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Fluctuations and correlations in hexagonal optical patterns
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We analyze the influence of noise in transverse hexagonal patterns in nonlinear Kerr cavities. The near-field
fluctuations are determined by the neutrally stable Goldstone modes associated to translational invariance and
by the weakly damped soft modes. However, these modes do not contribute to the far-field intensity fluctua-
tions that are dominated by damped perturbations with the same wave vectors than the pattern. We find strong
correlations between the intensity fluctuations of any arbitrary pair of wave vectors of the pattern. Correlation
between pairs forming 120° is larger than between pairs forming 180°, contrary to what a naive interpretation
of emission in terms of twin photons would suggest.
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I. INTRODUCTION

The properties of the fluctuations and correlations in s
tially extended patterns out of thermodynamical equilibriu
were studied long ago in the context of hydrodynamic s
tems @1,2#. More recently, there has been a new surge
interest in the field of nonlinear and quantum optics sin
Lugiato and Castelli pointed out the existence of a pur
quantum phenomenon in a spatial stationary dissipa
structure@3#, the reduction of fluctuations below quantu
limits in the difference between the intensities of the tw
Fourier modes of a stripe pattern. Since then, the prope
of the fluctuations and correlations of stripe patterns in d
ferent nonlinear optical models have been widely stud
@4–7#. Stripe patterns in these systems appear as supercr
transitions, and close to the threshold for pattern format
the harmonics of the fundamental wave vectors can be
glected. Therefore considering the homogeneous mode
the two modes of the stripes for each field is enough
simplifies the problem, allowing for an analytic treatme
The problem considering the whole infinite set of transve
modes in optical stripe patterns has been addressed nu
cally in Ref. @7#. At difference with the few-mode approxi
mation, the continuous problem makes evident the role of
so-called soft modes in the fluctuations of the near fie
However, a very good agreement between the few-mode
proximation and the continuous treatment is still found
the correlations of the fluctuations of the far-field mode
tensities close to threshold.

Due to the additional complexity, fluctuations and cor
lations in hexagonal optical patterns have been much
studied@8,9#. Furthermore, these two papers use an appr
mation in few modes to describe the pattern. However h
agonal patterns generally appear subcritically, with finite a
plitude. Therefore, harmonics are not negligible even
threshold. Strictly speaking, an approximation in which on
the homogeneous mode plus the six modes of the hexa
are considered is not fully justified.

In this paper, we will treat the case of a subcritical he
agonal pattern using a continuous model, i.e., avoiding
restriction to a reduced number of spatial modes. In part
lar, we consider an optical cavity filled with a nonlinear is
tropic Kerr medium. This situation is described by t
1063-651X/2002/66~4!/046223~9!/$20.00 66 0462
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Lugiato-Lefever model@10# in which a Turing instability
was described for the self-focusing case. This patte
forming instability leads to a hexagonal pattern in the tw
dimensional transverse plane. We find that the fluctuation
the near field are dominated by the two Goldstone mo
associated to the translational invariance in thex and y di-
rections, and by the soft modes arbitrarily close to them
infinitely large systems. We also show that the modes t
dominate the near-field fluctuations do not contribute at al
the far-field intensity fluctuations. We identify the modes r
sponsible for the far-field intensity correlations, and we fi
~a! strong correlations between arbitrary pairs of wave v
tors of the pattern, but stronger between those formin
120° angle;~b! anticorrelation between the zero wave vec
of the spectrum of fluctuations and any wave vector of
pattern. While the anti-correlation of the homogeneous m
with the off-axis wave vectors can be understood in terms
energy conservations, the common microscopic interpr
tion of the far-field intensity correlations in terms of emi
sion of twin photons would naively suggest that the strong
correlation is between the wave vectors forming a 18
angle. In fact, the total transverse momentum conserva
always involves at least four modes simultaneously and g
some hints about how the correlations should be, but d
not identify the pairs with stronger correlations. Our resu
here are obtained within a semiclassical approach in wh
specific features of quantum statistics are neglected.

The paper is organized as follows: In Sec. II we descr
the model we are considering. In Sec. III we linearize arou
the hexagonal pattern and describe the linear response o
system to noise perturbations. In Sec. IV we discuss in de
the field fluctuations, and in Sec. V we describe the corre
tions of the field Fourier components. Finally, in Sec. VI w
give some concluding remarks.

