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Solitary.waves on nonlinear elastic rods. I 
M.P. Soerensen, P. L. Christiansen, and P.S. LomdahP ) 
Laboratory of /lpplied Mathematical Physic• The Technical University of Denmark, DK-2800 Lyngby, 
Denmark 

(Received 22 September 1982; accepted for publication 26 April 1984} 

Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq 
equations when transverse motion and nonlinearity in the elastic medium are taken into account. 
Solitary wave solutions to these equations have been found. The present paper treats the 
interaction between the solitary waves numerically. It is demonstrated that the waves behave 
almost like soiltons in agreement with the fact that the improved Boussinesq equations are nearly 
integrable. Thus three conservation theorems can be derived from the equations. A new subsonic 

ß quasibreather is found in the case of a cubic nonlinearity. The balance between dispersion and 
nonlinearity in the equation is investigated. 

PACS numbers: 43.25.Cb, 43.40.Cw 

INTRODUCTION 

In recent years exact soliWn solutions to approximately 
50 nonlinear partial differential equations (PDEs} or systems 
of PDEz have been found. Solitons are solitary waves, i.e., 
localized, nonsingular waves (like humps or kinks) which 
can propagate without changing their shape. In addition so- 
litons retain their form after mutual interactidn. The exis- 
tence of such stable solutions is due to a balance between 

dispersion and nonlinearity in the PDEs. Soilton solutions 
are also linked to the exact integrability of the PDEs, thus to 
the existence of infinitely many conservation theorems for 
the equations. The first conservation theorems may be inter- 
preted physically, for example, a.s conservation of energy 
and momentum. The methods by which the exact soliton 
solutions have been obtained are essentially the Biicklund 
transformation, Hirota's method of bilinear differential op- 
eratom, and the inverse scattering transform. Nearly all 
known solitons are solutions to evolution equations in one 
spatial dimension. Among a number of recent monographs 
of the subject we mention the textbook by G. L. Lamb • and 
the survey edited by R. K. Bu!lough and P. I. Caudrey. 2 

Most physical systems are modeled by nonlinear PDEs 
which are not exactly integrahie. However, some of the equa- 
tions are what we shall denote nearly integrable. At present, 
we can only offer an approximate definition of this class of 
equations. First, the equation must possess solitary wave so- 
lutions as well as a finite number of conservation theorems. 

Second, the PDE must reduce to an exactly integrable equa- 
tion in the small amplitude limit. Finally, a numerical treat- 
ment of the interaction between two solitary waves must 
show that the waves essentially retain their shape after the 
interaction. Thus only a small alnount of linear disturbance 
may be created as a result of the interaction. 

In the present paper the propagation of acoustical 
waves on a circular elastic rod is investigated. Nariboli 3 first 
presented a detailed analysis of the boundary value problem 
for the cylindrical rod corresponding to vanishing surface 
stresses based on a consistent perturbation procedure. He 
uses a polynomial form of the elastic energy in the quadratic 
approximation and justifies the validity in the "snmll" am- 

n l•t addreza: Center for Nonlinear Studies, Lo• Alamos National Lab- 
oratory, University of California, Loa Abra,n, NlV187•45. 

plitude case. Physical nonlinearity due to a nonlinear consti- - 
tutive relation for the elastic m•dium is thus neglected, While 
the geometrical nonlinearity resulting from the Lagrangian 
strain tensor is treated rigorously. A PDE for the longitudi- 
nal strain which is closely related to the Korteweg--de Vdes 
equation is obtained. An explicit single solitary wave solu- 
tion is given. Ostrovskii and Sutin 4 include physical nonlin- 
earity by starting with the Taylor expansion of the elastic 
energy with respect to the Lagrangian strain tensor. Their 
treatment, which neglects geometrical nonlinearity, leads to 
a fourth-order PDE related to Boussinesq's equation (BE). 
The BE contains u,_•_• and (u2)=• and is exactly integrable? 
In the PDE used by Ostrovskii and Sutin the term 
which accounts for the transverse motion, replaces u• and 
destroys the exact integrability. Iskander and Jain 6 denotid 
this equation the improved Boussinesq equation (IBE) and 
investigated numerically head-on collision between solitary 
waves of the type found by Bogolubsky. ? The authors of Ref. 
6 computed the breakup of an initially static wave. They 
concluded that the solitary waves interacted almost elasti- 
cally (i.e., like soiltons) for smaller.amplitudes of the waves. 
For increasing amplitudes they found a gradual transition to 
inelastic behavior. 

