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ABSTRACT
Understanding the environmental factors that control community
structure has become a major focus of ecological research in recent
decades. Here, we aimed to analyze the structure of planktonic testate
amoebae community and the impact of environmental variables on the
diversity of planktonic species in four floodplains of Brazil (Amazonian,
Araguaia, Paran�a, and Pantanal) over two hydrological periods (2011 and
2012). We hypothesized that biological diversity (richness, abundance, and
diversity) of the testate amoebae community is higher during drought
periods. Samples were collected from the subsurface of the limnetic
region of 72 lakes in the four floodplains during both drought and flood
periods in both years. We identified 109 species, belonging to 11 families.
Difflugiidae and Arcellidae exhibited higher species composition and
abundance. ANOVA results showed noticeable temporal variation in
testate amoebae community structure. We confirmed that the highest
richness, abundance, and diversity were primarily recorded during
drought periods, with significant differences being documented among
floodplains and across the two hydrological periods. Multiple regression
analysis also indicated that testate amoebae diversity is related to the
productivity of the environments in the Amazonian, Araguaia, and Paran�a
floodplains. Depth of lakes and phosphorus appeared to be limiting
factors in the Paran�a and Araguaia floodplains, while dissolved oxygen
limited species diversity in the Pantanal floodplain. Our results highlight
that testate amoebae community exhibit the greatest biological diversity
during drought periods, while species diversity is influenced by the
environmental conditions (primarily productivity) of each floodplain.
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Introduction

Identification of the processes that drive the assembly of communities is becoming one of the main
objectives of ecological studies in recent decades (Rohde 2011). Increased understanding of broad-
scale diversity is essential to determine the mechanisms that control diversity at different scales
(Gaston & Blackburn 2000). Floodplains exhibit high species diversity (Tundisi & Matsumura-Tun-
disi 2008). These aquatic environments are characterized by heterogeneous river habitat microsys-
tems that have great functional and structural complexity (Tockner et al. 2000; Ward et al. 2002).
These ecosystems have seasonal effects, marked by the flood pulse, which is considered to be the
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main force that influences the functioning of these ecosystems (Ward & Tockner 2001). Therefore,
floodplains are excellent model systems for investigating potential factors that regulate the organiza-
tion of aquatic communities.

Changes to the water level lead to alterations of several environmental variables, such as produc-
tivity variables (Arrieira et al. 2016), which, in turn, affect the aquatic communities (Junk et al.
1989; Neiff 1990). Consequently, fluctuations to the water level facilitate the development of high
species diversity in floodplains (Rocha & Thomaz 2004; Lansac-Tôha et al. 2009). However, species
diversity may be influenced by the environmental characteristics of each region, due to differences
in environmental factors and the strength of biotic interactions, both of which influence the physiol-
ogy and behavior of organisms (Gering et al. 2003). These factors determine species richness and
promote the replacement of species composition (Sim~oes et al. 2013). Thus, the environmental char-
acteristics of floodplains may serve as a good predictor on the structure of aquatic communities
including those of testate amoebae (Neiff 1996). These organisms occupy a variety of trophic roles
in the food chain, ranging from decomposers to consumers (Gimenes et al. 2004; Jassey et al. 2013).
Furthermore, testate amoebae quickly respond to changing environmental conditions, showing that
environmental variability influences community structure (Schonborn 1992).

Although several studies have been conducted in the Brazilian floodplains, knowledge about the
diversity and ecology of testate amoebae remains limited. Most studies on testate amoebae have
been conducted in the Paran�a River floodplain (e.g. Velho et al. 2000, 2003; Lansac-Tôha et al. 2004,
2014; Alves et al. 2010, 2012; Schwind et al. 2016). Other studies on testate amoebae diversity are still
at the early stages in other Brazilian floodplains, including the Amazon, Araguaia, and Pantanal
(Machado et al. 2015; Patterson et al. 2015; Vieira et al. 2015). Thus, studies investigating the com-
munity structure of testate amoebae in floodplains could enhance taxonomic knowledge and charac-
terize the main predictors of these communities.

