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Fluctuations and correlations in hexagonal optical patterns
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We analyze the influence of noise in transverse hexagonal patterns in nonlinear Kerr cavities. The near-field
fluctuations are determined by the neutrally stable Goldstone modes associated to translational invariance and
by the weakly damped soft modes. However, these modes do not contribute to the far-field intensity fluctua-
tions that are dominated by damped perturbations with the same wave vectors than the pattern. We find strong
correlations between the intensity fluctuations of any arbitrary pair of wave vectors of the pattern. Correlation
between pairs forming 120° is larger than between pairs forming 180°, contrary to what a naive interpretation
of emission in terms of twin photons would suggest.

DOI: 10.1103/PhysReVvE.66.046223 PACS nunier05.40—a, 47.54+r, 42.65.5f

[. INTRODUCTION Lugiato-Lefever model[10] in which a Turing instability
was described for the self-focusing case. This pattern-

The properties of the fluctuations and correlations in spaforming instability leads to a hexagonal pattern in the two-
tially extended patterns out of thermodynamical equilibriumdimensional transverse plane. We find that the fluctuation of
were studied long ago in the context of hydrodynamic systhe near field are dominated by the two Goldstone modes
tems[1,2]. More recently, there has been a new surge ofssociated to the translational invariance in xhendy di-
interest in the field of nonlinear and quantum optics sincdections, and by the soft modes arbitrarily close to them in
Lugiato and Castelli pointed out the existence of a purelynfinitely large systems. We also show that the modes that
quantum phenomenon in a Spatia' Stationary dissipativgomW\ate the neal’-fleld f|UCtuatI0nS dO not Cont“bute at a.” to
structure[3], the reduction of fluctuations below quantum the far-field intensity fluctuations. We identify the modes re-
limits in the difference between the intensities of the twosponSible for the far-field intenSity Correlaﬁons, and we find
Fourier modes of a stripe pattern. Since then, the propertied strong correlations between arbitrary pairs of wave vec-
of the fluctuations and correlations of stripe patterns in dif-tors of the pattern, but stronger between those forming a
ferent nonlinear optical models have been widely studied20° anglejb) anticorrelation between the zero wave vector
[4—7]. Stripe patterns in these systems appear as supercritic@f the spectrum of fluctuations and any wave vector of the
transitions, and close to the threshold for pattern formationPattern. While the anti-correlation of the homogeneous mode
the harmonics of the fundamental wave vectors can be néNlth the off-axis wave vectors can be understood in terms of
glected. Therefore considering the homogeneous mode ar@fiergy conservations, the common microscopic interpreta-
the two modes of the Stripes for each field is enough an@ion of the far-field intenSity correlations in terms of emis-
simplifies the problem, allowing for an analytic treatment.Sion of twin photons would naively suggest that the strongest
The problem considering the whole infinite set of transverséorrelation is between the wave vectors forming a 180°
modes in optical stripe patterns has been addressed numefingle. In fact, the total transverse momentum conservation
cally in Ref.[7]. At difference with the few-mode approxi- always involves at least four modes simultaneously and give
mation, the continuous problem makes evident the role of théome hints about how the correlations should be, but does
so-called soft modes in the fluctuations of the near fieldnot identify the pairs with stronger correlations. Our results
However, a very good agreement between the few-mode afiere are obtained within a semiclassical approach in which
proximation and the continuous treatment is still found forspecific features of quantum statistics are neglected.
the correlations of the fluctuations of the far-field mode in- The paper is organized as follows: In Sec. Il we describe
tensities close to threshold. the model we are considering. In Sec. Ill we linearize around

Due to the additional complexity, fluctuations and corre-the hexagonal pattern and describe the linear response of the
lations in hexagonal optical patterns have been much lessystem to noise perturbations. In Sec. IV we discuss in detail
studied[8,9]. Furthermore, these two papers use an approxithe field fluctuations, and in Sec. V we describe the correla-
mation in few modes to describe the pattern. However hextiOﬂS of the field Fourier components. FinaIIy, in Sec. VI we
agonal patterns generally appear subcritically, with finite amgive some concluding remarks.
plitude. Therefore, harmonics are not negligible even at

threshold. Strictly speaking, an approximation in which only Il. DESCRIPTION OF THE MODEL
the homogeneous mode plus the six modes of the hexagons ) o , )
are considered is not fully justified. The dynamics of the electric field inside an optical cavity