Bogolubsky ? considered a modified version of the IBE 
in which (u2)=` is replaced by' (uS)=,. This equation may be 
denoted the modified improved Boussinesq equation 
(MIBE). A solitary wave solution to this equation was found 
in Ref. 7. The same nonlinearity [(u3)• ] has recently been 
considered in a study of seismological waves by Bataille and 
Lurid a in which a Boussinesq equation modified in this man- 

Equations like BE, IBE, and MIBE also occur in the 
continuum limit description of nonlinear lattices, in plasma 
physics, and nonlinear electric transmission lines. In the lat- 
ter e•_ample position x and time t may be interchanged in the 
equations? .•ø Present literature contains an increasing num- 
ber of investigations of nearly integrable systems. 

The present paper is structured in the following man- 
ner: in Sec. I we derive the fourth-order PDE for the spatial 
derivative of the displacement along the rod from the La- 
grantJan for systems which include nonlinear terms up to 
fourth order in the elastic energy. • The reader may consult 
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the references listed in the work •2 for the experimental deter- 
mination of the corresponding elastic coefficients. Particular 
cases considered are the third-order case and the genuine 
fourth-order case with arbitrary signs of the elasticity coeffi- 
cients. For the homogeneous rods the resulting PDEs for the 
strain reduce to IBE and MIBE, respectively. Conservation 
theorems for energy, momentum, and total displacement are 
found. 

Section II presents the solitary wave solutions to IBE 
and MIBE and discusses the influence of the nonlinear term 

and the dispersive term on the solutions. The values of the 
conserved quantities for the solitary waves are given. 

In See. III IBE and MIBE are reduced to the 

Korteweg-de Viies equation {KdV) and the modified 
Korteweg-de Vries equation (mKdV}, respectively, by 
means of the reductive perturbation techniqueS3 in the small 
amplitude limit. This procedure thus lowers the order of the 
PDE from four to three. As a consequence, propagation in 
only one spatial direction is permitted. In IBE and KdV the 
nonlinearity is an even function of the solution in contrast to 
MIBE and mKdV where the nonlinearity is odd. As a conse- 
quence only soliton solutions are found in the former case 
while both solirons and antisolitons exist in the latter case. 

Solitions and antisolitons may be combined into a lower en- 
ergy state called a breather. The analytical expression for the 
mKdV breather is listed because it serves as initial condition 
in our numerical solution of MIBE in Sec. IV. In this section 

our numerical solution of initial value problems for IBE and 
MIBE is presented. We shall consider propagation• colli- 
sion, and breakdown of solitary waves and a new quasi- 
breather solution for MIBE. In two appendices we treat the 
elastic coefficients and the numerical schemes used for the 

computations. 
A sequel to the present paper will treat reflection of 

solitary waves at an end of the elastic rod with realistic 
boundary conditions. Also reflection and transmission of 
solitary waves at continuous and discontinuous changes in 
the cross-section area of the elastic rod are investigated. Fis- 
sion of solitary waves is observed. 

I. DERIVATION OF WAVE EQUATIONS 

We define the longitudinal displacement component of 
a plane cross section along the isotropic circular-cylindrical 
rod as u • • W (X, T) whereXis the position of the undisturbed 
cross section and Tis time. The exact solution for the linear 

elastic (Hookelan) rod •'•s shows that u• is independent of 
the radial variable R = (y2+ Z2)•i2 in the limit of long 
wavelength. Similarly, u• is assumed to be independent of R 
for a thin nonlinear elastic rod as long as the width of the 
solitary wave solution is large compared with the diameter of 
the rod. 