II. DESCRIPTION OF THE MODEL

The dynamics of the electric field inside an optical cav
with a self-focusing Kerr medium can be described, in t
mean-field approximation, by a equation for the sca
slowly varying amplitude of the fieldE(xW ) @10,11#,

] tE52~11 iu!E1 i¹2E1E01 i2uEu2E1j~xW ,t !, ~1!
©2002 The American Physical Society23-1
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D. GOMILA AND P. COLET PHYSICAL REVIEW E66, 046223 ~2002!
whereE0 is the input field,u is the cavity detuning,¹2 is the
transverse Laplacian, andj(xW ,t) is a complex Gaussian
white noise with zero mean and correlations,

^j~xW ,t !j* ~xW8,t8!&5ed~xW2xW8!d~ t2t8!,

^j~xW ,t !j~xW8,t8!&50. ~2!

In the absence of noise, Eq.~1! has a homogeneous st
tionary solutionEs , given by

E05Es@12 i ~2I s2u!#, ~3!

whereI s5uEsu2. It is well known that the homogeneous s
lution ~3! shows bistability foru.A3. We will restrict our-
selves to the nonbistable regimeu,A3.

A linear stability analysis of the homogeneous soluti
with respect to spatially periodic perturbations yields to
dispersion relation,

l~kW !5216A2~u1k226I s!~u1k222I s!, ~4!

wherel(kW ) is the linear growth rate of a perturbation wi
wave vectorkW andk5ukW u. The instability threshold is locate
at I s

c51/2 and the critical wave number iskc5A2u12. For
pump intensities above threshold, the maximum lin
growth rate is for wave vectors with modulus

ku5A2u14I s. ~5!

At thresholdku5kc . Starting from the homogeneous sol
tion and changing the pump intensity to a value above,
close to, the threshold, a hexagonal pattern with a wave n
ber k close toku arises@which as follows from Eqs.~5! and
~3! depends on the pump intensity#. The transition is subcriti-
cal, and the hexagonal pattern, once it is formed, is stable
values of the pump intensity within a quite large range t
includes values below threshold. Typically, the hexagons
pear oscillating just above threshold. The amplitude of
oscillations decreases on decreasing the pump intensity
they become, in all cases, stationary. We are interested
in the properties of the fluctuations and correlations of
stationary hexagonal patterns. The oscillatory behavior of
hexagons is investigated in Ref.@12#. Due to its subcritical-
ity, the hexagonal pattern has always a finite amplitude, e
at threshold. The harmonics of the six fundamental wa
vectors also have a significant amplitude, so that they hav
be included in the calculations to obtain realistic quantitat
results. This is particularly relevant here due to the s
focusing effect, which leads to a pattern with high peaks a
a strongly anharmonic far field~see Fig. 1!.

III. LINEARIZATION AROUND THE HEXAGONAL
PATTERN

The stationary hexagonal pattern can be written in
form
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Eh~xW !5 (
n50

N

aneikWn
0(xW2xW0), ~6!

wherean are complex coefficients,xW0 determines the globa
position of the pattern~we takexW050 in the following!, kW0

0 is

the homogeneous mode, andkWn
0 for n51, . . . ,N are the off-

axis wave vectors of the hexagonal pattern. Here we t
N590, which corresponds to considering up to the fift
order harmonics in the far field. The six fundamental h
monics have modulusku . For simplicity we first consider the
case without noise. Linearizing Eq.~1! around the stationary
solution ~6!, we obtain the following equation for the fluc
tuationsdE(xW ,t)5E(xW ,t)2Eh(xW ),

] tdE52~11 iu!dE1 i¹2dE1 i2@2uEhu2dE1EhEhdE* #.
~7!

As Eq. ~7! is a linear differential equation with periodic co
efficients, a general bounded solution can be found und
Floquet form@13#:

dE~xW ,t !5E eiqW xWA~qW ,xW ,t !dqW , ~8!

whereA(qW ,xW ,t) are functions with the same spatial perio
icity than the stationary patternEh , and therefore can be
written as

A~qW ,xW ,t !5 (
n50

N

dan~qW ,t !eikWn
0xW. ~9!