In this paper, we will treat the case of a subcritical hex-With a self-focusing Kerr medium can be described, in the

agonal pattern using a continuous model, i.e., avoiding anjt€a@n-field approximation, by a equation for the scaled
restriction to a reduced number of spatial modes. In particuslowly varying amplitude of the fiel&(x) [10,11],

lar, we consider an optical cavity filled with a nonlinear iso- .

tropic Kerr medium. This situation is described by the HE=—(1+i0)E+iVZE+E+i2|E|2E+&(x,t), (1)
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whereE, is the input field,d is the cavity detuningy? is the

transverse Laplacian, ané(x,t) is a complex Gaussian
white noise with zero mean and correlations,

(EGDE (X)) =ed(x—X") 8(t—t"),

(E(XDEX ) =0. (2) e

rd) ]

In the absence of noise, Efll) has a homogeneous sta- - .
tionary solutionEg, given by N j
Eo=EJ1-i(21--0)], 3 - ‘ | | 1
wherel ;=|E2. It is well known that the homogeneous so- °o 10 20 % -0 ‘?, > 10

lution (3) shows bistability foro> /3. We will restrict our-
selves to the nonbistable regingec /3. FIG. 1. (@) Near-field intensityl E(x,y)|* and (b) power spec-
A linear stability analysis of the homogeneous solutiontrum (far field) |E(k)|? of a stationary hexagonal solution. Note the
with respect to spatially periodic perturbations yields to thepresence of high order harmonics; in the far fiediishows a cross
dispersion relation, section along thex axis of the intensity pattern an@l) a cross
section along thé, axis of the power spectrum.

ANK)=—12—(0+KZ—6l)(6+K=21y), (4) .
- 0
o , , , En(x)= 2, a,e'*n*~%0), 6
where (K) is the linear growth rate of a perturbation with () nzo n= e ©
wave vectok andk=|k|. The instability threshold is located .
atl¢=1/2 and the critical wave numberks=\/— 6+2. For  wherea, are complex coefficient, determines the global
pump intensities above threshold, the maximum lineaposition of the patterfwe takex,=0 in the following, k3 is

growth rate is for wave vectors with modulus the homogeneous mode, akiifor n=1, . .. N are the off-
axis wave vectors of the hexagonal pattern. Here we take
ky= V= 0+4ls. (5) N=90, which corresponds to considering up to the fifth-

) order harmonics in the far field. The six fundamental har-
At thresholdk, =k . Starting from the homogeneous solu- monics have moduluis, . For simplicity we first consider the
tion and changing the pump intensity to a value above, bugase without noise. Linearizing EfL) around the stationary

close to, the threshold, a hexagonal pattern with a wave numso|ytion (6), we obtain the following equation for the fluc-
berk close tok, ariseswhich as follows from Eqs(5) and tuations SE(X,t) = E(X,t) — En(X)

(3) depends on the pump intendit{f he transition is subcriti-
cal, and the hexagonal pattern, once it is formed, is stable fo
values of the pump intensity within a quite large range that
includes values below threshold. Typically, the hexagons ap-
pear oscillating just above threshold. The amplitude of the
oscillations dec;reases on decrgasing the pump intensity ung ficients, a general bounded solution can be found under a
they become, in all cases, stationary. We are interested heﬁ"aroquet form[13]:

in the properties of the fluctuations and correlations of the '
stationary hexagonal patterns. The oscillatory behavior of the B

hexagons is investigated in R¢fL2]. Due to its subcritical- 5E(§,t):f einA(ﬁ,i,t)da, (8)

ity, the hexagonal pattern has always a finite amplitude, even

at threshold. The harmonics of the six fundamental wave .