For an isotropic cylindrical rod under uniform longitu- 
dinal tension the deformation is homogeneous and the radial 
displacement, ur,d, is exactly given by •9 

Ur• = U(X,R ) -- RF(Wx), (1) 

where W x = a W/aXand Fis a nonlinear function. IfF ( W x ) 
may be expanded in the form of a Taylor series, 

F(Wx) = -- Wx - - .... , (2) 

the expansion coefficients are the first- and higher-order 
Poisson ratios for which expressions in terms of the second- 
and higher-order elastic constants are available up to fourth 
order. •ø'2• For longitudinal elastic waves in an isotropic lin- 
ear elastic rod the radial displacement in the long wave- 
length limit is given by •s-•s u• ---- -- •rR W x. Equation ( 1 } is 
aSSumed to be valid also in the time-dependent inhomogen- 
eous nonlinear case where the width of the solitary wave is 
large compared with radius of the rod 

U•d = U (X,R,T) •- RF[Wx{X,T)]. (3) 

In the absence of torsional deformations the displacement 
gradient, c•ui/c•Xj, corresponding to the displacement field 
u• = W(X,T), U,•d ---- U(X,R,T} given by Eq. (3} becomes 

I - øø } •uf = YF'Wxx F 0 (4) 
3XR , LZF'Wxx 0 F 

in the Cartesian reference frame, {X•,X2,Xa) = {X,Y,Z ), in the 
material description. Here F' is 

F'= dF = - - - .... 

according to Eq. {2}. 
Harmonic wave solutions in a linear elastic rod are giv- 

en by W(X,T) =•4 exp[i{kX-- c•T)], where A is the ampli- 
tude, k is the wavenumber, and a• is the cyclic frequency. For 
these waves [R Wxx [ = kR [ W x [. Thus in the long wave- 
length limit [R Wxx ] ß [ W x ] since kR ß 1. The former condi- 
tion is expected to hold in the nonlinear case when the width 
of the solitary wave is large compared with the radius of the 
rod. In conjunction with Eq. {5) for <r, < 1 (n = 1,2,...) and 
] W x [ ß 1 it follows that the' off-diagonal elements in the dis- 
placement gradient may be neglected, and Eq. (4) becomes 

0 ;} 0 

with given by Eq. 
With the displacement gradient given by Eq. (6) and F 

given by Eq. (2) the elastic energy density (see Fig. l ) becomes 

to the fourth order. Here E•, Young's modulus, and the 
higher order expansion coefficients, E• and E4, are given in 
Appendix A. The potential energy density is 

• ---- S•, 
where $ is the cross-sectional area. 

The corresponding kinetic energy density (per length 
unit of the rod) is given by 

where p is the density of the elastic material. According to 
Eqs. {3) and (5} we get 

= - R + + + ...) Wr. (10) 
Assuming that the higher order terms in •- resulting from 
Eq. (10} are small compared with the higher order terms in 
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FIG. 1. Elmtic energy •, as function of derivative of displacement, W x. (a) 
Quadratic Hooke's law corresponding to E3 • 0 and E• = 0 in (3). Co) Cubic 
Hcoke's law corresponding to E3 = 0 and E4 > 0 full curve (hard spring) and 
E4 <0 dot-and-dash line (soft spring) in (3). 

Eq. (8) we get the Lagrangian density for the system 

.½ = •- • = « sp [ w; + (so•/2•) •'•T ] 

- « sE2•'•, - • s•,•; - • sr,•;. (• •) 

•c •fficicnU E•, E•, E•, ½, S, •dp may d•nd on X. •e 
E•er •tion for t•s •• de•ity is 

-- + .... 0 (12) 
•X $W x JT •W r •X •T •Wx• 

yield•g 

$X 2 $X 3 $X 

From •e H•to• density, • = • + •, wc get 
the HamiltonJan 

H = f;. (•- + •) ,iX (14) 

which is a conserved quantity since dH/dT= 0 when P/ 
satisfies (13). Another conserved quantity is the momentum 
defined as 

P = f;. sp wT dX. (is) 
[Integration of (9} with respect to X yields dP/dT = 0 when 
zero boundary conditions for Wx, etc. at infinity are ap- 
plied.] 

An equivalent formulation of(13} is 

ax = -3• 7• 2• 
and 

ar = sf • + T ' 
(l•b) 

where/2 = T(X,T). Integration of (16a} with respect to X 
yields dD/dT = 0 where the total displacement D is given by 

Z• = f ; . Wx ,iX. (17) 
when zero boundary conditions for/'2 and Wx at infinity are 
used. 