From Eqs.~7!, ~8!, and ~9! we obtain for each perturbatio
wave vectorqW a set of linear differential equations for th
time evolution of the Fourier coefficientsdan(qW ,t).

FIG. 1. ~a! Near-field intensityuE(x,y)u2 and ~b! power spec-

trum ~far field! uE(kW )u2 of a stationary hexagonal solution. Note th
presence of high order harmonics; in the far field~c! shows a cross
section along thex axis of the intensity pattern and~d! a cross
section along theky axis of the power spectrum.
3-2
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] tdan~qW ,t !5@2~11 iu!2 i ukWn
01qW u2#dan~qW ,t !

1 i2H 2(
l 50

N

(
m50

N

alam* dan2 l 1m~qW ,t !

1(
l 50

N

(
m50

N

alam@da2n1 l 1m~2qW ,t !#* J ,

~10!

where dan2 l 1m(qW ,t)5daj (qW ,t) with kW j
05kWn

02kW l
01kWm

0 . In-
troducing

SW ~qW ,t !5~Re@da0~qW ,t !#, Im@da0~qW ,t !#, . . . ,Im@daN~qW ,t !#,

Re@da0~2qW ,t !#, . . . ,Im@daN~2qW ,t !#)T,

Eq. ~10! can be written as

] tSW ~qW ,t !5M ~EW h ,qW !SW ~qW ,t !. ~11!

SW (qW ,t) includes perturbations with1qW and 2qW since they
are coupled in Eq.~10!. The important point is that pertur
bations with differentqW vectors are uncoupled. Any pertu
bation with a vectorqW 8 outside the first Brillouin zone of the
hexagonal lattice defined by the wave vectors of the pat
kWn

0 ~see Fig. 2! is equivalent to another one with a vectorqW

5qW 81kW n
0 inside.

Therefore the values ofqW to be considered are only thos
inside half of the first Brillouin zone. In this way one finds
set of 4(N11) eigenvalues and eigenvectors for each vec
qW , except for the casesqW 50W andqW 5kWn

0/2 whereSW (qW ,t) has
only 2(N11) components. The eigenvalues may be eit
real or complex conjugates, and determine the linear
sponse of the system when perturbations withkWn

06qW wave
vectors are applied.

As the system is translationally invariant,Eh(xW1xW0) is
also a stationary solution for any fixedxW0, the two modes

FIG. 2. First Brillouin zone~dashed hexagon! of the hexagonal
lattice defined by the wave vectors of the pattern in the Fou
space.
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]xEh and ]yEh are eigenvectors ofM (EW h ,qW 50) with zero
eigenvalue. These neutrally stable modes of the lineari
dynamics are the so-called Goldstone modes@1,7#, and cor-
respond to homogeneous perturbations that displace rig
the pattern along thex or y direction,

]xEh~xW !5 i(
n

anknx
0 eikWn

0xW, ~12!

Eh~x,y!1x0]xEh5(
n

an~11 iknx
0 x0!eikWn

0xW

.(
n

aneikWn(x1x0,y)5Eh~x1x0,y!. ~13!

For the hexagonal pattern considered here, the Golds
modes have the profile shown in Figs. 3 and 4. In the n
field they have a larger amplitude at the borders of the h
agonal peaks, where the gradient is larger and show a s
transition from negative to positive values just at the cen
of the peak~Fig. 4!.

In a situation where the hexagonal pattern is stable,
Goldstone modes are the only neutral modes while all
other eigenvectors have eigenvalues with strictly nega
real part.

r FIG. 3. Real part~left! and power spectrum~right! of the Gold-
stone modes]xEh ~top! and]yEh .

FIG. 4. Close-up of the real part of a peak of the hexago
pattern~left! and the real part of the Goldstone mode]xEh ~right!.
3-3
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At this point we can study the linear response to no
perturbations. Decomposing the noise term of Eq.~1! as it
has been done for the field@Eqs. ~8! and ~9!#, we obtain an
extra term in the right-hand side of Eq.~11!,

] tSW ~qW ,t !5M ~EW h ,qW !SW ~qW ,t !1JW ~qW ,t !, ~14!

where

JW ~qW ,t !5~Re@j~kW0
01qW ,t !#, Im@j~kW0

01qW ,t !#, . . . ,

Im@j~kWN
0 1qW ,t !#, Re@j~kW0

02qW ,t !#, . . . , Im@j~kWN
0 2qW ,t !#)T.