vectors also have a significant amplitude, so that they have tohere A(q,x,t) are functions with the same spatial period-
be included in the calculations to obtain realistic quantitativeicity than the stationary patterg,, and therefore can be

results. This is particularly relevant here due to the selfwritten as

focusing effect, which leads to a pattern with high peaks and

9. 0E=—(1+160) SE+iV2SE+i2[2|E,|26E + EE SE* 1.
(7)

s Eq. (7) is a linear differential equation with periodic co-

a strongly anharmonic far fieltsee Fig. 1L .. N . 0
A(G,X,t)= >, da,(q,t)ekn*. 9
n=0
I1l. LINEARIZATION AROUND THE HEXAGONAL
PATTERN From Egs.(7), (8), and(9) we obtain for each perturbation
The Stationary hexagona| pattern can be written in thevave VeCtorq a set of linear differential eq_L)]ationS for the
form time evolution of the Fourier coefficiena,(q,t).
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FIG. 2. First Brillouin zone(dashed hexagorof the hexagonal

lattice defined by the wave vectors of the pattern in the Fourier

space.

a1dan(q,0)=[— (1+i0)—i|k3+q|?]da,(q,t)
N N

+i2 22 > aanda, +m(g,t)

=0 m=0

N
, 2 @an[0a i im(—Q0]*

"MZ

(10

where da,_ |, m(d,t) = da;(q,t) with kP=kJ—kP+KJ,. In-
troducing

3(q,t)=(Rd dao(q,1)], Im[ dag(q,t)], . . ., Im dan(q,1)],

Re dao(—a,t)], . .., Im dan(—q,0)])7,

Eqg. (10) can be written as

0:3(9,0)=M(E,,q)2(q,1). (11)

3(q,t) includes perturbations with-q and —q since they
are coupled in Eq(10) The important point is that pertur-

bations with dlfferentq vectors are uncoupled. Any pertur-
bation with a vector ' outside the first Brillouin zone of the

PHYSICAL REVIEW E 66, 046223 (2002

FIG. 3. Real partleft) and power spectrurright) of the Gold-
stone modes,E,, (top) andd,Ey, .

d,E, and d,E;, are eigenvectors ol (Ey,,q=0) with zero
eigenvalue. These neutrally stable modes of the linearized
dynamics are the so-called Goldstone modeg], and cor-
respond to homogeneous perturbations that displace rigidly
the pattern along the or y direction,

(0= akdehr, (12
Eh(x,y)+xoath=; an(1+ik?, xo)e'k x
:; ane”zn(’““xo'y): En(x+Xxgy). (13

For the hexagonal pattern considered here, the Goldstone
modes have the profile shown in Figs. 3 and 4. In the near
field they have a larger amplitude at the borders of the hex-
agonal peaks, where the gradient is larger and show a sharp
transition from negative to positive values just at the center
of the peak(Fig. 4).

In a situation where the hexagonal pattern is stable, the
Goldstone modes are the only neutral modes while all the
other eigenvectors have eigenvalues with strictly negative
real part.

hexagonal lattice defined by the wave vectors of the pattern

Eg (see Fig. 2is equivalent to another one with a vectpr
=q'+k?inside.

Therefore the values cﬁ‘ to be considered are only those
inside half of the first Brillouin zone. In this way one finds a

set of 4N+ 1) eigenvalues and eigenvectors for each vector

q, except for the caseg=0 andq=k%/2 where3(q,t) has

only 2(N+1) components. The eigenvalues may be either
real or complex conjugates, and determine the linear re-

sponse of the system when perturbations vidltt q wave
vectors are applied.

As the system is translationally invariar,(X+X,) is
also a stationary solution for any fixea), the two modes
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FIG. 4. Close-up of the real part of a peak of the hexagonal
pattern(left) and the real part of the Goldstone madlé,, (right).