For a homogeneous rod (13) reduces to 

w..• - w,, + f(w•) w..• + w._,, =0 (18) 

in dimensionless coordinates x ---- X/(•r Sx/•-•-•) and 

t = 
in the following special cases: for E• • 0 and E, = 0 (material 
with quadratic Hooke's law). we introduce 

w(x,t ) = w(x,r) •/(œ• s•-7•). 
As a resultf(w•) = w•. For E• = 0 and E,•0 (material with 
cubic Hooke's law) we introduce 

w(•,t ) = w (x.r) I•-•Tnl/½, s•/--•/•) 
andf(w•) = ñ w•. 

The dlmensionless strain u = w•, satisfies (18) with the 
nonlinear term replaced by «(u•),= and ñ «(u•)= in the qua- 
dratic and cubic cases (B1). These equations are denoted IBE 
and MIBE, respectively. 

II. SOLITARY WAVE SOLUTIONS AND CONSERVED 
QUANTITIES 

In the quadratic case a solitary strain wave is 

u(x,t) = 3(c a - 1) sech 2 [ (x/• - 1/2c)(x - Xo - ct ) ], (19) 
where the velocity c satisfies I cl > 1 and x = Xo is the position 
of the wave at t = 0. [For Icl < 0 •. (19) yields an unbound- 
ed negative periodic solution. For c = ñ 1 we get the nega- 
tive unbounded localized solution u = -- 12/(x -- xo • t )z.] 

In the cubic case with the nonlinear term + «{ua)= we 
find solitary and antisolitary strain waves 

u(x,t}= -t-,J•x/•- 1 sech [(x/•-- 1/c}(x--Xo--Ct}] 
(2o) 

for upper and lower sign and Icl > 1. (Real solutions for 
Icl • 1 are not found.) In the cubic case with nonlinear term 

873 J. Acoust. Sec. Am., Vol. 76, No. 3, September 1984 Seeronson eta/.: Solitary waves on nonlinear elastic rods 873 



- «(u3)= we get unbounded localized solutions for Icl> 1 
and unbounded periodic solutions for [el < 1. Equation (20} 
shows that both solitary and ant«solitary waves exist in the 
cubic case with d- «(u3)• term in contrast to the quadratic 
case where only positive solitary waves are found. 

In the absence of the dispersive term, u,_•,, in the wave 
equations w.e get the nonlinear simple wave solution 
u----f[x--c(u)t] where f is an arbitrary function and 
c(u) = •/1 + u or • in the quadratic and cubic cases 
-l- «(uZ)•. Thus the'amplitude dispersion makes the larger 
amplitudes lu], move faster or slower than the smaller am- 
plitudes causing a steepening of the front or the back side of 
the wave. We shall see an example of this effect in Sec. IV. 

If, on the other hand, the nonlinear term is cancelled in 
the wave equation we get the linear solution 

u = I dk fi(k ) exp [ ik (x -- t / lx/•-• 2) ], 
where •(k ) is the spectrtun of u as function of the wavenum- 
ber k. The group velocity for this wave is c• = (1 + k 2)-•/2. 
Thus the frequency dispersion for this wave makes the com- 
ponents with larger wavenumbers move slower. This ten- 
dency may balance steepening of the wave due to the nonlin- 
earity. As a result we find a positive solitary wave in the 
«{u2},• case and positive and negative solitary waves in the 
«(uZ)• case. As we shall see in See. IV the two mechanisms 
do not balance each other for a negative wave solution in the 
quartic case and in the -- «(uS),• ease. 

From (14), ( 15}, and ( 17. ) we derive the conserved quanti- 
ties for the solution (19) 

n = 24c•lc[(P - 1)"5 (21) 

P = [IE2aS?'VE, 2d•] a, 
-p = - cd; (22) 

and 

d = 121cl(c •- a)"5 (23) 

with ]c] > 1. Here we have introduced the corresponding 
normalized quantities h,p, and d, which are conserved in the 
case of a homogeneous rod. 