Here, we aimed to analyze temporal variability in the structure of planktonic testate amoebae
community and identify how environmental variables influence species diversity in four floodplains
of Brazil. We hypothesized that biological diversity (richness, abundance, and diversity) of the tes-
tate amoebae community is higher during periods of drought, when isolation of the lakes and
greater impact of environmental conditions (e.g. primary productivity) would increase effects on the
community. We also predicted that the species diversity would be influenced by the distinct envi-
ronmental conditions of each floodplain.

Methods

Study sites

The study sites (Figure 1) used in this investigation are located in four major floodplains in Brazil:
Amazonian (3�020–3�340S; 59�380–60�50W), Araguaia (12�490–13�250S; 50�280–50�430W), Pantanal
(18�460–19�340S; 56�580–57�460W), and Paran�a (22�350–22�500S; 53�050–53�400W).

The Amazonian floodplain is composed of a complex network of lakes, and covers an area of
350,000 km2. It has the largest river basin (6.1 £ 106 km2) and greatest discharge volume in
the world (6.3 £ 1012 m3/yr; Melack & Hess 2010). The Araguaia floodplain is elongated in shape,
divided into three segments (Upper, Middle, and Lower), the last of which is located next to the con-
fluence of the Tocantins River. The Middle Araguaia floodplain has a mean discharge of 6,420 m3/s.
Precipitation ranges between 1,300 mm/yr in the Upper Araguaia to 2,000 mm/yr in the Lower Ara-
guaia (Latrubesse & Stevaux 2002; Aquino et al. 2008). The Pantanal floodplain is one of the largest
continuous wetlands in the world, and covers an area of 140,000 km2. This ecosystem is separated
into 10 different sub-regions due to edaphic, hydrological, and biogeographical variations (Hamilton
et al. 1995). The meandering and anastomosing rivers, lakes, and small temporary channels connect
lake waters with nearby rivers during floods (Carvalho 1986). The Paran�a River is the main river of
the Plata basin, which was formed by the joining of the Grande and Paranaiba rivers. It has the tenth
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largest discharge volume in the world (5 £ 108 m3/yr) and has a 2.8 £ 106 km2 drainage area. This
river has a wide anastomosing main channel, numerous secondary channels, lakes, and tributary riv-
ers, and includes the Ivinhema and Ba�ıa rivers (Agostinho et al. 2001).

Sampling design

Water samples were obtained from the subsurface of the limnetic region: (1) in 16 lakes located
between the Solim~oes and Amazon Rivers, during October 2011 (drought period) and May 2012
(flooding period); (2) in 18 lakes located in the Araguaia River floodplain, during November 2011
(drought period) and May 2012 (flooding period); (3) in 18 lakes located in the Paraguay and
Miranda River floodplains, during August 2011 (drought period) and March 2012 (flooding period);
and (4) in 20 lakes located in the Paran�a, Ba�ıa, and Ivinhema Rivers of the Upper Paran�a River
floodplain, during September 2011 (drought period) and February 2012 (flooding period). We col-
lected a total of 144 samples (72 samples � 2 periods). More detailed characterization of study sites
is available in Supplemental Table S1.

For each sample, 500 L water were filtered through a plankton net with 68 mm mesh, using a
motorized pump. We chose the 68 mm mesh to sample the widest range of planktonic community
possible and this bias was standardized for all samples. This study is part of a larger project, which
involves sampling of other planktonic communities such as rotifers, cladocerans, and copepods. A
sample fraction was collected from the net, transferred into polyethylene-labelled vials, and fixed

Figure 1. Location of the sampling sites in four floodplains of Brazil: (A) Amazonian; (B) Araguaia; (C) Pantanal; (D) Paran�a.
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with 4% formaldehyde solution buffered with calcium carbonate. The samples were stained with
Rose Bengal. Only living testate amoebae with a cytoplasm stained by the dye were counted and
identified to the species level.