Then, we can write an Ornstein-Uhlenbeck process@14# for
the amplitudeQ i(qW ,t) of each eigenvector ofM (EW h ,qW ),

] tQ i~qW ,t !5l i~qW !Q i~qW ,t !1h i~qW ,t !, ~15!

wherel i(qW ) is the i th eigenvalue ofM (EW h ,qW ) ~ordered ac-
cording to the value of its real part Re@l i(qW )#

>Re@l i 11(qW )#). h i(qW ,t)5(n50
4N13Ci j

21(qW )J j (qW ,t) is the

noise expressed in the eigenvector basis andC(qW ) is the
matrix for the change of basis as obtained diagonaliz
M (EW h ,qW ). The coefficientsdan(qW ,t) are related to the am
plitudes of the eigenmodesQ i(qW ,t) by

Re@dan~qW ,t !#5S iQ i~qW ,t !C2n21i~qW !,

Im@dan~qW ,t !#5S iQ i~qW ,t !C2ni~qW !,

Re@dan~2qW ,t !#5S iQ i~qW ,t !C2n2112Ni~qW !,

Im@dan~2qW ,t !#5S iQ i~qW ,t !C2n12Ni~qW !. ~16!

The noisesh i(qW ,t) are Gaussian and white in time, an
have cross correlations

^h i~qW ,t !h j* ~qW 8,t8!&5
e

2
Di , j~qW !d~ t2t8!d~qW 2qW 8!, ~17!

^h i~qW ,t !h j~qW 8,t8!&5
e

2
D̃ i , j~qW !d~ t2t8!d~qW 2qW 8!, ~18!

where

Di , j~qW !5 (
k50

4N13

Cik
21~qW !Cjk

21* ~qW !,

D̃ i , j~qW !5 (
k50

4N13

Cik
21~qW !Cjk

21~qW !. ~19!

The solution of the stochastic process is then

Q i~qW ,t !5el i (q
W )tE

0

t

e2l i (q
W )sh i~qW ,s!ds. ~20!
04622
e
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The average value of the eigenmodes amplitude

^Q i(qW ,t)&50. The correlations between the amplitudes
the eigenvectors are given by

^Q i~qW ,t !Q j* ~qW 8,t8!&5
eDi j ~qW !

24@l i~qW !1l j* ~qW 8!#

3~12e[l i (q
W )1l j* (qW 8)] t!d~qW 2qW 8!,

~21!

^Q i~qW ,t !Q j~qW 8,t8!&5
eD̃ i j ~qW !

24@l i~qW !1l j~qW 8!#

3~12e(l i (q
W )1l j (q

W 8))t!d~qW 2qW 8!.

~22!

In particular, the time evolution of the mean value of t
squared amplitude of the eigenvectors with nonzero eig
value is

^uQ i~qW ,t !u2&5
eDii ~qW !

28 Re@l i~qW !#
~12e2 Re[l i (q

W )] t!. ~23!

For times much longer than a characteristic timet i(qW );
21/Re@l i(qW )#, this mean squared amplitude reaches a s
tionary value

^uQ i~qW !u2&5
eDii ~qW !

28 Re@l i~qW !#
. ~24!

Equation~24! does not apply to the Goldstone modes as th
have zero eigenvalue@l0(qW 50W )50#. Its time evolution is
given by @from Eq. ~20!#

Q i~qW ,t !5E
0

t

h i~qW ,s!ds. ~25!

This is a purely diffusive motion that never reaches a stati
ary state. Its mean squared amplitude grows linearly in tim

^uQ0~qW 50W ,t !u2&5
e

8
D00~qW 50!t. ~26!

Therefore, the linearization fails for timest;1/e, when the
amplitude of the Goldstone modes,uQ0(qW 50W )u2, reaches
values comparable to 1 and nonlinear terms will come i
play.

IV. FLUCTUATIONS IN THE NEAR FIELD

Starting from a stationary hexagonal solution of the s
tem equations without noise, a typical evolution of the p
tern fluctuations when the noise is switched on, obtain
from numerical integration of the nonlinear equations, E
~1! @15#, is shown in Fig. 5.