046223-3



D. GOMILA AND P. COLET

PHYSICAL REVIEW E66, 046223 (2002

At this point we can study the linear response to noiseThe average value of the eigenmodes amplitude is

perturbations. Decomposing the noise term of Hg.as it
has been done for the fie[tEgs. (8) and(9)], we obtain an
extra term in the right-hand side of Ed.1),

a3(a,t)=M(Ep,,)2(q,) +E(q,1), (14

E(q,0)=(Re £&(k3+0q,0)], IM[&k3+q,0], ...,

Im[£(k}+a,0)], REEKS—a,0], ..., IM&KR—a,0DT.

Then, we can write an Ornstein-Uhlenbeck prodesg for
the amplitude®,(q,t) of each eigenvector d1(E;,,q),

301(9,0)=\i(9)0;(q,1) + 7(q,1), (15)

where\;(q) is theith eigenvalue oM (E;,,q) (ordered ac-
cording to the value of its real part Re(&)]

=ReA1(@)])- 7(q.)=256CH(@)E () is the
noise expressed in the eigenvector basis &id) is the

matrix for the change of basis as obtained diagonalizing
M(E;,q). The coefficientsda,(q,t) are related to the am-

plitudes of the eigenmodd3;(q,t) by
R dan(q,1)]1=3;0(q,t)Con-1i(q),
Im[ 88,(01,t)]=0;(0,1) Cni(),
R san(—q,1)]=20;(0,1)Can-142ni(Q),

Im[ 6a,(—,t)]=3,0i(q,t)Consoni(@).  (16)

The noisesy;(q,t) are Gaussian and white in time, and

have cross correlations

(@077 (@) =5D, (@ at—t)&d-d),  (17)

N > € > > >
(m(a,D)7;(a",t')=5Di (@)dt-t)s(q-a"), (18
where
4AN+3
Dij(@= 2 Ci(A)C;™* (@),
AN+3
Dij@= 2 Cilacit(a. (19
The solution of the stochastic process is then
- >, t e -
®a(q.t)=e“i‘q”f e M@y(q,s)ds. (20
0

(®;(q,t))=0. The correlations between the amplitudes of
the eigenvectors are given by

€D;;(q)
—4[Ni(A) A (a")]
X (1—eM@+N @Yy 5q—q'),
(21

(0(a,1)0% (g ,t'")=

65”‘(&)
—4IN(@)+N(a")]
X (1—eMi@+N@NY 5g—g").
(22)

(0i(a,1)0;(q",t"))=

In particular, the time evolution of the mean value of the
squared amplitude of the eigenvectors with nonzero eigen-
value is

€D;i(q)

R (1—e? Rehi(@ly),
—8 RgAi(g)]

(10(q,0]?)= (23)

For times much longer than a characteristic timéq)~

—1/Rd\;(q)], this mean squared amplitude reaches a sta-
tionary value

eD;i(q)
-8 RN ()]

Equation(24) does not apply to the Goldstone modes as they

have zero eigenvalug\o(q=0)=0]. Its time evolution is
given by[from Eq. (20)]

(10(q)?)= (24)

> t >
@i(q,t)ZL 7i(q,s)ds. (25

This is a purely diffusive motion that never reaches a station-
ary state. Its mean squared amplitude grows linearly in time,

(|06(3=0.0/2)= 5DadG=O)t. (26

Therefore, the linearization fails for timas-1/e, when the

amplitude of the Goldstone model),(q=0)|?, reaches
values comparable to 1 and nonlinear terms will come into

play.

IV. FLUCTUATIONS IN THE NEAR FIELD

Starting from a stationary hexagonal solution of the sys-
tem equations without noise, a typical evolution of the pat-
tern fluctuations when the noise is switched on, obtained
from numerical integration of the nonlinear equations, Eq.
(1) [15], is shown in Fig. 5.

From Eq.(23) we get that for short time all the modes
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FIG. 6. Left: R@\O(d)]; darker color indicates smaller values.
The white line shows the first Brillouin zone. The center of the
figure corresponds to the Goldstone modmxo(ﬁ=0)]=0).

Right: transverse cut of FREO(ci)] along theqy (solid line) andq,
(dotted ling axes.

tional to 112, and therefore a stationary mean squared am-
plitude proportional toeL2. The shape of one soft mode is
illustrated in Fig. 7.

