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Stationary wavelet processing and data imputing in
myoelectric pattern recognition on a low-cost

embedded system
Autumn Naber, Student Member, IEEE, Enzo Mastinu Student Member, IEEE, and

Max Ortiz-Catalan Member, IEEE

Abstract—Pattern recognition-based decoding of surface elec-
tromyography allows for intuitive and flexible control of pros-
theses but comes at the cost of sensitivity to in-band noise and
sensor faults. System robustness can be improved with wavelet-
based signal processing and data imputing, but no attempt has
been made to implement such algorithms on real-time, portable
systems. The aim of this work was to investigate the feasibility
of low-latency, wavelet-based processing and data imputing on
an embedded device capable of controlling upper-arm prosthe-
ses. Nine able-bodied subjects performed Motion Tests while
inducing transient disturbances. Additional investigation was
performed on pre-recorded Motion Tests from 15 able-bodied
subjects with simulated disturbances. Results from real-time tests
were inconclusive, likely due to the low number of disturbance
episodes, but simulated tests showed significant improvements
in most metrics for both algorithms. However, both algorithms
also showed reduced responsiveness during disturbance episodes.
These results suggest wavelet-based processing and data imputing
can be implemented in portable, real-time systems to potentially
improve robustness to signal distortion in prosthetic devices
with the caveat of reduced responsiveness for the typically short
duration of signal disturbances. The trade-off between large-scale
signal corruption robustness and system responsiveness warrants
further studies in daily life activities.

Index Terms—Wavelet transforms, electromyography, signal
denoising, prosthetics, data imputing.

I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) signals from vestigial
muscles are the most common control source for powered

prostheses due to their direct correlation to motor intention
and ease of non-invasive detection [1]. There is a significant
discrepancy between the current mechatronic prosthetic tech-
nology and the fidelity of the signal acquisition and control
systems. This results in limited controllability and frequent
frustration from users [2], [3]. A study performed in 2007
showed 39 % of upper-limb amputees with direct control
myoelectric prostheses did not use them regularly due to issues
stemming primarily from low controllability and functionality
[4], though the relationship between lost limb functionality
and user requirements is complex and changes over time [5].
The addition of proportional speed control and the adoption of
functional hand grips by many manufacturers has not reduced

This work was supported by the Promobilia foundation, VINNOVA, the
Swedish Research Council (Vetenskapsrådet), and the European Commission
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artificial limb rejection rates [4], [6], [7]. This suggests a
more intuitive and functional control mechanism is required
to address patient needs.

Direct control systems commonly used in commercial pros-
theses work by either cycling through grips with pre-specified
muscle contractions (e.g., co-contraction of both the wrist
flexor and extensor muscles) or by selecting states directly
through sequences of contractions (e.g., co-contraction twice
in quick succession). While users can learn these cycles and
sequences, such systems limit the number of grips that are
practical to use in daily life and can be slow and cumbersome
to use. Using myoelectric pattern recognition (MPR) to predict
motor intention from multi-channel surface EMG (sEMG)
can allow more functionality and more natural use of upper-
limb prostheses. With an MPR-based system, the user can
change the grip of a prosthesis directly by performing a
physiologically equivalent contraction as if they had an intact
limb. However, the increase in functionality provided by MPR
systems is offset by a large reduction in robustness. This is an
important consideration, as an incorrect movement of the pros-
thetic at any point can compromise an entire task, hindering the
clinical translation of the technology [8]. Environmental noise,
signal artifacts caused by electrode movement, and missing
and corrupted signals due to loose electrode-skin contact
have the greatest negative impact on MPR systems using
sEMG [9]–[11]. Methods that reduce their impact can have
a significant positive effect on the controllability, robustness,
and eventual adoption of powered prostheses. Electrode-skin
decoupling and movement artifacts are typically short-term
transient sources of noise. Therefore, even methods that reduce
the responsiveness of the prosthesis during these events are
useful if they can prevent unintended movement at critical
times, i.e. avoiding the slippage of a brittle object while
relocating it [12].

The aforementioned noise sources have wide-band and non-
stationary characteristics. This makes them difficult to remove
with FIR or IIR filters without also removing useful signal
components, the effects of which are demonstrated in Fig. 1.
Using more electrodes can offset some of their effects in cases
of transient noise or electrode lead-off events, where the issue
may only affect one channel, but this also increases the system
complexity and is only useful if there are enough available
myoelectric sites for recording.