From Eq. ~23! we get that for short time all the mode
3-4
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Q i(qW ,t) have a similar mean squared amplitude, which
proportional to the noise intensity and grows linearly w
time,

^uQ i~qW ,t !u2&5
e

4
Dii ~qW !t. ~27!

All the modes will contribute with a similar weight to th
field fluctuations, and therefore there is a complete lack
structure in the field fluctuations at short times as shown
Fig. 5 ~top!.

As time goes on, following Eq.~23!, the mean squared
amplitude of the modes does not grow linearly any more
reaches a steady state value given by Eq.~24!, which is
larger for the modes that have a smaller decaying
Re@l i(qW )#. According to the way the eigenvalues has be
ordered, for a givenqW , the smaller decaying rate i
Re@l0(qW )#. The eigenmodes with eigenvaluel0(qW ) are the
so-called soft modes@1,7,16#, which are connected with th
Goldstone modes and for whichl0(qW *0W );2uqW u2 ~see Fig.
6!.

While the Goldstone modes correspond to neutrally sta
homogeneous perturbations, the soft modes correspon
weakly damped long-wavelength perturbations. For syste
with a finite sizeL, the less damped of the soft modes are
ones with the smallestqW vector allowed by the size of th
system,uqW u52p/L. These modes have a decay rate prop

FIG. 5. Near-field ~left: Re@dE(xW )#,dE(xW )5E(xW )2^E(xW )&)
and far-field ~right: udE(kW )u,dE(kW )5E(kW )2^E(kW )&) pattern fluc-
tuations after switching on the noise. From top to bottom:t52,
t5200, andt52000. We have considerede51026.
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tional to 1/L2, and therefore a stationary mean squared a
plitude proportional toeL2. The shape of one soft mode
illustrated in Fig. 7.

Its profile is similar to a Goldstone mode but with a lon
wavelength modulation on top of it. The wave vector of t
modulation is precisely the wave vectorqW that identifies the
soft mode. While the Goldstone modes describe an ove
rigid motion of the pattern, the soft modes add some dis
tion, so that the pattern moves in slightly different form
different locations.

For the numerical simulations shown in Fig. 5, att
5200 the mean squared amplitude of most of the modes
already saturated at small values, while the amplitude of
soft modes is, on average, just reaching the stationary va
Therefore, as shown in the figure~center! the field fluctua-
tions are dominated by the soft and Goldstone modes,
short-range spatial structures start to appear. The typical
relation length of the fluctuations is determined by the wa
length of the soft modes.

According to Eq.~26! the mean square amplitude of th
Goldstone mode keeps growing linearly in time and does
saturate. At times of the ordert;1/e the linear theory for
fluctuations described in the preceding section fails~this time
is around 106 for the simulation shown in Fig. 5! Assuming
the linearization is valid, at timest@L2, the mean squared
amplitudes of the Goldstone modes@;et, Eq. ~26!# become
much larger than the amplitude of any of the soft modes
dominate the fluctuations. In our system at timet;2000, the
profile of the field fluctuations is already determined only
the Goldstone modes, as shown in Fig. 5~bottom!. In the far
field, the largest fluctuations are those of the wave vector
the pattern, while in the near field fluctuations show a lon

FIG. 6. Left: Re@l0(qW )#; darker color indicates smaller value
The white line shows the first Brillouin zone. The center of t

figure corresponds to the Goldstone modes„Re@l0(qW 50)#50….

Right: transverse cut of Re@l0(qW )# along theqx ~solid line! andqy

~dotted line! axes.

FIG. 7. Soft modeqW 5(0,2p/Ly), whose decay rate is Re@l„qW

5(0,2p/Ly)…#520.0052.
3-5
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D. GOMILA AND P. COLET PHYSICAL REVIEW E66, 046223 ~2002!
range structure with strong correlation over all the syst
size. Integrating for longer times, the profile of the fluctu
tions will be dominated by macroscopic rigid displaceme
of the pattern. On top of that, there will be deformatio
generated by the soft modes.