Its profile is similar to a Goldstone mode but with a long-
wavelength modulation on top of it. The wave vector of the

modulation is precisely the wave veclﬁmhat identifies the
soft mode. While the Goldstone modes describe an overall
rigid motion of the pattern, the soft modes add some distor-
tion, so that the pattern moves in slightly different form at
different locations.

For the numerical simulations shown in Fig. 5, at
=200 the mean squared amplitude of most of the modes has
already saturated at small values, while the amplitude of the
0.(q,t) have a similar mean squared amplitude, which issoft modes is, on average, just reaching the stationary value.
proportional to the noise intensity and grows linearly with Therefore, as shown in the figuteentej the field fluctua-
time, tions are dominated by the soft and Goldstone modes, and

short-range spatial structures start to appear. The typical cor-
relation length of the fluctuations is determined by the wave-
- o € . length of the soft modes.
(10i(q,1)|%)= ZPi(at. (27) According to Eq.(26) the mean square amplitude of the
Goldstone mode keeps growing linearly in time and does not
saturate. At times of the ordér-1/e the linear theory for

All the modes will contribute with a similar weight to the fluctuations described in the preceding section fafits time
field fluctuations, and therefore there is a complete lack ofs around 18 for the simulation shown in Fig.)Assuming
structure in the field fluctuations at short times as shown irthe linearization is valid, at timets>L<, the mean squared
Fig. 5 (top). amplitudes of the Goldstone modgs et, Eq.(26)] become

As time goes on, following Eq(23), the mean squared Much larger than the amplitude of any of the soft modes and
amplitude of the modes does not grow linearly any more. [dominate the fluctuations. In our system at time2000, the
reaches a steady state value given by B), which is profile of the field fluctuations is already determined only by
larger for the modes that have a smaller decaying ratéhe Goldstone modes, as shown in Fighbttom. In the far

Re[)\-((i)] According to the way the eigenvalues has beer{ield, the largest fluctuations are those of the wave vectors of
orderled ‘for a givenﬁ the smaller decaying rate is the pattern, while in the near field fluctuations show a long-

Ra[)\o(ﬁ)]. The eigenmodes with eigenval&t@(ﬁ) are the
so-called soft modefl,7,16, which are connected with the
Goldstone modes and for whiety(q=0)~ —|q|? (see Fig.
6).

While the Goldstone modes correspond to neutrally stable
homogeneous perturbations, the soft modes correspond to .
weakly damped long-wavelength perturbations. For systems R A AR
with a finite sizel, the less damped of the soft modes are the

ones with the smallesj vector allowed by the size of the FIG. 7. Soft modeq=(0,27/L,), whose decay rate is Re(q
system,|q|=2m/L. These modes have a decay rate propor—=(0,2a/L,))]= —0.0052.

FIG. 5. Near-field (left: Re[ SE(x)],5E(X)=E(X)—(E(X)))
and far-field (right: | SE(K)|, SE(k)=E(K) —(E(K))) pattern fluc-
tuations after switching on the noise. From top to bottdm2,
t=200, andt=2000. We have considerad=10"5.
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range structure with strong correlation over all the system
size. Integrating for longer times, the profile of the fluctua-
tions will be dominated by macroscopic rigid displacements
of the pattern. On top of that, there will be deformations
generated by the soft modes.

For systems with a larger system size, the soft modes will
take a longer time to reach the stationary amplit(ated, in
fact, its amplitude will be larger However, provided that
L2<t~1/e, the evolution will be basically the same, show-
ing the three stages discussed before. If the system size is
larger than 1fe, then the stationary amplitude of the soft
modes will be determined by the system nonlinearities and if
L is large enough, their amplitudes may have large sizes, in
which case the Goldstone and soft modes will contribute to
the near-field fluctuations even at quite long times {/e.