Wavelet-based signal analysis has been gaining significant
popularity in treating complex, noisy biological signals. Sev-
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Fig. 1. Examples of clean sEMG signal (top-left) and a superimposed motion
artifact (top-right) filtered with a conventional Butterworth filter (bottom-left)
and artifact reduction (bottom-right). The original signal is underlayed on
each window in gray. Artifact reduction decreases the effect of the corruption
(presented as Mean Squared Error) much more than conventional filtering,
and the signal distortion it imposes only occurs during the artifact, where the
filter distorts the entire signal.

eral works have been published on using subsets of wavelet
transform coefficients directly in sEMG pattern recognition
systems that demonstrate an increase in classification accuracy
[10], [13]. Other works have focused on using the wavelet
transform to dynamically reduce noise across the time and
frequency domains based on a priori knowledge about the
signal and noise sources, referred to as denoising [14]–[18].
The latter approach produces a cleaned version of the orig-
inal signal, providing a more direct correlation between the
result and motor intention, and allowing for straightforward
integration in existing systems. To the authors’ knowledge, no
investigation has been made into determining the feasibility
of implementing a real-time signal denoising routine on a mi-
crocontroller operating independently of a PC. Demonstrating
the feasibility of executing such algorithms in real-time and
in an embedded system is the next logical step towards more
robust pattern recognition-based control in limb prostheses.

None of these algorithms address the situation where elec-
trodes lose their electrical coupling with the body, another
potential complication on myoelectric prostheses. Little is
known on the frequency of occurrence of such situations in
daily use, but their effects are significant enough for lead-
off event (LOE) detection circuitry to be included in many
bio-potential amplifiers. Dry electrodes commonly used in
prosthetic sockets are particularly susceptible to LOEs, as there
is no adhesive to attach the electrodes to the skin, resulting in
a complete loss of EMG often coupled with strong transients
as electrodes disconnect and reconnect with the skin. LOE
incidence can be reduced by making the socket fitting tighter
around the stump, but this comes at the cost of comfort making
it an often unacceptable compromise.

Existing classifiers that adapt to changes in signal character-
istics typically react slowly and thus have limited usefulness in
handling LOEs [19]. While redundancy from extra electrodes
may sufficiently compensate for LOEs in some circumstances
[20], Zhang et al. demonstrated that a Linear Discriminant
Analysis-based classifier tolerant to electrode faults resulted in
significantly increased classification accuracy [21]. Their re-
sults suggest that the signal corruption and loss of information

during LOEs is a valid cause for concern even with only one
out of six electrodes compromised. Their implementation used
a fast retraining algorithm for the classifier that compensated
for missing channels. While promising, it does not provide a
generic solution applicable across different machine learning
algorithms.

Pelckmans et al. [22] suggested using a probabilistic model
of missing data for support vector machines that approaches
mean data imputing in the case of a linear system [20].
While the research has not been applied to sEMG signals
specifically, it offers a generic solution that is computationally
efficient. Since this operates directly on the signal during pre-
processing, it can be implemented in a modular fashion on an
existing embedded system without significant modifications.

In the present study, we investigated signal denoising and
data imputing to enhance the robustness of pattern recognition
against noise and sensor faults during continuous sEMG
classification. We evaluated classification accuracy on three
common classifiers and on signal distortion with respect
to denoising algorithms and demonstrated the feasibility of
executing these algorithms in real-time in an embedded system
for the first time. In addition, we implemented said algorithms
on a low cost, low power microcontroller capable of fitting into
existing prostheses, allowing for further clinical translation.

II. METHODS

This study was approved by the Västra Götalandsregionen
ethical committee (Dnr: 769-12), and written informed consent
was obtained from all participants.

A. Wavelet-Based Signal Denoising

The characteristics of sEMG signals depend on many fac-
tors, but the dominant frequency band viable for wavelet anal-
ysis is in the 125-250 Hz range [10], with components in the
250-500 Hz range containing the largest relative contribution
of system noise [23]. For this application, the system noise
was treated as a locally-stationary additive function based on
the standard deviation of the first-level (250-500 Hz) wavelet
detail coefficients. Algorithms to reduce system noise from
wavelet coefficients were selected based on reviews in previous
literature with an emphasis on computational simplicity [15],
[24]–[28]. Hard, soft, semi-hyperbolic (hyper), adaptive, and
non-negative (non-neg) shrinkage methods were investigated
in this experiment, defined in Table I. The Daubechies four
tap wavelet was chosen as the mother wavelet due to its
ability to effectively describe both time and frequency signal
components and its low filter order [16]. The noise thresh-
old parameter, λ, for each routine was calculated using the
minimax threshold defined in (1):

λ = σ̂ ·
(

0.3936 + 0.1829 · log(N)

log(2)

)
(1)

where σ̂ is the standard deviation of the system noise wavelet
coefficients and N is the window length in samples. This
is designed to minimize the maximum mean squared error
against an ideal procedure [29].
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TABLE I
WAVELET SHRINKAGE RULES EVALUATED IN THIS EXPERIMENT.

Rule Formula

Hard γ̂j,i =

{
γj,i, |γj,i| > λ

0, otherwise

Soft γ̂j,i =

{
sgn(γj,i)(|γj,i| − λ), |γj,i| > λ

0, otherwise

Hyper γ̂j,i =

{
sgn(γj,i)

√
γ2j,i − λ, |γj,i| > λ

0, otherwise

Adaptive γ̂j,i = sgn(γj,i)(|γj,i| − λ) + 2λ
1+exp(2.1γj,i/λ)

Non-Neg γ̂j,i =

{
γj,i − λ2

γj,i
, |γj,i| > λ

0, otherwise

γj,i := original wavelet coefficient at level j at time index i
γ̂j,i := de-noised wavelet coefficient at level j at time index i

Fig. 2. Block diagram for generic wavelet-based Wiener filtering. The
transforms for the Wiener coefficient estimation and for the signal filtering are
separate, allowing for use of different wavelet parameters in wavelet shrinkage
and Wiener filtering.