Testate amoebae abundance was determined using a Sedgewick–Rafter counting chamber
placed under an optical microscope at a magnification of 400£ (Olympus CX31). Counting was
performed using sets of three sequential sub-samples obtained by a Hensen–Stempel pipette.
Samples of 7.5 ml were used to count the testate amoebae; at least 50 individuals were counted
per sample. Samples were fully quantified when the minimum number of individuals per sample
was not achieved (Bottrell et al. 1976). Total abundance was expressed as individuals per cubic
meter (ind/m3).

We measured the environmental variables at the same sampling point from which water samples
were obtained: water temperature (�C), dissolved oxygen concentration (mg/L) (portable oxygen
meter, YSI 550A, YSI, Inc., http://www.ysi.com), depth of lake at the sampling site (m), water trans-
parency (Secchi disk), turbidity (NTU), conductivity (mEq/L), total nitrogen (mg/L), ammonia (mg/L),
total phosphorus (mg/L), phosphate (mg/L), pH (portable pH meter, DM-2, DigiMed, http://
www.digimed.ind.br), and chlorophyll-a (mg/L). Total nitrogen was quantified by the persulfate
method, which involves the oxidation of all nitrogenous compounds to nitrate-N. Samples were
reduced to nitrite-N in the presence of cadmium using a flow-injection system (Mackereth et al.
1978), and the concentration of the ion was determined spectrophotometrically. Total phosphorus
concentration was determined using an orthophosphate reaction and subsequent spectrophoto-
metric measurement of absorbance at 660 nm (Golterman et al. 1978). The concentration of
chlorophyll-a was quantified by extraction with 90% acetone, and absorbance was measured in a
spectrophotometer at 663 nm (Golterman et al. 1978).

Data analysis

We performed a principal components analysis (PCA) to establish the differential environmental
characteristics of the studied floodplains. The data used for this analysis were previously log-trans-
formed (x C 1), with the exception of pH. The Broken-Stick model was used as the selection of the
significant axes (Jackson 1993), and the significance of the axes was verified by Analysis of Variance
(ANOVA, Sokal & Rohlf 1991). These statistical analyses were performed using the ‘vegan’ package
version 3.2.1 (Oksanen et al. 2015) in R version 3.0.2 software (R Core Team 2015).

Species diversity was estimated using the Shannon Index (Hʹ; Pielou 1975). Two-way
ANOVA (Sokal & Rohlf 1991) was used to investigate differences in richness, diversity, and
abundance of testate amoebae among floodplain lakes and across the two hydrological periods,
with a D 0.05 being set as the significance threshold. The analyses considered the hydrological
periods and sampled lakes, as well as the interaction between them. The Fisher’s test was used
to compare significant differences a posteriori. Assumptions of normality and homoscedasticity
(homogeneity of variance) were previously tested through Shapiro-Wilk and Levene’s tests,
respectively.

The relationship between species diversity and the environmental variables in each floodplain
was assessed by multiple regression (Sokal & Rohlf 1991). For this analysis, a stepwise backward
selection procedure was performed to produce a parsimonious model. This procedure included all
available factors (independent variables), and progressively excluded non-significant factors (p <

0.05), to derive the simplest model with the most representative variables. After setting the complete
model, the variables without a significant relationship were removed from the model, to obtain a
model that only contained statistically significant parameters. The data employed were log-trans-
formed. Assumptions of linearity, normality, homoscedasticity, and independence were tested.
These analyses were carried out using Statistica Software 7.0 (Statsoft Inc. 2005).
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Results

Characterization of the environmental variables

The mean measured values of environmental variables of the floodplains during drought and flood-
ing are shown in Table 1. The PCA results (Figure 2) indicated distinct characteristics between the
environmental variables in each floodplain during both hydrological periods. The PCA 1 axis
explained 36% of environmental variability, while the PCA 2 axis explained 14.8% of environmental
variability, totaling 50.8% when both axes were combined during the drought period. The following
associations were observed for PCA axis 1: Amazonian and Araguaia floodplains showed positive
correlations with water transparency and depth; Pantanal and Paran�a floodplains showed negative
correlations with turbidity, chlorophyll-a, total phosphorus, and phosphate. For PCA axis 2 Paran�a
and Araguaia floodplains showed positive correlations with water transparency, dissolved oxygen,
and chlorophyll-a, whereas Pantanal and Amazonian floodplains showed negative correlations with
conductivity, water temperature, and pH (Figure 2a).