FIG. 8. Correlation function of the intensity fluctuations
V. FLUCTUATIONS AND CORRELATIONS C1(K8,K). The brightest spot takes the value 1 corresponding to the
IN THE FAR FIELD autocorrelation ok3. Note the strong correlation with the other six
In this section, we address on the fluctuations in Fouriefundamental wave vectors of the pattern and with the first rings of
space of the field, intensity, and momentum. h_armonics. Thg correlation decays as one_consjders higher and
higher harmonics. Note also the anticorrelation with the homoge-

neous component as a black spot at the center. The gray background
A. Field fluctuations is around 0.

In the Fourier space the field fluctuations are also domi- ) )
nated by the Goldstone and soft modes. From Et@. and For the fundamental harmonics, the correlation
(13), we can see how the Goldstone modes, which have th@l(ko,k?)=<5l(kg) 5I(ki°)), with i=1,6, is larger for the
same wave vectors than the hexagonal pattern, induce opporodes forming an anglé=2=/3 and smaller for6= /3
site and very large phase fluctuations in opposite Fourie(Fig. 10. Using a six mode approximatidi8,9] one finds
components, which correspond to the rigid translation of thehat N; +N;. ;1 —N;.3—N; 4 (N; being the number of pho-
hexagons in the near field. The homogeneous component tdns of the mode) is a conserved quantity for the interaction
the field is not affected by the Goldstone modes. The softHamiltonian related to momentum conservation. This means
modes do not have exactly the same Fourier componentbat one should expect strong correlations among these sets
than the hexagonal pattern, but they are very close, therefor four Fourier modes. However, this reasoning cannot re-
their main contribution is to broaden the spots of the far fieldveal which modes within these sets are more correlated in
fluctuations (see the far-field for the intermediate time in pairs. So, the stronger correlation between those modes
Fig. 5. forming a #=27/3 angle, despite fulfilling momentum con-

servation, cannot be completely understood in these terms.
B. Intensity fluctuations and correlations We also find strong anticorrelations between the intensity
fluctuations of the modes of the pattern and the homoge-
neous mode, which are related to energy conservdgamn
8).

Neglecting terms of orde?, the far-field intensity fluc-

tuations can be approximated as

The intensity fluctuations of the far-field peaks are

8l (K)=1(K)—1,(k), (28)

where I (k)=|E(K)|? and I ,(k)=|Ex(k)|2. The correlation
function of the far-field intensity fluctuations of a fundamen- Sl (E)mz Rd Eﬁ(l?) 5E(IZ)], (30)
tal wave vector of the pattern, for instank% with the far-

field intensity fluctuations of any other wave vectoris ~ where SE(K)=E(K)—En(K). As En(K)=3,a,(27)25(k?

given by —K), we have to consider only perturbations that have the
(8121 (R) same wave vectors of the patterﬁl:(aﬁ).aTherefore, in the
C1(|23,|2)= _ 3 S (29 linear approximati(_)n, the soft modv_eaiQ) do not contrib-
\/(|5I(kg)|2)(|5l(k)|2> ute to the fluctuations of the far-field intensity peaks. The

Goldstone modes are indegg-=0 perturbations, but the in-
From the numerical integration of E(l), and averaging tensity fluctuations associated to the Goldstone modes are
over two hundred realizations of the noif&5], we find 5I(IZ)=2R€{ES(IZ)*(9XES(IZ)], which [from Egs. (6) and
strong correlations between the intensity fluctuations of al(12)] is exactly zero. So, in the linear approximation, neither
the modes of the pattern, not only among the fundamentalo the Goldstone modes contribute to the fluctuations of the
harmonics but also with the higher order oriEs. 8). far-field intensity peaks. They only contribute to phase fluc-
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FIG. 9. Eigenvalues of the eigenvectors wik0. There are
two zero eigenvalues corresponding to the Goldstone modes. Note FIG. 11. Intensity fluctuations due to the eigenmodes with
also the symmetry of the spectrum with respect to the axjs\Re R\ ]=—0.25.