For systems with a larger system size, the soft modes
take a longer time to reach the stationary amplitude~and, in
fact, its amplitude will be larger!. However, provided tha
L2,t;1/e, the evolution will be basically the same, show
ing the three stages discussed before. If the system siz
larger than 1/Ae, then the stationary amplitude of the so
modes will be determined by the system nonlinearities an
L is large enough, their amplitudes may have large sizes
which case the Goldstone and soft modes will contribute
the near-field fluctuations even at quite long times (t;1/e.

V. FLUCTUATIONS AND CORRELATIONS
IN THE FAR FIELD

In this section, we address on the fluctuations in Fou
space of the field, intensity, and momentum.

A. Field fluctuations

In the Fourier space the field fluctuations are also do
nated by the Goldstone and soft modes. From Eqs.~12! and
~13!, we can see how the Goldstone modes, which have
same wave vectors than the hexagonal pattern, induce o
site and very large phase fluctuations in opposite Fou
components, which correspond to the rigid translation of
hexagons in the near field. The homogeneous compone
the field is not affected by the Goldstone modes. The s
modes do not have exactly the same Fourier compon
than the hexagonal pattern, but they are very close, there
their main contribution is to broaden the spots of the far fi
fluctuations ~see the far-field for the intermediate time
Fig. 5!.

B. Intensity fluctuations and correlations

The intensity fluctuations of the far-field peaks are

dI ~kW !5I ~kW !2I h~kW !, ~28!

where I (kW )5uE(kW )u2 and I h(kW )5uEh(kW )u2. The correlation
function of the far-field intensity fluctuations of a fundame
tal wave vector of the pattern, for instancekW3

0, with the far-

field intensity fluctuations of any other wave vectorkW is
given by

C1~kW3
0 ,kW !5

^dI ~kW3
0!dI ~kW !&

A^udI ~kW3
0!u2&^udI ~kW !u2&

. ~29!

From the numerical integration of Eq.~1!, and averaging
over two hundred realizations of the noise@15#, we find
strong correlations between the intensity fluctuations of
the modes of the pattern, not only among the fundame
harmonics but also with the higher order ones~Fig. 8!.
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For the fundamental harmonics, the correlati
C1(kW3

0 ,kW i
0)5^dI (kW3

0)dI (kW i
0)&, with i 51,6, is larger for the

modes forming an angleu52p/3 and smaller foru5p/3
~Fig. 10!. Using a six mode approximation@8,9# one finds
that Ni1Ni 112Ni 132Ni 14 (Ni being the number of pho
tons of the modei! is a conserved quantity for the interactio
Hamiltonian related to momentum conservation. This me
that one should expect strong correlations among these
of four Fourier modes. However, this reasoning cannot
veal which modes within these sets are more correlated
pairs. So, the stronger correlation between those mo
forming au52p/3 angle, despite fulfilling momentum con
servation, cannot be completely understood in these te
We also find strong anticorrelations between the inten
fluctuations of the modes of the pattern and the homo
neous mode, which are related to energy conservation~Fig.
8!.

Neglecting terms of ordere2, the far-field intensity fluc-
tuations can be approximated as

dI ~kW !'2 Re@Eh* ~kW !dE~kW !#, ~30!

where dE(kW )5E(kW )2Eh(kW ). As Eh(kW )5(nan(2p)2d(kWn
0

2kW ), we have to consider only perturbations that have
same wave vectors of the pattern (qW 50W ). Therefore, in the
linear approximation, the soft modes (qW *0W ) do not contrib-
ute to the fluctuations of the far-field intensity peaks. T
Goldstone modes are indeedqW 50 perturbations, but the in
tensity fluctuations associated to the Goldstone modes
dI (kW )52Re@Es(kW )* ]xEs(kW )#, which @from Eqs. ~6! and
~12!# is exactly zero. So, in the linear approximation, neith
do the Goldstone modes contribute to the fluctuations of
far-field intensity peaks. They only contribute to phase flu

FIG. 8. Correlation function of the intensity fluctuation

C1(kW3
0 ,kW ). The brightest spot takes the value 1 corresponding to

autocorrelation ofkW3
0. Note the strong correlation with the other s

fundamental wave vectors of the pattern and with the first rings
harmonics. The correlation decays as one considers higher
higher harmonics. Note also the anticorrelation with the homo
neous component as a black spot at the center. The gray backgr
is around 0.
3-6



ity
s

rie
v

-

of
he
rre-
n-

ec-
val-

the
ho-
lies
d the

in
le
m-

No

th
tio

ith

es
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tuations. Therefore, fluctuations of the far-field intens
peaks have to be described by the other eigenvector