The conserved quantities for the solution {20) become 

• = l•lcl(c • - 0% (24) 

p = -- cd; (2S) 

and 

with Icl > 1. 
The relationship p = --cd in both cases can be seen 

directly from the traveling wave assumptions (19} and (20). 
Note that Id [ and I P[ have'the lower bound •r • in the cubic 

III. RELATIONSHIP TO INTEGRABLE EQUATIONS 

In order to illustrate the relationship of our wave equa- 
tions to integrable equations we use the reductive perturba- 
tion expansion 2• 

u(x,t)= • e" u.•,z), O<e<l, (27) 

• = •[(x - t)/,g], ß = e'(•/12•), (2a) 
and' 

• = •'/2[{x -- t)/•f•], z = d/2(x/12•), (29) 
respectively. To the lowest order we then obtain the KdV 
equation 

u• + 6u• u• + u• = 0 (30) 
from IBE and the mKdV equations 

ui• ñ 6u•2u• + u• = 0 (31) 
from MIBE. 

The KdV equation and the mKdV equation with the 
upper sign are integrable and multisoliton solutions have 
been found. In the latter case antisoliton solutions exist and 

soliton and antisoliton may combine into a breather? The 
resulting small amplitude solution becomes 

u(x,t ) = -- 4• cøs •b -- (filet) sin • tan •Psech • 
I + ( fi !a) • sin ß seeh 2 • 

+ O (•) (32) 
with 

• = (•,/•) {[1 + (« •,2 _ •2•.],• __ t}, 
•,= (2•/•) {[ 1 + (•,2 _ •]• _ t}, 

a and//being positive constants. The resulting group and 
phase velocities for the breather are c s •, 1 + ( fi 2/3 • a2)e a 
and Cph • 1 + ( • 2 _ a2/3k•a, respectively. (An example is 
shown in Fig. 10.) 

We note that the mKdV •quation {31) with the lower 
sign has a shock wave type solution? 

IV. NUMERICAL RESULTS 

In this section we present our numerical solutions of the 
following initial value problems 

or u._. - u.+ «(u2M + u,•. u• - u. + «(u•)..,, + u.,,,. and 
(33a) 

0<x<l, 

O•t•t/ , (33b) 

u(O,t ) = u(l,t ) = 0, (34) 

u(x,O)=f(x,O) and u,(x,O)=f,(x,O). (3S) 

In the initial condition (35) f(x,t } will be specified for each 
numerical experiment. The results are obtained by the finite 
difference scheme described in Appendix B. 

In Figs. 2 and 3 we show that solitons are able to survive 
head-on collision in the eas• of a quadratic nonlinearity (33a) 
and a cubic nonlinearity (33b). In the initial conditions (35) 
we use 
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x 
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FIG. 2. Head-on collision between two solitary waves in quadratic case. 
Numerical solution of (33a}--(36al with 
c• = - cs = 1.4, xo• = 80, and xo: = 120. 

(36a) 
and 

(36b) 

respectively. Here N is the numar of • wav•. •e 
so,tons re• the• sha• and vel•ity •er the •sion in 
•th c•. •e r•iafion field •tw•n the •tons a•er the 

•sion is s•tly stronger • the cubic • th• • the 
q•atic •e. Sirelilly, Fi•. 4 •d 5 show •k•ver • the 
two •. Even thou• the m• v•ue of u is appro•- 
mately t• t• • big • the q•ratic • • • the cubic 
• the radiation ap• to be of the •e order of ma•- 
rude. • appro•ate]y so•to•c •havior c• • expla• 
by r•uc•g the •uations • the KdV •d the mKdV •- 
tions by m•ns of the r•uctive •urbation th• • 
shown • •. III •d •vo•g the pro•i• of the •ton 
solutions of thee •uations. • we •w • S•. II o•y •si- 
five so• wav• exist • the q•dratic •e. However, • 
the cubic c•e we have found so• wav• •d •tiso• 
wav•. Fi•r• 6 •d 7 •ustrate h•d•n •sion •d •- 

FIG. 3. Head-on collision between two solitary waves in cubic case. Nu- 
merical solution of (33b)-(36b) with I ---- 200, t/= 66, N = 2, •1 •- (•2 = 1, 
C• ---- -- C2 ---- 1.5, X0• ---- 80, and Xo• ---- 120. 