B. Wiener Correction Factor

The wavelet transform concentrates the signal energy into
a relatively small number of high-valued coefficients [30].
Wavelet-based denoising then reduces the sufficiently small
coefficients (assumed to be noise) towards zero, reducing the
signal subspace (the number of non-zero coefficients used to
describe the signal). This property, combined with the fact
that the wavelet transform provides rich spectral characteristics
on both the desired signal and the noise lends the process to
Wiener filtering, expressed as γ̃j,i in (2).

γ̃j,i =
γj,i · γ̂2j,i

γ̂2j,i + s(γ̂1)2
, (2)

where s(·) denotes the corrected sample standard deviation.
This treats the desired signal and the noise as locally stationary
systems, which is appropriate for sufficiently small windows
on isometric contractions [31], and provides a smoother system
response than wavelet shrinkage alone. The Wiener filtering
coefficients can be calculated on a different transform level
and mother wavelet selection than the original data, Fig. 2,
but this flexibility was foregone in the current implementation
to minimize processing time.

C. Wavelet-Based Artifact Reduction

Motion artifacts are characterized by strong, transient signal
interference at low frequencies, but they have wide-band
characteristics that extend into the dominant sEMG signal
range [9]. A third- or fourth-order stationary wavelet transform
cleanly separates the artifacts into the approximation coeffi-
cients, corresponding to the 0-62.5 Hz and 0-31.25 Hz ranges,
respectively, while maintaining a one-to-one correlation of
time indexes on all levels of the transform with the original
signal. In this implementation, it was assumed that any suffi-
ciently strong signal in the approximation coefficients of the
transform was caused by a transient artifact. Hard thresholding
was applied to each signal band (3-5) to remove the corrupted
portions of the signal to produce the cleaned approximation
and detail coefficients γ̂A,i and γ̂D,i, respectively:

θk = µi(|γdom|) + k ∗ si(γdom) (3)

γ̂A,i =

γA,i, if |γA,i| < θ1

0, otherwise
(4)

γ̂D,i =

γD,i, if |γA,i| < θ1 ∪ |γD,i| < θ0

0, otherwise
(5)

where i is the time index, γA,i is the i-th wavelet approxima-
tion coefficient, γD,i is the corresponding detail coefficient at
decomposition level D, µi(·) is the mean value operator over
time, and γdom is the wavelet decomposition level correspond-
ing to the dominant sEMG signal frequency band. The effect
of this proposed algorithm is illustrated in Fig. 1.

D. Wavelet Processing Implementation

At the time of the experiment, the authors were unaware of
any microcontroller compatible implementation of the station-
ary wavelet transform (SWT) algorithm and its inverse. The
appropriate routines were written in C, leveraging the Cortex
Microcontroller Software Interface Standard for optimization
of filtering operations [32]. The denoising and artifact re-
duction routines were performed immediately prior to feature
extraction on each sample window. Signals were reconstructed
by recursively averaging all possible shifted, decimated inverse
discrete wavelet transforms on each wavelet level, referred to
as the average basis inverse [33].

Due to the nature of the wavelet transform, the operations
work most efficiently on time windows with samples lengths
that are a power of 2. For this work, a time window of
128 ms with 64 ms overlap sampled at 1 kHz was selected,
which falls within the typical windowing range for sEMG
applications and still allows for some processing time before
the control algorithm begins to feel unresponsive [1], [34].
Time performance metrics were collected for each of the
proposed denoising algorithms on this window length and are
shown in Fig. 3. The processing time was found to grow
approximately linearly with the number of active channels and
the length of the time windows.
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Fig. 3. Mean processing time required for each algorithm on one channel
with 128 sample length windows. The label ’SWT Only’ only includes the
SWT and its inverse transform, ’Motion’ includes the transforms and motion
artifact reduction, and all others include the transforms, artifact reduction, and
the listed routine.

Fig. 4. Equivalent circuit for detection and simulation of lead-off events in
real-time.

E. Lead-Off Detection and Data Imputing Implementation

Electrode disconnect events create a high impedance mis-
match between the amplifier and the leads. The analog front-
end used in this study was capable of detecting these events
by adding a 6 nA DC current source to both the positive
and negative leads of each bipolar terminal and setting the
input impedance for each amplifier to 500 MΩ, illustrated in
Fig. 4. During normal operation, the current is harmlessly
dissipated through both the subject and the amplifier, but
saturates the amplifier input when either or both leads are
disconnected from the subject. Hard thresholding was applied
to any signal outside the 30-70 % maximum value range of
the amplifier, corresponding to approximately ±66 µV. Signals
outside of this range were replaced with 0, the mean value for
EMG signals. This was not expected to increase the overall
controllability of the system, but rather to decrease the chance
of misclassifications resulting in movement when insufficient
data is available for decoding motor intention.