M (Eh ,qW 50W ). These eigenvectors have the same Fou
components than the hexagonal pattern, and their eigen

uesl i(qW 50W ), (i 51, . . . ,N) are shown in Fig. 9.
Using Eqs.~16!, ~21!, and~22!, we can compute the cor

relation functionC1(kWn
0 ,kWm

0 ) analytically,

C1~kWn
0 ,kWm

0 !52 Re@Eh* ~kWn
0!Eh* ~kWm

0 !^dE~kWn
0!dE~kWm

0 !&

1Eh~kWn
0!Eh* ~kWm

0 !^dE~kWn
0!dE* ~kWm

0 !&, ~31!

where

^dE~kWn
0!dE~kWm

0 !&5(
i

(
j

e

24~l i1l j !
~12e(l i1l j )t!

3D̃ i j ~qW 50!@C2n21iC2m21 j

2C2niC2m j1 i ~C2m21iC2n j

1C2n21iC2mk!#, ~32!

FIG. 9. Eigenvalues of the eigenvectors withqW 50W . There are
two zero eigenvalues corresponding to the Goldstone modes.
also the symmetry of the spectrum with respect to the axis Re@l#
521.

FIG. 10. Correlations between the intensity fluctuations of
fundamental wave vectors obtained from the numerical integra
of Eq. ~1! ~rhombi! and analytically from Eq.~31! ~dots!.
04622
of

r
al-

^dE~kWn
0!dE* ~kWm

0 !&5(
i

(
j

e

24~l i1l j* !
~12e(l i1l j* )t!

3Di j ~qW 50!@C2n21iC2m21 j

1C2niC2m j1 i ~C2m21iC2n j

2C2n21iC2mk!#. ~33!

Figure 10 shows the stationary value (t→`) of Eq. ~31! for
the fundamental wave vectors of the pattern as a function
the angleu between them. The results obtained from t
linearized theory are in very good agreement with the co
lations obtained from the numerical simulations of the no
linear equation~1!.

From Fig. 9 we can see that the most important eigenv
tors are those associated to the complex conjugate eigen
ues with Re@l2(qW 50)#5Re@l3(qW 50)#520.25. This pair
of eigenvectors give the strong correlation between all
Fourier components and a strong anticorrelation with the
mogeneous field. The excitation of this eigenvectors imp
also anticorrelations between the homogeneous mode an
off-axis Fourier components of the pattern~Fig. 11!.

Some eigenvectors with Re@ln(qW 50)#521 are finally
responsible for the differences between the correlations
the fluctuations of the six first harmonics. The typical profi
of one of these eigenmodes is shown in Fig. 12. The sy

te

e
n

FIG. 11. Intensity fluctuations due to the eigenmodes w
Re@l#520.25.

FIG. 12. Intensity fluctuations due to one of the eigenmod
with Re@l#521.
3-7
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D. GOMILA AND P. COLET PHYSICAL REVIEW E66, 046223 ~2002!
metry of the three peaks located at 120° yields larger co
lations between the fluctuations of the corresponding
field intensity peaks.

We note that the modes that determine the correlation
the far-field intensity peaks reach stationary values in a m
shorter time@ t;21/Re@l2(qW 50)#54# than the Goldstone
and soft modes contributing to the near-field fluctuationst
;1/e;106, as discussed in the preceding section!. As these
correlations are determined byqW 50 perturbations, these ca
culations can be performed in systems with relatively sm
size. Increasing the system size may change the near-
profile of the fluctuations, as discussed before, but never
less the dynamical evolution of the modes contributing to
far-field intensity fluctuations and their mean squared s
tionary amplitude will be basically the same.

C. Transverse momentum fluctuations

We finally address the fluctuations of the transverse m
mentum. Without noise the total transverse momentum of
pattern isPW 5(nuanu2kWn

050. The noise induced fluctuation

given by dPW 5(n2Re@an* dan#kWn
0 . One finds that all the

eigenvectors that contribute to the far-field intensity fluctu
tions strictly fulfill momentum conservation except for tw
modes withl2N(q50)5l2N21(q50)522, which are ex-
actly those symmetric to the Goldstone modes with resp
to the line Re@l#521 ~Fig. 9!. Therefore momentum fluc
tuations are determined by the two modes with maxim
damping, which are shown in Fig. 13, the on the top figu
breaks the conservation of thePy momentum componen
while the one in the bottom breaks the conservation ofPx .

