 265 

the two-phase system led to 38.5 µg L-1 soluble arsenic, comparable with data obtained in the one-266 

phase system (26 µg L-1 soluble arsenic). When goethite dose was increased to 1.0 g 50 mL-1, As 267 

removal was >95%, thus lowering As concentration at 6 µg L-1, evidencing a dose effect on As 268 

removal. When in the presence of 2WW cells, As(V) was the only arsenic species in solution in all 269 

the systems (Figure 5). 270 

 271 

Discussion 272 

 273 

Groundwater contamination by arsenic may occur under both reducing and oxidizing conditions, 274 

and the ratio of As(III) to As(V) can vary significantly, depending on the condition of in situ 275 

oxidation state of water.[23] Moreover, groundwater-treatment plants for drinking water can treat 276 

groundwater as it is or after an oxygenation step. Therefore, the choice of the best sorbent for As 277 

removal from water must take into consideration its affinity for the species of arsenic to be 278 

removed. Low cost and high available materials could be good candidate as point-of-use sorbents to 279 

mitigate As polluted groundwater. 280 
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In our study we tested low cost sorbents such as biochar, chabazite and goethite, and compared 281 

them with high efficient, but highly operational complex materials (i.e., nano zero-valent iron and 282 

ferritin-based material). Batch experiments without controlling pH allow evaluating the sorbents in 283 

the actual case of small devices, with a high ratio sorbent/water. Autoequilibrium pH values led 284 

systems from mildly acid to highly alkaline and the effects of sorbents on As removal by water 285 

ranged from very high efficiency to ineffectiveness. When tested at circa neutral pH simulating real 286 

groundwater conditions, almost all the tested materials showed to remove both species of arsenic 287 

from As-spiked buffer solutions, from 4% to 100%, depending on the sorbent and on the As 288 

species. Biochar was recently proposed as a low-cost adsorbent in water treatment;[24] nevertheless 289 

no studies are reported on As retention by biochar in natural water. At pH 7.2 a significant but small 290 

removal of arsenic by biochar was detected, with a more favorable adsorption of As(III) versus 291 

As(V), in agreement with the ability of biochar in the adsorption of heavy metals.[25] Rise in pH 292 

seemed to have an adverse effect on biochar efficiency. Arsenate retention to biochar can be 293 

attributed to the same mechanism that allows phosphorus adsorption, as postulated by Beesley and 294 

Marmiroli;[26] biochar higher ability to remove arsenite than arsenate could be due to outer surfaces 295 

and inner porous micro-structures that explain retention.[27] 296 

The zeolite used in this study was mainly chabazite, which is reported to be more effective than 297 

other zeolitic rocks in removing arsenic from waters.[28] At autoequilibrium pH chabazite induced a 298 

10% reduction of As(III) concentration and showed no effect on As(V). At neutral pH the removal 299 

percentages of As(III) and As(V) were 30% and 6%, respectively. In our study a small amount of 300 

As(V) was retrieved in the solution at the end of the experiment, although Lièvremont et al. 301 

suggested that the high As(III) sorption capacity of chabazite was due to abiotic oxidation of 302 

As(III).[29] 303 

As expected, iron-based sorbents showed the highest adsorption capacity in artificial system. 304 

Ferritin-based material was recently proposed as a new bionanotechnological system for phosphate 305 

removal from waters;[13] to the best of our knowledge, no studies are reported on As removal by 306 
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ferritin-based material in natural systems. At autoequilibrium pH and at circa neutral pH, ferritin-307 

based material was capable to adsorb As(III) and As(V) in range from 70% to 78%. Particularly, 308 

arsenate retention to ferritin-based material can be due to the same mechanisms involved in 309 

phosphates adsorption.  310 

Arsenic adsorption rate onto NZVI reaches 100% both for As(III) and As(V) already after 1 h 311 

contact of As-spiked solutions with a 20-fold lower amount of sorbent than goethite. Adsorption 312 

process by using NZVI can remove both arsenate and arsenite simultaneously, without pre-313 

oxidation step, and such process does not require the use of additional chemical reagents.[30] A 314 

removal ability of NZVI was found by Kanel et al. on a minute time scale, explained by As 315 

adsorption onto corrosion products formed by heterogeneous reactions onto NZVI surface.[31] 316 