F. Feature Extraction and Classification

The Time Domain feature set proposed by Hudgins et al.
contains some of the most commonly investigated features in
EMG applications due to their low computational complexity
and high descriptiveness [35]. In addition, a relative compar-
ison of these and other common features suggests that this

set (composed of mean absolute value (MAV), zero crossings
(ZC), waveform length (WL), and signed slope change (SSC))
is adequate for MPR [36], [37].

The processing and memory requirements of many pattern
recognition systems limits the selection for real-time em-
bedded applications. Multi-Layer Perceptron (MLP), Support
Vector Machine (SVM), and Linear Discriminant Analysis
(LDA) are all commonly used for EMG classification [38]
and are capable of real-time implementation in an embedded
system. Multi-class support was implemented for the SVM
classifier using a ”one-vs-all” scheme. The MLP classifier used
one layer of 16 hidden neurons using the hyperbolic tangent
activation function and the softmax activation function on the
output neurons. The NetLab 3.3 Neural Network library was
used for MLP classifier training on a PC [39]. The signal
detection threshold was calculated using the average MAV
feature value across all rest signal windows in the training
data. Any time windows with a MAV feature smaller than this
value bypassed the classifier and were considered a rest state.

G. Training Protocol

The training data sets for the pattern recognition algorithms
in all experiments and for all movements consited of record-
ings of three second contractions repeated three times, and
each separated by three seconds of rest. Signal recordings
were taken from four sets of pre-gelled Ag-AgCl electrodes
(GS26, Bio-Medical Instruments, USA) placed in bipolar
configurations with approximately equal spacing around the
proximal third of each subject’s dominant forearm. Subjects
were asked to perform contractions at 70-80 % of their
maximum voluntary contraction strength. Inactive and low-
level transient portions of each contraction were discarded
such that only the center 70 % was preserved, a value that has
been empirically found to conserve isometric and part of the
dynamic portions of muscle contractions in healthy subjects
[40]. Data for training the rest classification and floor noise
were obtained from the center 50 % of each of the rest periods
in the recordings. A rest state class was included to ensure
small signals that exceed the floor noise threshold were not
automatically assumed to indicate intended movement. EMG
data were separated and concatenated into arrays correspond-
ing to the signal in each movement. The data arrays were then
windowed, and signal features calculated from those windows
were used to construct training, testing, and validation sets for
the classifiers. Visual cueing for contractions, signal recording,
and feature extraction for classifier training were all performed
using BioPatRec running on MATLAB 2016b [40].

H. Experiment I. Offline Wavelet Parameter Selection

The sEMG recordings for evaluation and selection of ap-
propriate wavelet parameters were obtained from a publicly
accessible data set of 20 subjects performing 10 wrist, hand,
and forearm movements recorded using the methodology
described in the Training Protocol section [41]. Data were
originally sampled at 2 kHz, but were decimated to 1 kHz
and the four movements not used in the real-time analysis
were discarded. The hand open and close, wrist flexion and
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extension, and forearm pronation and supination movements
were used for analysis. Classifier training data was composed
of a random selection of 90 % of the feature windows in each
movement, and testing and validation data was pooled together
in the remaining 10 %. 10-fold data cross-validation was used
to generalize the classifier performance results.

After filtering power line noise, the dominant noise sources
for sEMG signals at rest are from the electrode-skin interface,
the environment, and the amplifier itself [9]–[11]. Noise from
the amplifier used can be modeled as roughly Gaussian white
noise in the frequency range of interest [42]. Noise from
the electrode-skin interface has a pink noise spectrum with
the amplitude approaching that of the amplifier near 200-
300 Hz [11]. To the authors’ knowledge, little investigation has
been made into its probability distribution, so it was assumed
to be Gaussian. Environmental noise can depend on many
factors, making it infeasible to model within the scope of this
experiment, so no attempt was made to simulate it. Based on
this information and the use of a 20 Hz high-pass filter in the
amplifier (reducing the amplitude of the electrode interference
at low frequencies), poor signal quality was modeled using
white Gaussian noise. Pseudo-random Gaussian noise was
added to each movement in the testing data and was scaled to
20 % of one standard deviation of the raw signal amplitude
for the respective movement.

Four metrics were used to compare the performance of
each of the wavelet-based signal processing algorithms: global
accuracy, the Mean Squared Error (MSE) between the original
data and the filtered original data (MSErec), the MSE between
the filtered noisy data and the original data (MSEref), and the
MSE between the filtered noisy data and the filtered original
data (MSEnoise). To reduce the burden of subject testing to a
reasonable level, only the best performing model in this test
was considered for the remainder of the experiment.