=—1.
tuations. Therefore, fluctuations of the far-field intensity (SE(K®)SE*(KS))= E 2 —(1—-eNTAY
peaks have to be described by the other eigenvectors of 4()‘ H‘ )
M(E,,q=0). These eigenvectors have the same Fourier X Dij(G=0)[Czn_1:Com_1;

components than the hexagonal pattern, and their eigenval- _
ues\;(q=0), (i=1,... N) are shown in Fig. 9. +ConiComj+1(Com-1iCan

Using Eqgs.(16), (2(}) 2nd(22) we can compute the cor- —Con_1:Comd - (33)
relation functionC,(kp k) analytically,

Figure 10 shows the stationary value{«) of Eq. (31) for
the fundamental wave vectors of the pattern as a function of
the angled between them. The results obtained from the
linearized theory are in very good agreement with the corre-
lations obtained from the numerical simulations of the non-
linear equation(1).
From Fig. 9 we can see that the most important eigenvec-
where tors are those associated to the complex conjugate eigenval-
ues with REN,(q=0)]=ReA3(q=0)]=—0.25. This pair
of eigenvectors give the strong correlation between all the
0 - - (NNt Fourier components and a strong anticorrelation with the ho-
(OB (kR 5B (k) = 2 2 4(?\ A )(1 e mogeneous field. The excitation of this eigenvectors implies
also anticorrelations between the homogeneous mode and the

C1(Ky k%) =2 REE} (K Ex (Kn)( SE(KY) SE(KD))

+En(K)Ef (K2 (SE(KQ) SE* (K2)), (31)

X Dij(4=0)[ Can-1iCom-1; off-axis Fourier components of the patteifig. 11).

—ConiCamj+i(Com_1iCan Some: eigenvectors with Re,(q=0)]=—1 are fmqlly .
responsible for the differences between the correlations in

+Csn-1iComi 1, (32)  the fluctuations of the six first harmonics. The typical profile

of one of these eigenmodes is shown in Fig. 12. The sym-

0.04 C
1.0 F T T T T T
o 0.02
0.9 3 /E‘
0.8F E % 0.00
o ] 2N
S 0.7F E %
0o6F o % ¢ % 4 3 =g
05F E —o.04(
04E L ' i : L 3 PR
0 60 120 180 240 300 360 ky
8

FIG. 10. Correlations between the intensity fluctuations of the
fundamental wave vectors obtained from the numerical integration FIG. 12. Intensity fluctuations due to one of the eigenmodes
of Eq. (1) (rhombi and analytically from Eq(31) (dots. with RgN]=—1.
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0.08 Alternatively, it is possible to see from the classical field
o.04 F theory that the momentum fluctuations are damped with a
: coefficient—2. A Lagrange density can be defined for Eg.
—~~ 0.02
>0 (1 [17)
S i
S L=e?|a|VE|?+ 5 (EE* —EE*)+i(EoE* —E5E)
—0.04 L 2
—0.06 L
QD +6|E|2—|E|4|. (34)

Substituting Eq(6) in Eq. (34) and integrating over all the
space we get a Lagrangian for the amplitude of the mages

and for the position of the rolls in the near fielﬁol,

R i . : ) 5,
L:eZt ; |an|2|kn|2+§; (a:an_ana:_|2|an|2knxo)

+i(Epag — 3ao)+; |ag|?

_2 E % apapara, ol (35
n

FIG. 13. Intensity fluctuations due to the two modes Xg Is & cyclic coordinate, so its conjugate momentum,

Re A on(d=0)]=ReAyy-1(q=0)]=—2. aL R R
—— =i ZGZtE |an|?k,= — 2€*'P, (36)
n

metry of the three peaks located at 120° yields larger corre- %o
lations between the fluctuations of the corresponding far-
field intensity peaks.