FIG. 4. Takeover of two solitary waves in the quadratic case. Numerical 
solution of (33a)--(36a) with i = 200, t/= 66, N = 2, c• = 2.5, cs = 1.5, 
Xo• -- 10, and xo: = 20. 

keover of such waves. The radiation is stronger in both cases 
than for the corresponding solitary-solitary wave interac- 
tion. Figure 8 shows a solitary wave and an antisolitary wave 
traveling closely together with the same velocity in a breath- 
erlike bound state. The total momentum of this wave is zero 

while each of its components has a momentum p, with abso- 
lute value >•rxf•. The wave travels with a decreasing group 
velocity < 1. For t > tf we have observed that the wave stops 
and becomes singular. In Fig. 9 we have two antisolitary 
waves and one solitary wave. In this case one of the antisoli- 
tary waves and the solitary wave travel in a breatherlike state 

ß as in Fig. 8. The other antisolitary wave takes off with a 
velocity which is slightly smaller (c --- 1.15) than the initial 
velocity (c --- 1.3). 

In Fig. 10 we consider the collision between two breath- 
ers of small amplitude. In our initial condition f(x,t ) is now 
the sum of two mKdV breathers traveling in opposite direc- 
tions 

f (x,t ) 
2 

? x 

FIG. 5. Takeover of two solitary waves in the cubic case. Numerical solu- 
tion of (33b)-(36b) with I --- 200, t/= 66, N = 2, 8• = 82 = 1, c• = 2.5, 
c 2 = 1.5, xo• = 10, and Xo• = 20. 
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u 

T 

FIG. 6. Head-on collision between solitary and antisolitary wave in cubic 
case. Numerical solution of (33bH36b) with I--200, t/ 77, A t 2, 
--• ----•2---- l,c• = --c2= 1.3, Xo• = 80, and xoa = 120. 

FIG. 9. Coupling of one solitary and two antisolitaxy waves in cubic case; 
Numerical solution of (33bH36b}. Parameters I-- 200, t/-- 90, At-- 3, 
-•,=62=--•---1, c•=c2=c3----!.3, Xo,--20, x•--23, and 

Xo3 = 26. 

FIG. 7. Takeover of solitary and antisolitary wave in cubic case. Numerical 
solution of (33b)-(36b) with I= 200, t/= 66, N= 2, • =--6• = 1, 
c• ---- 2.5, c 2 = LS, Xo• = 15, and xo• = 35. 

x 

FIG. 10. Head-on collision between two smaU-amplitude breathers in cubic 
case. Numerical solution of{33b)-(35) and {37). Parametersl = 400, t/= 50, 
t--0. I, al --a2 = 3, fl• = • ---- 1, Xo• = 200, and Xoa = 600. 

T 

FIG. 8. Coupling of solitary and antisolitary wave in cubic case. Numerical 
solution of {33b)-{36b} with /--200, t•= 185, N=2, •, = --•2 = I, 
c• -- c2 = 1.3, Xo• ---- 20, and xo• = 23. 

FIG. 1 I. Breakup of static wave in cubic case. Numerical solution of (33b}- 
(35) and (38). Parameters ! = 100, t/= 30, c 1.75, and Xo = 50. 
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with 

- . 

For the p•meter v•u• ½ho•n th• •n•g •oup 
•d ph• vel•fi• for •e two br•thm 
e• = • 0.91 •d e• = • 0.98. •e br•th• • •n to 
s•ve the •ion wi• • taxation. 

Fi•e 11 •o• the br•up of a static wave $v• by 

/•,t)=•l •h [ (•/c)(X--Xo) ] . 

• wave •n• the •t• •er• 
o = 2[c](• + I• 1. For the •• M the fi•e 
o = 35.8. •e s•tic wave br• up M• •o • wav• 
• vel•i• c = • 1.23. A•g to (24} the 
s•n•g • • 2X16.0= 32.0. •us appro•y 
10% of •e • is l•t to the r•iation •n M •e fi•e. 

Fi• 12 •d 13 show the t•e evolution oftwo d•er- 
•t n•ve • wav• M •e q•afic •. •e wav• 
•e •ven by 

f•,t} = -- 3(• -- 1} •h: [ (•/•)(x - x o -- ct )]. 