I. Experiment II. Real-Time

Nine able-bodied subjects between the ages of 22 and 29
(µ=25, SD=2.5) volunteered for the work. Real-time sEMG
signals were collected from subjects using the methodology
described in the Training Protocol section. EMG signals were
sampled at 2 kHz with 24-bit resolution and 24 V/V gain using
an ADS BP signal acquisition unit [43]. The sEMG signals
were then decimated to 1 kHz and filtered using a second order
20 Hz IIR high-pass filter and a 50 Hz IIR notch filter. The
resulting data from these sessions and from the Motion Tests
described below were made publicly available on GitHub [41].

To evaluate the performance of the proposed wavelet pro-
cessing routine, subjects were instructed to perform two Mo-
tion Tests, described in the section Real-Time Performance
Evaluation, with one Motion Test relying solely on the 20 Hz
high-pass and 50 Hz notch filters, and one with the addition
of wavelet processing operating on the fourth-level transform.
Subjects were instructed to start each contraction with their
elbow resting on the table and the forearm raised such that
no leads were touching the table. They were then instructed
to bump their wrist against the table once on each side of
a small obstacle, pivoting on their elbow, once during each

Fig. 5. Motion artifacts were generated in real-time by having the subject
bump their wrist against the table on either side of a small obstacle during
each contraction [44].

contraction, illustrated in Fig. 5. This action was intended to
simulate the typical case for sEMG signal transients where
the user may bump the prosthetic against an object or shift
the appendage in the socket or electrode band.

To test the efficacy of the lead-off detection and handling
subsystem, two Motion Tests were performed, one with mean
data imputing enabled, and one without any extra processing.
A single-pole double-throw continuity switch was attached
to each lead pair, Fig. 4, and operated manually using a
random number generator to indicate disconnect events. The
generator indicated new events at a pseudo-random interval
with a two second mean time interval between events with
a standard deviation of one second. Disconnect events lasted
for between approximately 0.2 and 0.5 seconds, and began
occurring immediately after starting each test.

J. Experiment III. Simulated Real-Time

To observe the effect of a higher number of signal corruption
episodes, the proposed routines were tested on a series of
pre-recorded Motion Tests with artificially added noise and
sensor faults. This was done by feeding previously recorded
sEMG signals from Motion Tests into the microcontroller
and recording the resulting classifications. Standard offline
analysis of EMG data is often an unreliable indicator of real-
time performance, likely due to the loss of feedback and the
sequential nature of the data [45]. Using pre-recorded Motion
Tests still distorts the feedback effect, due to changes in signal
and processing, but maintains the structure and order of the
sEMG signals.

The simulated tests were performed on a separate data
set where sEMG signals were recorded from the left arms
of 15 able-bodied subjects performing 10 wrist and forearm
movements using the methodology described in the Training
Protocol section [40]. This data set was recorded at 2 kHz with
a second order digital high-pass filter at 20 Hz and a notch
filter centered at 50 Hz. It also contained sEMG data from both
the pattern recognition training and the full Motion Tests. As
the EMG data for the tests were recorded using different time
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Fig. 6. Examples of contact motion during rest (left panel), contact motion
during contraction (middle panel), and cable motion (right panel).

window parameters, only the first 128 ms in each time window,
after decimating to 1 kHz, was extracted to form the training
and testing sets. This made it possible to send the recordings
to the embedded system for processing while maintaining as
much of the original structure of the data as possible.

The EMG data used for comparing wavelet processing
with conventional filtering were modified with a set of previ-
ously recorded motion artifacts [15]. Artifacts were originally
recorded at 2 kHz using Ag-AgCl bipolar electrodes and
were generated by tapping the electrodes, cable movement,
and rapid arm movement while the subjects’ muscles were at
rest. Motion artifact magnitude was experimentally determined
to extend up to 150 times the standard deviation of normal
EMG signals, with smaller perturbations mimicking real-life
scenarios resulting 1 to 10 times EMG standard deviation
amplitude. The artifacts, examples of which are shown in
Fig. 6, were decimated and filtered to match the properties of
the test EMG signal. For each time window in the Motion Test,
random artifacts were added on at least one channel (chosen
at random) at random offsets with magnitudes corresponding
to between 1 and 10 times the standard deviation of the
signal strength of that window. Wavelet processing, when
applicable, and pattern classification were performed on the
microcontroller using a pre-trained LDA classifier by provid-
ing each time window over a serial connection and reading
the resulting classifications. This test included wavelet-based
artifact reduction using the third- and fourth-level transforms
in addition to conventional filtering.

Noise recorded from a set of disconnected leads using the
same setting as the Motion Tests was used as the data source
for simulating lead-off events. The noise was then decimated
to 1 kHz and separated into 128 ms time windows. Motion
Test data on at least one channel (selected at random) on each
time window were replaced with either a random sample of
recorded noise (for conventional handling) or zeros (for mean
data imputing).