In our artificial system goethite removed 72% of 200 µg L-1 As(III) and 98% of 200 µg L-1 As(V), 317 

bringing down As(V) level below the threshold limit of 10 µg L-1. The higher affinity of goethite 318 

for As(V) suggests that oxidation  of As(III) to As(V) is required in the treatment of anoxic/suboxic 319 

groundwater where As(III) can be the most abundant species. In line with this, arsenic adsorption 320 

onto goethite was deeply enhanced (>95% of As removal) when the biological oxidation step was 321 

introduced in a one-phase treatment. For the As(III) oxidation in groundwater the findings from this 322 

study reveal that a biological process performed with resting cells of strain 2WW can be utilized as 323 

an alternative to a chemical oxidants. 324 

Our findings were in agreement with Lièvremont et al. who studied As removal process by using 325 

Tris-HCl solution in order to exclude competition between oxyanions (organic or inorganic ligands 326 

such as phosphate) and As(V) for sorption sites.[29] In accordance to this hypothesis, a decrease in 327 

the efficiency of As removal from groundwater was observed in the natural system during one-328 

phase process. 329 

Among the coexisting ions, present in similar or much higher concentrations than arsenic, Fe(II) 330 

oxidation followed by precipitation is known to promote As removal from water via adsorption and 331 

co-precipitation. Moreover the formation of ternary goethite-Fe-As complexes can increase 332 

Page 13 of 26

http://www.publish.csiro.au/nid/188.htm

Environmental Chemistry



For Review Only

 14 

adsorption of As(III) by goethite.[32] In our experiments without goethite addition the decrease of 333 

soluble Fe concentration in the groundwater sample at the end of the experiment suggests that Fe(II) 334 

was chemically and/or biotically oxidized by O2 or by O2-respiring bacteria, with a consequent 335 

precipitation as (oxy)hydroxides; at the same time only a slight decrease in As concentration of the 336 

groundwater was detected. Among other ions, manganese and phosphate showed a high affinity for 337 

goethite, being strongly removed from water. As for arsenic, manganese, which is naturally present 338 

in water in reduced form, can be retained on goethite by selective adsorption. The authors 339 

evidenced that Mn adsorption on hematite followed by Mn oxides production took up the potential 340 

sorption sites for As(V) and resulted in a decrease of As(V) removal. Moreover, phosphate and 341 

arsenate compete primarily for a similar set of surface sites on goethite.[34] Meng et al. demonstrated 342 

that at high phosphate concentrations (i.e. > 400 µg L-1), arsenic removal is not efficient, at least for 343 

an initial arsenic concentration 50 µg L-1.[35] In our study, after strain 2WW completely oxidized 344 

As(III), a PO4/AsO4 molar ratio of 6.0 was detected in the water sample indicating a competitive 345 

effect of phosphate on As(V) adsorption. Phosphate naturally present in the studied groundwater 346 

can firstly be adsorbed to goethite and saturated the sorption site of goethite, hindering biologically 347 

formed As(V) to be adsorbed to sites pre-occupied. 348 

In order to limit the effects of competing ions on As removal and thus meeting the threshold limit of 349 

10 µg L-1 As for drinking water, biological As(III) oxidation and goethite adsorption were 350 

performed separately (two-phase process). Differently from one-phase process, As(III) removal 351 

increased up to 96%, suggesting that the oxidation and adsorption steps must be performed 352 

separately. Our results are in agreement with previous findings on similar treatments that 353 

incorporate a biological transformation of arsenic and subsequent adsorption by different materials 354 

such as zero valent iron,[36] kutnahorite mineral sorbent,[29] and activated alumina.[37]  355 

 356 
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Conclusions 357 

 358 

Experimental results showed that many materials can be used for the treatment of As-polluted 359 

water, even if only iron-based sorbents are able to remove arsenic from water to levels below 10 µg 360 

L-1, to assure the water quality as recommended by government health agencies. Among them, nano 361 

zero-valent iron and goethite have the highest As removal efficiency. Along with the excitement 362 

over the prospects of nanotechnology, there have been increasing concerns regarding risks to public 363 

health that exposure to nanomaterials poses expecially after disposal.[38] In this perspective and 364 

considering the high efficiency of iron-based materials, the use of non nano-scale sorbents (i.e., 365 

zero-valent iron filings, natural iron oxide goethite) for drinking water treatment plants might be 366 

advantageous.  367 

This study showed that ferritin-based material could be considered an interesting iron-based 368 

sorbent, because it has the advantage to be regenerable, allowing a cost-effective solution for the 369 

end-user. 370 

Among the other tested sorbents, the use of biochar require further investigations to evaluate the 371 

role of raw materials, process conditions and feasible treatments to improve its ability to remove 372 

As(III), as biochar is a highly available, of wide geographically distribution and low cost material.  373 