PCA 1 axis explained 46.25% of environmental variability, while PCA 2 axis explained 17.75% of
environmental variability, totaling 64% when combining both axes during the flooding period. PCA
axis 1 indicated that the Pantanal floodplain was positively correlated with depth and transparency,
whereas the Amazonian floodplain was negatively correlated with turbidity, chlorophyll-a, tempera-
ture, and total nitrogen (Figure 2b).

Composition and structure of testate amoebae community

We identified 109 testate amoebae species belonging to 11 families (Supplemental Table S2). Difflu-
giidae had the highest number of species (50), followed by Arcellidae (24), Lesquereusiidae (14),
Centropyxidae (13), Hyalospheniidae (two species), Heleoperidae (one species), Phryganellidae
(one species), Plagiopyxidae (one species), Trigonopyxidae (one species), Euglyphidae (one species),
and Trinematidae (one species).

The testate amoebae community exhibited higher richness during drought in most of floodplains,
with the highest richness being detected in the Pantanal floodplain. During flooding, the lowest tes-
tate amoeba richness was detected in the Amazonian floodplain. The ANOVA results (Figure 3)
indicated significant differences for species richness interactions among the four floodplains and
across the two hydrological periods (F D 4.72; p < 0.01).

Most floodplains had a higher abundance of organisms during the drought period, with the
exception of the Paran�a floodplain, where abundance was higher during the flooding period. The
Amazonian floodplain had the highest abundance of all four floodplains during the drought period.
During the flooding period, the lowest abundance was observed in the Amazonian floodplain. The
ANOVA results (Figure 4) indicated significant results to species abundance interaction between
floodplains and hydrological periods (F D 7.70; p < 0.01).

The most abundant species in each floodplain are shown in Figure 5, with Cucurbitella dentata f.
quinquilobata being the most abundant in Amazonian floodplain (102,838 ind/m3), Cucurbitella
madagascariensis in the Araguaia floodplain (1,260 ind/m3), Centropyxis aculeata in the Pantanal
floodplain (9,409 ind/m3), and Difflugia pseudogramen in the Paran�a floodplain (31,408 ind/m3;
Figures 5 and 6).

The testate amoebae community also showed higher species diversity in most of floodplains dur-
ing the drought period, with the exception of the Pantanal floodplain. The highest species diversity
was detected in the Pantanal floodplain, whereas the lowest species diversity was detected in the
Araguaia floodplain. During the flooding period, the lowest species diversity was detected in the
Araguaia floodplain. The ANOVA results (Figure 7) indicated significant differences in the interac-
tion of species diversity with the four floodplains and two hydrological periods (F D 5.11; p < 0.01).
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Figure 3. Species richness recorded during the drought and flooding periods in the four floodplains. Symbol D richness average;
barD standard error; letters D represents statistically significant differences at p < 0.05.

Figure 2. Principal components analysis ordination showing the environmental differences in each floodplain during drought (a)
and flooding (b) periods. Environmental variables: Chl D chlorophyll-a; Cond D conductivity; DO D dissolved oxygen; PO4, phos-
phate; TP, total phosphorus; Temp D water temperature; Transp, water transparency; TurbD turbidity.
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Figure 5. Most abundant testate amoeba species in each floodplain.

Figure 4. Abundance of organisms recorded during the drought and flooding periods in the four floodplains. Symbol D abun-
dance average; bar D standard error; letters D represents statistically significant differences at p < 0.05.

Figure 6. Light microscopy images of the most abundant species in each floodplain: (A) Cucurbitella dentata f. quinquilobata (Ama-
zonian floodplain), (B) Cucurbitella madagascariensis (Araguaia floodplain), (C) Centropyxis aculeata (Pantanal floodplain), and (D)
Difflugia pseudogramen (Paran�a floodplain).
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Relationship between species diversity and environmental variables

The variables related to the productivity of environments (total nitrogen, ammonia, total phospho-
rus, phosphate, chlorophyll-a, and turbidity) were selected by multiple regression analysis (Table 2)
as the main predictors of testate amoebae diversity in the Amazonian, Araguaia, and Paran�a flood-
plains. In the Amazonian and Araguaia floodplains, species diversity was negatively affected by
depth and total phosphorus. In the Pantanal floodplain, species diversity was negatively affected by
dissolved oxygen. The equations of the multiple regression models, as well as the percentage of
explanation for data variability, are presented in Table 2.

