46 research outputs found

    Assessment of strain measurement techniques to characterise mechanical properties of structural steel

    Get PDF
    Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain measurement techniques and others. Each technique has its own advantages and disadvantages. The purpose of this study is to quantitatively compare the strain measurement techniques. To carry out the tensile test experiments for S 235, sixty samples were cut from the web of the I-profile in longitudinal and transverse directions in four different dimensions. The geometry of samples are analysed by 3D scanner and vernier caliper. In addition, the strain values were determined by using strain gauge, extensometer and machine crosshead motion. Three techniques of strain measurement are compared in quantitative manner based on the calculation of mechanical properties (modulus of elasticity, yield strength, tensile strength, percentage elongation at maximum force) of structural steel. A statistical information was used for evaluating the results. It is seen that the extensometer and strain gauge provided reliable data, however the extensometer offers several advantages over the strain gauge and crosshead motion for testing structural steel in tension. Furthermore, estimation of measurement uncertainty is presented for the basic material parameters extracted through strain measurement

    UNCERTAINTY QUANTIFICATION IN CYCLIC CREEP PREDICTION OF CONCRETE

    Get PDF
    This paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading and materials properties; (ii) data uncertainty due to measurement errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to the consideration of all type of uncertainties, a measure for the total variation of the model response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90 are best performing models for cyclic creep prediction in that order. Further, global Sensitivity Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the contribution of each source of uncertainty to the overall prediction uncertainty and to identifying the important parameters. The error in determining the input quantities and model itself can produce significant changes in creep prediction values. The variability influence of input random quantities on the cyclic creep was studied by means of the stochastic uncertainty and sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude, number of cycle, in that order

    UNCERTAINTY QUANTIFICATION IN CYCLIC CREEP PREDICTION OF CONCRETE

    Get PDF
    This paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading and materials properties; (ii) data uncertainty due to measurement errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to the consideration of all type of uncertainties, a measure for the total variation of the model response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90 are best performing models for cyclic creep prediction in that order. Further, global Sensitivity Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the contribution of each source of uncertainty to the overall prediction uncertainty and to identifying the important parameters. The error in determining the input quantities and model itself can produce significant changes in creep prediction values. The variability influence of input random quantities on the cyclic creep was studied by means of the stochastic uncertainty and sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude, number of cycle, in that order

    Live HDR video streaming on commodity hardware

    Get PDF
    High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the soccer ball when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, so-called true HDR, it is crucial that all the dynamic range that was captured is delivered to the display device and tone mapping is confined only to the display. Furthermore, to ensure widespread uptake of HDR imaging, it should be low cost and available on commodity hardware. This paper describes an end-to-end HDR pipeline for capturing, encoding and streaming high-definition HDR video in real-time using off-the-shelf components. All the lighting that is captured by HDR-enabled consumer cameras is delivered via the pipeline to any display, including HDR displays and even mobile devices with minimum latency. The system thus provides an integrated HDR video pipeline that includes everything from capture to post-production, archival and storage, compression, transmission, and display

    Lateral-Torsional Response Control of MR Damper Connected Buildings

    No full text
    Lateral-torsional seismic response control of two single-storey asymmetric plan buildings, interconnected using multiple magnetorheological (MR) dampers, is studied. LQR control is used to obtain desired control forces. The desired damper force, for the two damper case studied herein, is obtained using least square minimization. Command voltages for the dampers are predicted using either a Recurrent Neural Network (RNN) or Clipped Voltage Law (CVL). Effective controllers are obtained based on performance criteria, by varying damper configurations and using ElCentro excitation. Response for harmonic excitation is obtained using the effective controllers. LQR-CVL and LQR-RNN prove considerably more effective than Passive-off control for response reduction of flexible building B1 but not so for rigid building B2. They yield a re-distribution of base shear and torque between the buildings. When compared to Passive-on control their performance ranges from superior to comparable, except for torsional acceleration of B2 for which it is inferior. They yield considerable reduction in peak base shear/torque, and require much less power, compared to Passive-on control where saturation voltage is applied. LQR-RNN is somewhat more effective than LQR-CVL in response attenuation. Hence, lateral-torsional response of adjacent asymmetric buildings can be attenuated using MR damper coupling driven by a LQR-RNN controller

    An adaptive LogLuv transform for high dynamic range video compression

    No full text
    High Dynamic Range (HDR) imaging represents a wide range of intensity levels found in real scenes ranging from direct sunlight to shadows. However, raw HDR sequences require very huge memory space for storage. In this work, we present an approach of how an existing encoder can be used for encoding HDR video sequence with our proposed adaptive LogLuv transform. The proposed method shows considerable improvement when compared with non-adaptive LogLuv transform

    Influence of loading and heating processes on elastic and geomechanical properties of eclogites and granulites

    Get PDF
    Increased knowledge of the elastic and geomechnical properties of rocks is important for numerous engineering and geoscience applications (e.g. petroleum geoscience, underground waste repositories, geothermal energy, earthquake studies, and hydrocarbon exploration). To assess the effect of pressure and temperature on seismic velocities and their anisotropy, laboratory experiments were conducted on metamorphic rocks. P- (Vp) and S-wave (Vs) velocities were determined on cubic samples of granulites and eclogites with an edge length of 43 mm in a triaxial multianvil apparatus using the ultrasonic pulse emission technique in dependence of changes in pressure and temperature. At successive isotropic pressure states up to 600 MPa and temperatures up to 600 °C, measurements were performed related to the sample coordinates given by the three principal fabric directions (x, y, z) representing the foliation (xy-plane), the normal to the foliation (z-direction), and the lineation direction (x-direction). Progressive volumetric strain was logged by the discrete piston displacements. Cumulative errors in Vp and Vs are estimated to be <1%. Microcrack closure significantly contributes to the increase in seismic velocities and decrease in anisotropies for pressures up to 200–250 MPa. Characteristic P-wave anisotropies of about 10% are obtained for eclogite and 3–4% in a strongly retrogressed eclogite as well as granulites. The wave velocities were used to calculate the geomechanical properties (e.g. density, Poisson's ratio, volumetric strain, and elastic moduli) at different pressure and temperature conditions. These results contribute to the reliable estimate of geomechanical properties of rocks

    Assessment of strain measurement techniques to characterise mechanical properties of structural steel

    No full text
    Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain measurement techniques and others. Each technique has its own advantages and disadvantages. The purpose of this study is to quantitatively compare the strain measurement techniques. To carry out the tensile test experiments for S 235, sixty samples were cut from the web of the I-profile in longitudinal and transverse directions in four different dimensions. The geometry of samples are analysed by 3D scanner and vernier caliper. In addition, the strain values were determined by using strain gauge, extensometer and machine crosshead motion. Three techniques of strain measurement are compared in quantitative manner based on the calculation of mechanical properties (modulus of elasticity, yield strength, tensile strength, percentage elongation at maximum force) of structural steel. A statistical information was used for evaluating the results. It is seen that the extensometer and strain gauge provided reliable data, however the extensometer offers several advantages over the strain gauge and crosshead motion for testing structural steel in tension. Furthermore, estimation of measurement uncertainty is presented for the basic material parameters extracted through strain measurement
    corecore