Neither artifacts nor lead-off events were simulated for the
training data, but to compensate for the non-linear effects
wavelet processing has on the data, the appropriate routine
was applied to both the training and testing data for that case,
illustrated in Fig. 7. The ground truth for the simulated tests
in both cases was determined by running the classifier against
the recorded Motion Tests without simulated LOEs or motion
artifacts and saving the positions of the correct classifications.
Any incorrect predictions made in this situation were ignored,
as the proposed algorithms were not expected to significantly
increase the predictive power of the classifiers on clean data

Fig. 7. Block diagram showing the training and testing procedure used
to evaluate wavelet-based motion artifact reduction on pre-recorded Motion
Tests.

sets.

K. Real-Time Performance Evaluation (Experiments II-III)

A modified version of Kuiken et al.’s Motion Test [46]
was used to generate data for the real-time evaluation used
in this work. Subjects were visually cued to perform trials
of three random permutations of the movement set for each
test. They were asked to hold the cued contractions at 70-
80 % of maximum voluntary contraction strength until the
system made 20 correct predictions or for up to 10 seconds.
Signal recording, data visualization, classifier training, and
visual cueing were all controlled using the BioPatRec software
suite running on MATLAB 2016b [40]. The mean per-class
accuracy, specificity, sensitivity, precision, and false activa-
tion error, described below, across all classes were used as
performance metrics for all tests in addition to completion
time, selection time, and completion rate. The completion time
and completion rate were not calculated for the simulated
experiments, as the biofeedback the Motion Tests rely on
was lost when the signal processing algorithm was changed.
Specificity, sensitivity, and precision metrics were included to
compensate for the inherent bias of global accuracy [45], [47].

The conventional calculation for error rates in multi-class
systems weight all misclassifications equally, and therefore it
is not useful for measuring the likelihood that a system will
reject a classification based on uncertainty or missing data
values. In order to account for this, we employed an additional
metric referred to in this work as the False Activation Error
(FAE), defined as the percentage of class-wise false negative
misclassifications resulting in movement. This calculation is
similar to the standard class-wise error rate, but does not penal-
ize ”rest” misclassifications. FAE was originally proposed by
Hargrove et al. [12] to accommodate for the disproportionately
detrimental effects of misclassifications resulting in unintended
movements. This extra metric was used to show the difference
in unintended movements resulting from LOEs and motion
artifacts produced by the proposed algorithms. For instance, if
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Fig. 8. Experiment I. Offline accuracy change (left) and Mean Squared Error comparison (right) of wavelet-based processing vs. conventional processing.
Data shown are median values (circle with dot), inter-quartile range (thick bar), and data range (thin bar), with hollow circles as data outliers. Motion artifact
reduction using LDA classifier showed the only apparent accuracy improvement (ns).

an LOE occurred during a close hand movement, the system
would ideally reject data from the affected electrodes, reducing
the chance of interpreting an unintended movement, such as
open hand or wrist rotation, until the electrodes regained
connectivity. Wilcoxon signed rank tests were used on subject-
specific means on each metric independently for statistical
analysis using Bonferroni correction to adjust for multiple
comparisons.

Classifier training and artifact reduction on the training
data were performed on a PC. All other processing steps
for the testing data, including digital filtering, wavelet-based
processing, feature extraction, and pattern classification, were
implemented on the microcontroller to allow for independent
and mobile operation in prosthetic devices. Pattern recognition
algorithms were trained using a data set recorded prior to each
set of comparative tests. Embedded processing was performed
on a Texas Instruments ARM Cortex-M4 processor; a full
description of the hardware can be found in [43].

III. RESULTS

A. Wavelet Parameter Selection

Motion artifact reduction with the LDA classifier without
wavelet denoising was the only set of parameters that indicated
any numerical global accuracy improvement over conventional
filtering (ns), Fig. 8 left panel. This configuration also showed
the smallest signal distortion for the reference signal compared
to the noisy signal, indicating it would have the most positive
effect on reduction of signal corruption, Fig. 8 right panel.

B. Real-Time Test Results

Real-time test results between conventional filtering and
wavelet-based artifact reduction showed no significant dif-
ferences, Fig. 9a. Real-time data imputing tests showed a
decrease in precision (p < .05) of 12.0 percentage points

(pp), but showed no other significant differences between data
imputing and conventional filtering, Fig. 9b. A full summary
of the results is reported in Table II.

C. Simulation Test Results

The third-level wavelet processing performed best on all
metrics in simulation tests except selection time with an im-
provement in accuracy over conventional filtering by 1.80 pp
(p < .001), in sensitivity by 2.90 pp (p < .001), in
specificity by 1.9 pp (p < .001), in FAE by 22.9 pp
(p < 0.001), and in precision by 5.00 pp (p < .001),
Fig. 9a. The third-level transform increased the selection time
by 327 ms (p < .01), indicating that the system took longer
to register that a correct movement was being attempted by
a significant degree in the presence of artifacts. The fourth-
level transform showed an increase in accuracy by 1.20 pp
(p < .001), in specificity by 1.30 pp (p < .001), and
FAE by 16.6 pp (p < .001), with no significant change in
sensitivity, precision, or selection time. Data imputing showed
an improvement in accuracy of 4.50 pp (p < .001), in
specificity of 6.00 pp (p < .001), in precision of 3.40 pp
(p < .05), and in FAE by 54.3 pp (p < 0.001). Data
imputing showed reduced performance in sensitivity of 9.33 pp
(p < .001) and in selection time by 906 ms, Fig. 9b. A full
summary of the results is reported in Table II.