Discussion

Our results indicate that changes to environmental variables were associated with how the hydrolog-
ical periods influenced the environmental characteristics of each floodplain, as evidenced by the
PCA results. The hydrologic regime causes major changes to the environmental variables of the
aquatic environments (Thomaz et al. 2007). Hydrological dynamics directly and indirectly influence
the structuring of aquatic communities, including biotic interactions and species distribution
(Dunson & Travis 1991; Schwind et al. 2016). Thus, the considerable changes in environmental
variables related to floodplains and the hydrological periods should have a strong influence on the
testate amoebae community.

Difflugiidae and Arcellidae had the highest species richness and abundance. These testate amoeba
families are considered to be major planktonic species in floodplains (Dab�es 1995; Landa &
Mourguês-Schurter 2000; Velho et al. 2004; Arrieira et al. 2015a). The high abundance of Cucurbi-
tella dentata f. quinquilobata (Amazonian floodplain), Cucurbitella madagascariensis (Araguaia

Table 2. Contents of the multiple regression model between testate amoebae diversity (response variable) and environmental var-
iables (explanatory variables) in each floodplain; r2 indicates the explanatory ability of the model; t corresponds to the value of the
t-test parameter; p indicates the significance of parameters (a D 0.05). Div D testate amoebae diversity; D D depth; TN D total
nitrogen; PO4 D phosphate; Chl-a D chlorophyll-a; NH4 D ammonia; TP D total phosphorus; DO D dissolved oxygen; Turb D
turbidity.

Floodplain Model equation R2 t p

Amazonian log10(Div) D 1.14 – 0.04 � log10(D) C 0.01 � log10(TN) – 0.01
� log10(TP) C 0.05 � log10(PO4) 0.37 5.04 < 0.01

Araguaia log10(Div) D 2.27 – 0.21 � log10(D) C 0.06 � log10(Chl-a) C 0.01 � log10(NH4) – 0.01 � log10(TP) 0.42 6.30 < 0.01
Pantanal log10(Div) D 3.03 – 0.02 � log10(DO) 0.43 3.30 < 0.01
Paran�a log10(Div)D 2.55C 0.02 � log10(Turb)C 0.01 � log10(DO)C 0.01 � log10(TN)C 0.06 � log10(PO4) 0.58 3.95 < 0.01

Figure 7. Species diversity recorded during the drought and flooding periods in the four floodplains. Symbol D diversity average;
barD standard error; letters D represents statistically significant differences at p < 0.05.
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floodplain), and Difflugia pseudogramen (Paran�a floodplain) might be linked to their spherical shell
morphology (Lansac-Tôha et al. 2014). Similar results were obtained by Velho et al. (2003), who
found that the predominance of spherical and hemispherical testate amoebae was related to their
greater capacity to adapt to the limnetic region of floodplains lakes. The highest abundance of
Centropyxis aculeata, (Pantanal floodplain) could be attributed to shell compression, which is
regarded as an adaptation of these organisms. This characteristic could minimize its resistance to
water as well as facilitating longer floatation in the water column (Lampert & Somer 1997).

The highest average richness, abundance, and diversity were observed in most floodplains during
the drought period. During this period, floodplain lakes are shallow, and are subject to inputs of ses-
ton and nutrients to the water column (Carvalho et al. 2001; Roberto et al. 2009). This nutrient input
into the aquatic environment leads to an increase in primary productivity of plankton (Bonecker
et al. 2013). Consequently, these factors could promote an increase in the biological diversity of the
testate amoebae community during drought.