We note that the modes that determine the correlations
the far-field intensity peaks reach stationary values in a muc

shorter time[t~—1/Re{)\2(ﬁ=O)]=4] than the Goldstone
and soft modes contributing to the near-field fluctuations (
~1/e~10P, as discussed in the preceding sectidss these

correlations are determined loy=0 perturbations, these cal- wherey(t) is a Gaussian white noise. Therefore, momentum
culations can be performed in systems with relatively smalfluctuations have the maximum damping. The same damping
size. Increasing the system size may change the near-fielghefficient for the momentum fluctuations has been found by
profile of the fluctuations, as discussed before, but neverthezsatti and Mancini from a few-mode quantum formulation
less the dynamical evolution of the modes contributing to thegg).

far-field intensity fluctuations and their mean squared sta-

tionary amplitude will be basically the same. VI. CONCLUSIONS

Jp a constant. Therefoe= — 2P. P is identically zero with-
Rut noise. When noise is present, momentum fluctuations
should satisfy

SP=—25B+ (1), (37)

C. Transverse momentum fluctuations We have analyzed the fluctuations and correlations in a

We finally address the fluctuations of the transverse moh exagonal pattem of a prototypical model in nonlinear op-

mentum. Without noise the total transverse momentum of thtics. In the near field, fluctuations are dominated by the neu-
' ?rally stable Goldstone modes associated to the translational

pattern |sPi2n|an|2kﬂ=O. The noise induced fluctuations jnyariance as well as by the soft modes connected with them.
given by sP=3 2Rda* sa,]k®. One finds that all the The soft modes destroy the long-range correlation in the
eigenvectors that contribute to the far-field intensity fluctuafluctuations, however, in small systems these modes reach an
tions strictly fulfill momentum conservation except for two stationary amplitude much earliéand at a smaller valye
modes withhon(g=0)=N\,on_1(q=0)=—2, which are ex- than the Goldstone mode, so that they are important only at
actly those symmetric to the Goldstone modes with respedhtermediate times. At long times the fluctuations are domi-
to the line REN]=—1 (Fig. 9). Therefore momentum fluc- nated by the Goldstone modes that correspond to rigid dis-
tuations are determined by the two modes with maximunplacements of the overall pattern. For very large systems,
damping, which are shown in Fig. 13, the on the top figureboth the Goldstone and soft modes may have similar ampli-
breaks the conservation of thHe, momentum component tudes and contribute to the fluctuations.

while the one in the bottom breaks the conservatio of In the far field, the most relevant effect of noise are the
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intensity fluctuations of the Fourier modes of the hexagonasimilar structure and properties of the fluctuations and corre-
pattern. At first order in noise intensity, these fluctuations aréations can be found in other nonlinear systems displaying
neither affected by the Goldstone modes nor by the sofhexagonal patterns.

modes. They are dominated by damped modes, so they reach From a computational point of view, correlations in the
stationary values in relatively short times. Their main charfar-field intensity peaks are practically independent of the
acteristics are(i) strong correlations between the intensity system size, and therefore can be calculated accurately in
fluctuations of any arbitrary pair of the six fundamental wavere|atively small systems, provided all the relevant harmonics
vectors of the pattern, and also with their higher harmonicsef the pattern are considered. Good statistics can be obtained
(ii) larger correlation between intensity fluctuations of thegn integrating the nonlinear equations over relatively short
Fourier modes forming 120° angles than between modegmes (even though the near-field fluctuations are quite far
forming 180°, and(lll) strong anticorrelations between the away from reaching a Stationary Va}u@f course, alterna-
zero wave vector and the pattern Fourier modes. Finallyively a linear semianalytical approach as the one described

only the eigenmodes with maximum damping contribute toin Sec. Il can also be used to calculate far-field correlations.
the fluctuations of the total transverse momentum, therefore

the total transverse momentum has the least possible fluctua-
tions.

Our results are obtained from both semianalytical calcu-
lations based on linearization around the hexagonal pattern The authors acknowledge helpful discussions with M. San
and from numerical simulations of the nonlinear systemMiguel and R. Zambrini, and financial support from the EC
Some of our results and predictions are very general, andMR Network QSTRUCT(FMRXCT960077 and from the
depend only on basic symmetry properties of the systemMCyT, Spain(Project Nos. PB97-0141-C02-02, BFM2000-
such as the translational invariance. Thus we expect th&t108, and BFM2001-0341-C02-D2
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