IV. DISCUSSION

Phinyomark et al.’s work on wavelet denoising showed sig-
nificant noise reduction in EMG signals, but the investigation
was limited to the MAV feature, leaving its effect on other
signal features in question [16]. The only literature found
investigating the effect of denoising with short time windows
on overall classifier accuracy only showed a relatively small
improvement for the MLP classifier and was implemented
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Fig. 9. Box plot of real-time (RT) and simulated real-time (Sim) metrics comparing the proposed wavelet-based motion artifact reduction (a) and data imputing
(b) routines with conventional signal processing on an embedded system. Data shown are values (circle with dot), inter-quartile range (thick bar), and data
range (thin bar), with hollow circles as data outliers. The wavelet processing algorithm used third- and fourth-level transforms, meaning motion artifacts were
assumed to have their dominant energy in the 0-62.5 Hz and 0-31.25 Hz frequency bands, respectively.

TABLE II
SUMMARY OF REAL-TIME AND SIMULATED RESULTS. VALUES ARE MEDIANS (IQR).

Artifact Reduction Data Imputing
Conventional Fourth Level Third Level No Imputing Mean Imputing

Real-Time (n=9)
Accuracy (%) 91.1 (7.90) 87.9 (12.6) 83.5 (6.59) 84.2 (3.07)

Sensitivity (%) 80.1 (11.5) 76.9 (17.0) 58.3 (19.0) 53.5 (17.7)
Specificity (%) 94.6 (4.83) 92.2 (7.92) 89.7 (4.34) 89.6 (2.69)

Precision (%) 69.4 (7.08) 80.1 (20.4) 47.9 (11.5) 35.9 (6.18) *
Completion Rate (%) 61.1 (21.5) 58.3 (16.0) 36.1 (15.3) 38.9 (20.8)
Selection Time (ms) 706 (695) 828 (388) 2020 (1100) 1980 (1660)

Completion Time (ms) 3110 (1080) 3100 (2100) 3610 (2030) 3040 (1960)
False Activation (%) 18.5 (14.5) 23.1 (22.2) 39.5 (18.3) 41.3 (12.7)

Simulated (n=15)
Accuracy (%) 87.3 (2.13) 88.5 (1.97) *** 89.1 (2.52) *** 84.5 (1.63) 89.0 (0.810) ***

Sensitivity (%) 24.3 (3.72) 25.9 (3.74) 27.2 (3.64) * 16.2 (2.86) 6.87 (1.71) ***
Specificity (%) 94.2 (2.31) 95.5 (1.76) *** 96.1 (2.59) *** 92.1 (1.97) 98.1 (1.21) ***

Precision (%) 48.9 (7.92) 48.9 (15.6) 53.9 (18.3) *** 38.9 (7.16) 42.3 (6.17) *
Selection Time (ms) 186 (198) 423 (311) 513 (377) ** 83.9 (76.6) 990 (415) ***
False Activation (%) 51.9 (20.8) 40.7 (15.8) *** 35.3 (23.3) *** 71.2 (17.7) 16.9 (10.9) ***

(*) indicates statistical significance from null hypothesis at p < .05
(**) indicates statistical significance from null hypothesis at p < .01
(***) indicates statistical significance from null hypothesis at p < .001

with more neurons than considered feasible for real-time
implementation in this experiment [15]. Wavelet-based de-
noising may have an unseen positive effect on noise sources
that more closely match real-world use, but our experiments
showed it degraded performance compared to conventional
filtering when presented with sEMG signals corrupted with
Gaussian noise. Additionally, the current investigation used
pre-gelled Ag-AgCl electrodes, which have different electrical
characteristics than stainless-steel dry electrodes typically seen

in commercial prostheses. While motion artifacts and LOEs
likely exhibit the same signal properties using either electrode
material, recordings taken from dry electrodes may include
additional noise that would be removed via the proposed signal
denoising routine. This limitation will be addressed in future
work. The processing time for wavelet-based signal processing
was found to increase roughly linearly with the number
of active channels, which potentially limits its applicability
in real-time processing on systems with a high number of
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channels. However, the added delay was not sufficient enough
to noticeably degrade system performance in this application.

