191 research outputs found

    Effect of water chemistry on the planktonic communities and relationships among food web components across a freshwater ecotone

    Get PDF
    Most ecological research on the food web has been focused more on the pelagic zone than on the transitional zone - ecotones between lentic and lotic habitats. The specific goals of this study were to determine whether the contact zone of waters differs in hydrochemical and biological terms from the waters of the canal and the open water zone, and to evaluate the influence of particular macro-habitats on the interactions between components of the planktonic food web. The distribution of samples in ordination space led us to conclude that the studied habitats are distributed along the rising gradient of total organic carbon and nutrients. Assemblages of all investigated groups showed a strong compositional gradient correlated with conductivity and total phosphorus, while a second strong gradient in species composition was explained by nitrate nitrogen and/or phosphate concentrations. The analysis of trophic relationships in the system bacteriaciliates- crustaceans reveals a clear differentiation and strength of mutual relations between the analyzed zones. The highest number of significant correlations was determined in the contact zone. It can also be a place of very efficient matter and energy flow in freshwater ecosystems

    Relationship between ciliates and environmental parameters in a restored carbonate fen

    Get PDF
    Wetlands restoration has been implemented on sites exploited for agricultural for over a decade in Eastern Europe. However, little is known about microbial diversity in this region. Microbial processes and patterns can be used as sensitive indicators of changes in environmental conditions. The responses of ciliates wetlands restoration are largely unexplored. Based on the results of a long-term study in fen of the Poleski National Park (Poland), we assumed that restoration causes changes in the physicochemical properties of fen water and sought to answer the question of how ciliate communities react to these changes and whether these microorganisms can play a significant role as bioindicators in evaluating the restoration process. Twenty taxa were recorded in the ciliate community, with 16 taxa found prior to restoration and 12 after restoration. Restoration clearly modified the taxonomic composition and abundance of ciliates. This was reflected in a decrease in the abundance and in the density of these protozoa and in a significant increase in the proportion of euplanktonic species. Before restoration, the most common ciliates were Cinetochilum margaritaceum and Strombidium viride, while the proportion of Paramecium bursaria increased after restoration. We also observed that the improvement in hydrological conditions, and hence the transformation of the vegetation structure in the peat bog, causes changes in the trophic structure of ciliates. The RDA analysis showed that all variables together accounted for 86.9% of the total variance. However, variables that significantly explained the variance in ciliate communities were water level, temperature, pH, and nutrients. Our results suggest that an indicator species approach based on functional groups may be appropriate for biomonitoring fens restoration

    Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions

    Get PDF
    Lead (Pb), cadmium (Cd) and aluminum (Al) were determined in 437 individual samples of infant formulae, oral electrolytes and 5% glucose solutions available in Canada. In the electrolytes, Cd and Pb concentrations were all below 0.01 and 0.041 ng g−1, respectively. In the 5% glucose solutions, Pb and Cd levels averaged 0.01 and 0.09 ng g−1, respectively. Reported on an as-consumed basis, Pb levels in milk- and soya-based formulae averaged 0.90 and 1.45 ng g−1, respectively, while Cd levels averaged 0.23 and 1.18 ng g−1, respectively Average Al levels on an as-consumed basis were 440 ng g−1 (range 10–3400 ng g−1) in milk-based formulae and 730 ng g−1 (range 230–1100 ng g−1) in soy-based formulae. Al concentrations increased in the following order: plain formula < low-iron formula < iron-supplemented formula < casein hydrolysate formula ≈ premature formula ≀ soy formula. For example, in the powdered formulae, average Al concentrations were 18 ng g−1 for plain milk-based, 37 ng g−1 for low-iron, 128 ng g−1 for iron supplemented, 462 ng g−1 for lactose-free, 518 ng g−1 for hypoallergenic and 619 ng g−1 for soy-based formula. Al concentrations, as-consumed, increased with decreasing levels of concentration: powder < concentrated liquid < ready-to-use. Formulae stored in glass bottles contained between 100 and 300 ng g−1 more Al than the same formulae stored in cans. The source of the increased Al did not appear to be the glass itself, because most electrolytes and glucose solutions, also stored in glass, contained less than 8 ng g−1 Al. Corresponding differences in Pb and Cd levels were not observed. Al concentrations varied substantially among manufacturers; however, all manufacturers were able to produce plain milk-based formulae containing less than 50 ng g−1 Al, i.e. within the range of Al concentrations found in human milk. Next to soya-based and hypoallergenic formulae, premature formulae contained among the highest concentrations of Al, ranging 851–909 ng g−1 from one manufacturer and 365–461 ng g−1 from another

    Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology

    Get PDF
    Water levels in cryoconite holes were monitored at high resolution over a 3-week period on Austre BrĂžggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near-surface hydrology and confirming that the hydrology of the near-surface, porous ice known as the 'weathering crust' is dynamic and analogous to a shallow-perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing 'sudden drainage events'. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near-surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long-term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces

    Evaluating the use of dominant microbial consumers (testate amoebae) as indicators of blanket peatland restoration

    Get PDF
    Peatlands represent globally-important ecosystems and carbon stores. However, large areas of peatland have been drained for agriculture, or peat has been harvested for use as fuel or in horticulture. Increasingly, these landscapes are being restored through ditch blocking and rewetting primarily to improve biodiversity and promote peat accumulation. To date we have little knowledge of how these interventions influence the microbial communities in peatlands. We compared the responses of dominant microbial consumers (testate amoebae) to drainage ditch restoration relative to unblocked ditches in a UK upland blanket peatland (Migneint, North Wales). Two techniques were used for restoration: (i) dammed ditches with re-profiling; and (ii) dammed ditches with pools of open water behind each dam. Testate communities in the inter-ditch areas changed markedly over time and between treatments illustrating the potential of this group of organisms as indicators of blanket peatland restoration status. However, the responses of testate amoebae to peat rewetting associated with restoration were partially obscured by inter-annual variability in weather conditions through the course of the experiment. Although there was considerable variability in the response of testate amoebae communities to peatland drain blocking, there were clearly more pronounced changes in samples from the dammed and reprofiled treatments including an increase in diversity, and the appearance of unambiguous wet-indicator species in relatively high abundances (including Amphitrema stenostoma, Archerella flavum, Arcella discoides type, Difflugia bacillifera and Difflugia bacillarium). This reflects a shift towards overall wetter conditions across the site and the creation of new habitats. However, water-table was not a significant control on testate amoebae in this case, suggesting a poor relationship between water table and surface moisture in this sloping blanket peatland. Our findings highlight the potential of testate amoebae as bioindicators of peatland restoration success; however, there is a need for caution as mechanisms driving change in the microbial communities may be more complex than first assumed. Several factors need to be taken into account when implementing biomonitoring studies in peatlands including: (i) the natural variability of the peatland ecosystem under changing weather conditions; (ii) any disturbance connected with the restoration procedures; and (iii) the timescales over which the ecosystem responds to the management intervention. Our results also suggest an indicator species approach based on population dynamics may be more appropriate for biomonitoring peatland restoration than examining changes at the community level
    • 

    corecore