FIG. 13. Intensity fluctuations due to the two mod

Re@l2N(qW 50)#5Re@l2N21(qW 50)#522.
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Alternatively, it is possible to see from the classical fie
theory that the momentum fluctuations are damped wit
coefficient22. A Lagrange density can be defined for E
~1! @17#

L5e2tFau¹Eu21
i

2
~EĖ* 2ĖE* !1 i ~E0E* 2E0* E!

1uuEu22uEu4G . ~34!

Substituting Eq.~6! in Eq. ~34! and integrating over all the
space we get a Lagrangian for the amplitude of the modean

and for the position of the rolls in the near field (xW0),

L5e2tF(
n

uanu2ukWnu21
i

2 (
n

~ ȧn* an2ȧnan* 2 i2uanu2kWnxẆ0!

1 i ~E0a0* 2E0* a0!1(
n

uanu2

2(
n

(
n8

(
m

anan8am* an1n81m
* G . ~35!

xW0 is a cyclic coordinate, so its conjugate momentum,

]L

]xẆ0

52 i2e2t(
n

uanu2kWn522e2tPW , ~36!

is a constant. ThereforePẆ 522PW . PW is identically zero with-
out noise. When noise is present, momentum fluctuati
should satisfy

dPẆ 522dPW 1x~ t !, ~37!

wherex(t) is a Gaussian white noise. Therefore, moment
fluctuations have the maximum damping. The same damp
coefficient for the momentum fluctuations has been found
Gatti and Mancini from a few-mode quantum formulatio
@9#.

VI. CONCLUSIONS

We have analyzed the fluctuations and correlations i
hexagonal pattern of a prototypical model in nonlinear o
tics. In the near field, fluctuations are dominated by the n
trally stable Goldstone modes associated to the translati
invariance as well as by the soft modes connected with th
The soft modes destroy the long-range correlation in
fluctuations, however, in small systems these modes reac
stationary amplitude much earlier~and at a smaller value!
than the Goldstone mode, so that they are important onl
intermediate times. At long times the fluctuations are dom
nated by the Goldstone modes that correspond to rigid
placements of the overall pattern. For very large syste
both the Goldstone and soft modes may have similar am
tudes and contribute to the fluctuations.

In the far field, the most relevant effect of noise are t
3-8
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intensity fluctuations of the Fourier modes of the hexago
pattern. At first order in noise intensity, these fluctuations
neither affected by the Goldstone modes nor by the
modes. They are dominated by damped modes, so they r
stationary values in relatively short times. Their main ch
acteristics are:~i! strong correlations between the intens
fluctuations of any arbitrary pair of the six fundamental wa
vectors of the pattern, and also with their higher harmon
~ii ! larger correlation between intensity fluctuations of t
Fourier modes forming 120° angles than between mo
forming 180°, and~iii ! strong anticorrelations between th
zero wave vector and the pattern Fourier modes. Fina
only the eigenmodes with maximum damping contribute
the fluctuations of the total transverse momentum, there
the total transverse momentum has the least possible fluc
tions.

Our results are obtained from both semianalytical cal
lations based on linearization around the hexagonal pat
and from numerical simulations of the nonlinear syste
Some of our results and predictions are very general,
depend only on basic symmetry properties of the syst
such as the translational invariance. Thus we expect
nd
,

,

d

.

o,
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similar structure and properties of the fluctuations and co
lations can be found in other nonlinear systems display
hexagonal patterns.

From a computational point of view, correlations in th
far-field intensity peaks are practically independent of
system size, and therefore can be calculated accurate
relatively small systems, provided all the relevant harmon
of the pattern are considered. Good statistics can be obta
on integrating the nonlinear equations over relatively sh
times ~even though the near-field fluctuations are quite
away from reaching a stationary value!. Of course, alterna-
tively a linear semianalytical approach as the one descri
in Sec. III can also be used to calculate far-field correlatio
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