42 research outputs found

    Occupation time limits of inhomogeneous Poisson systems of independent particles

    Get PDF
    We prove functional limits theorems for the occupation time process of a system of particles moving independently in RdR^d according to a symmetric α\alpha-stable L\'evy process, and starting off from an inhomogeneous Poisson point measure with intensity measure μ(dx)=(1+xγ)1dx,γ>0\mu(dx)=(1+|x|^{\gamma})^{-1}dx,\gamma>0, and other related measures. In contrast to the homogeneous case (γ=0)(\gamma=0), the system is not in equilibrium and ultimately it vanishes, and there are more different types of occupation time limit processes depending on arrangements of the parameters γ,d\gamma, d and α\alpha. The case γ<d<α\gamma<d<\alpha leads to an extension of fractional Brownian motion.Comment: 22 page

    Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    Get PDF
    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods

    A Functional Misexpression Screen Uncovers a Role for Enabled in Progressive Neurodegeneration

    Get PDF
    Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism

    Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome

    No full text
    Y-linked markers are suitable loci to analyze genetic diversity of human populations, offering knowledge of medical, forensic, and anthropological interest. In a population sample of 206 Mestizo males from western Mexico, we analyzed two binary loci (M3 and YAP) and six Y-STRs, adding to the analysis data of Mexican Mestizos and Amerindians, and relevant worldwide populations. The paternal ancestry estimated in western Mexican-Mestizos was mainly European (60-64%), followed by Amerindian (25-21%), and African (?15%). Significant genetic heterogeneity was established between Mestizos from western (Jalisco State) and northern Mexico (Chihuahua State) compared with Mexicans from the center of the Mexican Republic (Mexico City), this attributable to higher European ancestry in western and northern than in central and southeast populations, where higher Amerindian ancestry was inferred. This genetic structure has important implications for medical and forensic purposes. Two different Pre-Hispanic evolutionary processes were evident. In Mesoamerican region, populations presented higher migration rate (Nm = 24.76), promoting genetic homogeneity. Conversely, isolated groups from the mountains and canyons of the Western and Northern Sierra Madre (Huichols and Tarahumaras, respectively) presented a lower migration rate (Nm = 10.27) and stronger genetic differentiation processes (founder effect and/or genetic drift), constituting a Pre-Hispanic population substructure. Additionally, Tarahumaras presented a higher frequency of Y-chromosomes without Q3 that was explained by paternal European admixture (15%) and, more interestingly, by a distinctive Native-American ancestry. In Purepechas, a special admixture process involving preferential integration of non-Purepecha women in their communities could explain contrary genetic evidences (autosomal vs. Y-chromosome) for this tribe. � 2007 Wiley-Liss, Inc

    Analyzing the genetic structure of the Tepehua in relation to other neighbouring Mesoamerican populations. A study based on allele frequencies of STR markers

    No full text
    We report data on the genetic variation of the Tepehua population based on 15 autosomal microsatellites. The Tepehua, whose language belongs to the Totonac family, are settled throughout the Sierra Madre Oriental in Mexico and constitute a group in demographic decline. The results suggest that the Tepehua population remained isolated throughout a large part of its history. Phylogenetic analyses performed with other indigenous and admixed populations of Mesoamerica allow us to address their biological history. The results suggest a genetic affinity between the Tepehua and the Huastecos due to their previous shared history, and a certain degree of differentiation from the Otomóes groups and the Choles (who are of Mayan origin). A clear genetic differentiation is also apparent between native and admixed populations within the greater region of Mesoamerica. It is currently accepted that the genetic composition of the American populations fits a trihybrid model of admixture. The genetic structure based on comparison of 34 populations throughout the continent (9 indigenous and 23 admixed) using hierarchical cluster analysis with an explained variance of 61.17% suggests the existence of four large groups distinguished according to the degree of admixture between Amerindians, Europeans, and Africans. Zapotitlán 2008 Wiley-Liss, Inc

    Relaxations in chitin: Evidence for a glass transition

    No full text
    The study of genetic information can reveal a reconstruction of human population's history. We sequenced the entire mtDNA control region (positions 16.024 to 576 following Cambridge Reference Sequence, CRS) of 605 individuals from seven Mesoamerican indigenous groups and one Aridoamerican from the Greater Southwest previously defined, all of them in present Mexico. Samples were collected directly from the indigenous populations, the application of an individual survey made it possible to remove related or with other origins samples. Diversity indices and demographic estimates were calculated. Also AMOVAs were calculated according to different criteria. An MDS plot, based on FST distances, was also built. We carried out the construction of individual networks for the four Amerindian haplogroups detected. Finally, barrier software was applied to detect genetic boundaries among populations. The results suggest: a common origin of the indigenous groups; a small degree of European admixture; and inter-ethnic gene flow. The process of Mesoamerica's human settlement took place quickly influenced by the region's orography, which development of genetic and cultural differences facilitated. We find the existence of genetic structure is related to the region's geography, rather than to cultural parameters, such as language. The human population gradually became fragmented, though they remained relatively isolated, and differentiated due to small population sizes and different survival strategies. Genetic differences were detected between Aridoamerica and Mesoamerica, which can be subdivided into "East", "Center", "West" and "Southeast". The fragmentation process occurred mainly during the Mesoamerican Pre-Classic period, with the Otomó being one of the oldest groups. With an increased number of populations studied adding previously published data, there is no change in the conclusions, although significant genetic heterogeneity can be detected in Pima and Huichol groups. This result may be explained because populations historically assigned as belonging to the same group were, in fact, different indigenous populations. " 2012 Gorostiza et al.",,,,,,"10.1371/journal.pone.0044666",,,"http://hdl.handle.net/20.500.12104/44113","http://www.scopus.com/inward/record.url?eid=2-s2.0-84866546267&partnerID=40&md5=f7ca307862e3ffb5f6c8c67c2b7a2fc0",,,,,,"9",,"PLoS ONE",,,,"7",,"Scopu
    corecore