The real-time experiments showed little effect from either
artifact reduction or data imputing. This suggests either that
the protocol used in the real-time portion of the present work
generated an insufficient number of signal artifacts to simulate
real-life scenarios or that signal artifacts do not present a
significant problem in real-life scenarios. The motion artifacts
corrupting the EMG signals in the Motion Tests were on
the order of 100 ms. With a window overlap of 64 ms,
up to six windows could have been corrupted by motion
artifacts from hitting the table both times, plus any that
occurred during the transit of the forearm above the table.
Given that an evaluation per movement lasts up to 10 seconds
(approximately 150 time windows), the motion artifacts could
only affect a small portion of the total predictions. This was
insufficient to cause a significant difference in the Motion Test
outcomes, and hence the need of the simulated experiments
where the signals were artificially corrupted more frequently.
Similar logic applies to the small difference found when
comparing conventional filtering to mean data imputing, as
the lead-off events lasted between 0.2 and 0.5 seconds. In
daily use and out of controlled environments, the number of
episodes in which such artifacts could frustrate the user is
unknown and difficult to estimate. Factors related to prosthetic
fitting, such as hardware, activity level, and stump condition,
would influence susceptibility to artifacts and their incidence.
These factors were not investigated in the current work, but an
investigation into the error and False Activation Error caused
by signal artifacts in daily life activities and their effects on
perceived system performance will be investigated in future
work.

The simulated experiments were expected to highlight any
changes too subtle to see in the real-time tests. Artifact
reduction using a third-level wavelet transform showed better
performance than the fourth-level transform along some met-
rics (p < .05), indicating frequency components in the motion
artifacts extended past the 31.25 Hz boundary addressed
by the fourth-level approximation coefficients. Clancy et al.
suggested cable motion artifacts can extend up to around
50 Hz [48], which was corroborated by our results. This
may partially explain the lack of improvement seen in the
real-time experiment, as only the fourth-level transform was
tested. Using a decreased transform order also reduced the
computational complexity and memory requirements of the
artifact reduction routine, but further increased the selection
time. Results for the simulated data imputing tests were more
mixed, showing an improvement in performance regarding
accuracy and specificity, but decreased sensitivity and slower
selection time. The results also showed the dramatic improve-
ment in the False Activation Error, indicating that the number
of misclassifications resulting in unintended movements was
effectively reduced, but at the cost of a significant increase
in the selection time. However, given that LOEs and motion
artifacts are typically short-term signal corruption sources in
prosthetic sockets, the reduced responsiveness indicated by the
selection time is unlikely to significantly hamper the overall
controllability. Based on the slower selection time and the

higher FAE, both algorithms appear to bias the classifier
towards making either the ground truth movement or no
movement at all for the duration of the signal corruption
events. These results suggest that mean data imputing is a
potentially useful strategy for handling LOEs during continu-
ous sEMG classification, given that a short-term reduction in
responsiveness is often preferable to unintended movements.

Increases in most of the performance metrics in the simu-
lated experiments came at the cost of a significant increase in
selection time for both data imputing and artifact reduction,
reducing the system responsiveness during channel corruption.
It is noteworthy to emphasize that at least one channel was
corrupted with a lead-off event or motion artifact on every
time window. As such, these results serve as a worst-case
scenario rather than a typical use-case, and as seen in the
offline analysis results, neither method had a significant impact
on the signal when no artifacts or noise were present. Based
on the results, the proposed algorithms would tend to produce
no actions during periods of fast limb movements, when the
stump shifts in the socket, or when a load is applied to the
end of the prosthetic. In each of these scenarios, producing no
movements is likely the desired outcome. More investigation
needs to be done on how the proposed algorithms affect the
controllability and responsiveness of prosthetic devices in real-
life environments.

Having an effective implementation of artifact reduction
and data imputing on a mobile processing platform allows
for investigation into their effects in real-life prosthetic use.
We have previously developed an evaluation method using an
embedded system in which the subject can report perceived
misclassification while operating the prosthesis in daily life
and for long periods of time [49]. The Assessment for Ca-
pacity of Myoelectric Control [50], the Activities Measure
for Upper Limb Amputees [51], and the Southampton Hand
Assessment Procedure [52] all provide insight into prosthetic
controllability with respect to functional tasks simulating real-
world environments, but they are cross-sectional in nature (a
single point in time) and are not performed out in the real
world. These assessments could be performed using a wireless
interface to a base station for all the required processing
without interfering with the subject mobility. However, such
strategy cannot be used in daily life where the subject will
encounter variable sources of noise and face motion artifacts
owning to different activities. Further work will focus on
evaluating the present algorithms in such circumstances.

V. CONCLUSION

In this work, we investigated the feasibility and effectiveness
of implementing wavelet-based signal processing and data im-
puting for continuous sEMG classification on a self-contained
prosthetic system. We proposed a novel and efficient method
for EMG signal imputing and modifications to existing wavelet
denoising and artifact reduction routines to allow for their
implementation on a wearable prosthesis. Wavelet denoising
proved ineffective for removing wide-band, Gaussian noise.
Real-time tests failed to show a significant effect using the
proposed routines, but increasing the rate of errors in simulated
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tests highlighted the benefits and caveats of the routines. Sim-
ulated tests showed significant increases in many performance
metrics (namely the reduction of erroneous movements), but
also showed a large increase in selection time, reducing the
system responsiveness during channel corruption events. Hav-
ing these systems implemented for real-time classification on a
self-contained prosthesis reduces the barrier for more realistic
assessment, and it could help bring pattern recognition-based
prosthetic devices to wider clinical implementation.
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