797 research outputs found

    Effects of surface vibrations on quadrupole response of nuclei

    Get PDF
    The effect of quadrupole-type surface vibrations on the quadrupole response function of heavy nuclei is studied by using a model based on the solution of the linearized Vlasov equation with moving-surface boundary conditions. By using a separable approximation for the residual interaction, an analytical expression is obtained for the moving-surface response function. Comparison of the fixed- and moving-surface strength functions shows that surface vibrations are essential in order to achieve a unified description of the two characteristic features of the quadrupole response: the giant resonance and the low-lying states. Calculations performed by setting the surface tension equal to zero shows that the low-lying strength is strongly affected by the surface tension.Comment: Appendix added, version to be published in Nucl. Phys.

    Octupole response and stability of spherical shape in heavy nuclei

    Get PDF
    The isoscalar octupole response of a heavy spherical nucleus is analyzed in a semiclassical model based on the linearized Vlasov equation. The octupole strength function is evaluated with different degrees of approximation. The zero-order fixed-surface response displays a remarkable concentration of strength in the 1ω1\hbar\omega and 3ω3\hbar\omega regions, in excellent agreement with the quantum single-particle response. The collective fixed-surface response reproduces both the high- and low-energy octupole rsonances, but not the low-lying 33^{-} collective states, while the moving-surface response function gives a good qualitative description of all the main features of the octupole response in heavy nuclei. The role of triangular nucleon orbits, that have been related to a possible instability of the spherical shape with respect to octupole-type deformations, is discussed within this model. It is found that, rather than creating instability, the triangular trajectories are the only classical orbits contributing to the damping of low-energy octupole excitations.Comment: 10 pages, Latex file, 7 ps figure

    Kinetic-theory approach to low-energy collective modes in nuclei

    Get PDF
    Two different solutions of the linearized Vlasov equation for finite systems, characterized by fixed and moving-surface boundary conditions, are discussed in a unified perspective. A condition determining the eigenfrequencies of collective nuclear oscillations, that can be obtained from the moving-surface solution, is studied for isoscalar vibrations of lowest multipolarity. Analytic expressions for the friction and mass parameters related to the low-enegy surface excitations are derived and their value is compared to values given by other models. Both similarities and differences are found with respect to the other approaches, however the close agreement obtained in many cases with one of the other models suggests that, in spite of some important differences, the two approaches are substantially equivalent. The formalism based on the Vlasov equation is more transparent since it leads to analytical expressions that can be a basis for further improvement of the model.Comment: 16 pages, 1 EPS figure, to be published in Nucl. Phys.

    Kinetic-theory description of isoscalar dipole modes

    Get PDF
    A semiclassical model, based on a solution of the Vlasov equation for finite systems with moving-surface, is employed to study the isoscalar dipole modes in nuclei. It is shown that, by taking into account the surface degree of freedom, it is possible to obtain an exact treatment of the centre of mass motion. It is also shown that a method often used to subtract the spurious strength in RPA calculations does not always give the correct result. An alternative analytical formula for the intrinsic strength function is derived in a simple confined-Fermi-gas model. In this model the intrinsic isoscalar dipole strength displays essentially a two-resonance structure, hence there are two relevant modes. The interaction between nucleons couples these two modes and changes the compressibility of the system. The evolution of the strength profile is then studied as a function of the compressibility of the nuclear fluid. Comparison with available data favours values of the incompressibility parameter of nuclear matter smaller than those suggested by the analysis of the monopole ``breathing'' mode.Comment: 17 pages, 4 figures, revised version to be published in Nucl. Phys.

    Unified semiclassical approach to isoscalar collective modes in heavy nuclei

    Full text link
    A semiclassical model based on the solution of the Vlasov equation for finite systems with a sharp moving surface has been used to study the isoscalar quadrupole and octupole collective modes in heavy spherical nuclei. Within this model, a unified description of both low-energy surface modes and higher-energy giant resonances has been achieved by introducing a coupling between surface vibrations and the motion of single nucleons. Analytical expressions for the collective response functions of different multipolarity can be derived by using a separable approximation for the residual interaction between nucleons. The response functions obtained in this way give a good qualitative description of the quadrupole and octupole response in heavy nuclei. Although shell effects are not explicitly included in the theory, our semiclassical response functions are very similar to the quantum ones. This happens because of the well known close relation between classical trajectories and shell structure. The role played by particular nucleon trajectories and their connection with various features of the nuclear response is displayed most clearly in the present approach, we discuss in some detail the damping of low-energy octupole vibrations and give an explicit expression showing that only nucleons moving on triangular orbits can contribute to this damping.Comment: 9 pages, 2 figures, Talk presented at the 8th International Spring Seminar on Nuclear Physics on Key Topics in Nuclear Structure, Paestum, Italy, May 23-27, 200