The study also highlights that some of the studied sorbents can modify soluble As speciation (i.e., 374 

chabazite, ferritin-based material, nano zero-valent iron). Consequently the choice of the adsorption 375 

technique must take into account not only the main As species in the water, but also changes in the 376 

As chemical form that could occur during treatments, due to oxygenation of water, contact with 377 

highly reactive sorbents, microbial processes.  378 

Moreover this study highlights that the effectiveness of sorbents decrease in natural system, 379 

particularly that of nano zerovalent iron. Because removal of As(V) by goethite is more efficient 380 

than As(III) adsorption, there is a need for a pre-oxidation step that can enhance operational costs. 381 

Page 15 of 26

http://www.publish.csiro.au/nid/188.htm

Environmental Chemistry



For Review Only

 16 

In this sense, biological oxidation methods are considered to be a suitable approach to overcome 382 

these problems.  383 

These results pointed out that two main factors affected the arsenic removal from groundwater and 384 

should be considered in the scaling up of a treatment system: i) the quantity of sorbent in relation to 385 

arsenic and competing ion concentration; ii) the separation of As(III) oxidation and As(V) 386 

adsorption steps. 387 
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 485 

Fig.1 Soluble As before and after contact of 50 mL of 200 µg L-1 As(III)- (a) and As(V)- (b) spiked 486 

MilliQ water with biochar (0.2 g), chabazite (1.0 g), ferritin-based material (11.4 g), goethite (0.2 g) 487 

and NZVI (0.05 g). Experimental time: biochar, chabazite, ferritin-based material, goethite: 48 h; 488 

NZVI: 1 h. The asterisk indicates statistical significance at p=0.05 (single asterisk) and p=0.01 489 

(double asterisk) as compared with time 0, determined by the Student’s t test. 490 

 491 

Fig.2 Soluble As before and after contact of 50 mL of 200 µg L-1 As(III)- (a) and As(V)- (b) spiked 492 

Tris-HCl with biochar (0.2 g), chabazite (1.0 g), ferritin-based material (11.4 g), goethite (0.2 g) 493 

and NZVI (0.05 g) Experimental time: biochar, chabazite, ferritin-based material, goethite: 48 h; 494 

NZVI: 1 h. The asterisk indicates statistical significance at p=0.05 (single asterisk) and p=0.01 495 

(double asterisk) as compared with time 0, determined by the Student’s t test.  496 

 497 

Fig.3 Total As, As(III) and As(V) concentration in the As contaminated groundwater sample after 498 

contact with sorbents: NZVI (0.05 g 50 mL-1, experimental time:1 h), goethite (0.2 g 50 mL-1, 499 

experimental time: 48 h). Error bars represent the standard deviations of four replicates.  500 

 501 

Fig.4 Effect of As oxidizing strain 2WW on total As, As(III) and As(V) in 200 µg L-1 As(III)-502 

spiked Tris-HCl (artificial system) and in contaminated groundwater (natural system) after 48 h 503 

incubation. Error bars represent the standard deviations of quadruplicate experiments each with 4 504 

replicates. GW= As-contaminated groundwater 505 

 506 

Fig. 5 Effect of biological As(III) oxidation carried out in one- phase and two-phase process on 507 

total As concentration in contaminated groundwater after 48 h incubation. In the table is reported 508 

As speciation in 1.0 g goethite experiments.  509 
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Table 1. Speciation of soluble arsenic (µg L-1) retrieved after contact with sorbents (mean ±±±± 
standard deviation, n =3). 

 
  As(III) spiked Tris-HCl   As(V) spiked Tris-HCl 
 Total As(III) As(V)  Total As(III) As(V) 
Chabazite  190±1 180±9 17±6  ndA nd nd 
Ferritin-based material 54±7 42±3 23±0.3  37±10 30±5 15±7 
Goethite  43±4 40±6 2.2±0.7  5.0±1.5 <0.1 4.5±2.8 
NZVI 4.4±0.1 2.8±0.3 1.1±0.5  2.7±0.4 0.4±0.3 0.7±0.0 

A not determined 

 
 
 

Table 2. Total arsenic and main coexisting ions (µg L-1) in natural groundwater sample before 
and after 48 h incubation 

 
  As  Mn  Fe  P   
GWA at initial time  171 c 97 b 760 b 312 b  
GW at final time  150 b 84  b 151 a 373 b  
GW + strain 2WW  154 b 97  b 186 a 269 b  
GW + goethite  39 a 1.6    a 185 a < 10 a  
GW + strain 2WW + goethite    26 a 1.4    a 179 a < 10 a  

 
Values followed by the same lower case letters denote those not significantly different in each 
column (P < 0.05); A GW= As-contaminated groundwater 
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