In contrast, the lowest average biological diversity during flooding might be related to the
homogenizing effect of the flood pulse, which promotes dilution of water bodies (Thomaz et al.
2007). As a result, biological diversity of the testate amoebae community declines (Costa et al.
2011). Multiple regression analyses showed that lower species diversity was negatively related to the
water level of the Amazon and Araguaia floodplains, and might be due to the homogenizing effect.
Consequently, an increase in the water level promoted lower testate amoebae diversity.

The multiple regression results also indicated a predominant relationship between the variables
related to productivity (chlorophyll-a, total nitrogen, and total phosphorus) as the main predictors
of testate amoebae diversity in the Amazonian, Araguaia, and Paran�a floodplains. Previous studies
on aquatic environments have suggested that ecosystem productivity is directly linked to the avail-
ability of food resources, from which protozoan communities benefit (Auer et al. 2004; Bastidas-
Navarro & Modenutti 2007). Food resource availability is considered to be the predominant envi-
ronmental filter in the organization of the testate amoebae community in floodplains (Arrieira et al.
2015b). Moreover, the current study verified that total phosphorus is a limiting environmental fac-
tor, based on the negative effects between species diversity and total phosphorus in the Amazonian
and Araguaia floodplains. These results support those obtained by Mieczan (2012), in which phos-
phorus was one of the environmental factors that restricted the occurrence of these protozoa in
aquatic environments.

An indirect contribution was observed for species diversity with phosphate (Amazonian and Par-
an�a floodplains) and ammonia (Araguaia floodplain). Higher concentrations of phosphate and
ammonia may favor the occurrence of bacteria in aquatic environments, because these organisms
are able to absorb these soluble ions, which are excreted by zooplankton (Pinto-Coelho et al. 1997;
Torres et al. 2007). As a result, the higher bacterial biomass leads to an increase in the supply of
food resources, as they represent important food items in the diet of many testate amoebae (Gilbert
et al. 2000; Mieczan 2009).

Another indirect relationship was observed between species diversity and dissolved oxygen in
the Pantanal floodplain. Oxygen depletion in water might be related to the increased decomposi-
tion of organic matter, which is favored by the presence of large macrophyte biomass and the
climatic conditions found in the lakes of the Pantanal floodplain, a process locally known as the
Dequada process (Hamilton et al. 1995). The areas colonized by macrophytes promote a higher
diversity of testate amoebae (Dab�es & Velho 2001; Lansac-Tôha et al. 2009; Arrieira et al.
2015a) because macrophyte stands provide a large number of ecological niches (Souza 2005)
and, therefore, offer a greater availability food resources to testate amoeba species.

Our results confirmed the hypothesis that the highest richness, abundance, and diversity of
planktonic testate amoebae community predominantly occurred during drought periods. The
greater abundance of organisms might also be related to the morphological adaptations of the
species found in these aquatic environments.
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The environmental variables related to primary productivity appeared to be important for testate
amoebae diversity, with more productive environments being associated with higher species diver-
sity due to the greater availability of food resources. Other environmental variables, such as phos-
phate, ammonia, and dissolved oxygen, were indirectly related, operating as environmental filters
on testate amoebae diversity in floodplain lakes.
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Bonecker CC, Sim~oes NR, Minte-Vera CV, Lansac-Tôha FA, Velho LFM, Agostinho AA. 2013. Temporal changes in
zooplankton species diversity in response to environmental changes in alluvial valley. Limnologica. 43:114–121.

Bottrell HH, Duncan A, Gliwicz ZM, Gryiek E, Hezig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T.
1976. A review of some problems in zooplankton production studies. Norw J Zool. 24:419–456.

Carvalho NO. 1986. Hidrologia da Bacia do Alto Paraguai [Hydrology of the Upper Paraguay River Basin]. In: Sympo-
sium on natural and socioeconomic resources of the Pantanal (UFMS, Corumb�a, 1984), Bras�ılia: Embrapa; p. 43–
49.

Carvalho P, Bini LM, Thomaz SM, Oliveira LG, Robertson B, Tavechio WLG, Darwisch AJ. 2001. Comparative
limnology of South-American lakes and lagoons. Acta Sci Biol Sci. 23:265–273.
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