In the foyer fi• the vel•ity h • cl• to •ty {c = 1.1 
t•t the top,rude (0.63} •m• • s• •at •e •s•r- 
sion te• dominate. • a •n•uen• •e •H• wav• 
•olve Mto • •atMg •!ution. In the latter fi• c = 1.2 
•d •e mpfitude •m• 1.32. Now •e • wave 
evolv• M• a sM• •lu•on v• rapidly. • blo•p 
• • •o• • • •ore t = 6. Here •e n• 

Mm dominat• •d •u} = • due • •e mpfitude 
•on. For •e nega•ve • wave •e l•g• mp•tud• 
( < 1 } • •avel mo• slowly •g a st•g of the b•k 
front ofthe wave • •n M Fig. 13. For the •ti• •ndition 
(39} •e mp•tude v•ue •g the •• • •d 
the blo•p • • • d•in• to 0.83. • r• 
•ve •n ob• for •e -- •(ua)• •. H•e the •t• 
•n•fion (36b) with n = I •d •l = I •el• the mp•tude 

u 

FIO. 12. Time evolution of negative solitary wave in quadratic cas• Oscilin- 
tory solution results. Numerical solution of(33a)-{35) and (39). P• 
t----200, t/ 70, c-- 1.1, ancl xo = 100. 

FIG. 13. Blowup of negative solitary wave in quadratic case. Numerical 
solution of (33a)-(35) and (39). Parameters ! -- 40, t/= 5, c -- 1.2, and 
Xo = 20. 

value 0.93 separating the oscillatory case and the-blowup 
case. 

V. CONCLUSIONS 

Longitudinal waves on nonlinear elastic rods are gov- 
erned by improved Bonssinesq equations in the absence of 
torsional displacements provided that the length of the 
waves is large compared with the radial dimension of the 
rod. 

Solitary wave solutions to the improved Boussinesq 
equations, modeling elastic rods with quadratic and cubic 
nonllnearities, have been investigated numerically. The 
waves turn out to behave almost like solitons, i.e., little linear 
radiation is created during their interaction. This result 
agrees withthe fact that the improved Boussinesq equations 
in the present model are almost integrable, i.e., they reduce 
to the integrable KdV and mKdV equations in the small 
amplitude limit. Inclusion of neglected higher order terms 
may reduce the integrability of the system. A new quasi- 
breather solution is found in the cubic case. Disturbance of 

the balance between dispersion and nonlinearity is shown to 
give oscillatory or singular behavior of the waves. 
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APPENDIX A 

The elastic energy up to fourth order can be written 

+.44•r• + B•r•I: + Cdl + DJ,Ia, (AI) 
ß where the three invariants are given by 
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where r/i • is the •• s• t•sor •ven by 

1 • • • • (A3) 
• su•ation over •t• in•. In •. (A1)• •d• 
•e the •m• •ns•n•, •d •, 83, C• •d •, 8•, C•, D• 
d•ote •e third- •d fo•er •opic eldtic •n- 
stats, r•tively. Inseaion of •. (6) •to •. (A3) •elds 

•q = 0 F+ • F 2 (A4) 
0 0 F+•F 

and 

and 

(1 - 2a,) 2 + 2p(l + 2o•,), 
(• - 2a,)0 + • - •2) + 6•(• + 4•,•2 - 2o•) 
6,43(1 - 2a,) ) + 3B•(1 - 2•z,)(1 + 2o•) + 2C3(1 - 2o•) 

E, = 3• [0 + 2• - •,2) • + 16(1 - 2•,)(•,•- o,)] + •(1 + 2o1 + s• - 24o•,a2 + l•,a3) 
+ 36d3(1 - 2•r,)2(1 + • - 4a2) + 6B3 [2(1 - 2•r,)(1 + 4•r•a2 - 2o•) 

+ (• + • - 4•2)(1 + 2d,)] + •2G(1 + 2a1 - 4d, a2) 
+ 24d•(1 - 2a,} • + 12B•(I - 2•02(1 + 2o•) + 6C4(1 + 2o•) 2 + 8D•(I -- 2cr,)(l -- 2o• ). (A7) 

Explicit expressions for the second- and third-order 
Poisson ratios, •r 2 and a3, in terms of elastic constants up to 
fourth order are available for cubic symmetry in Refs. 20 and 
21. By using the isotropy relations for these elastic con- 
stants 2• a2 and a3 may be expressed in terms of the isotropic 
elastic constants up to fourth order as defined by Eq. (AI). 

APPENDIX B 

In order to solve 

u• - u. + [g(u)]._. + u;,,, = 0, 

i«u 2, quadratic case, IBE, {B1) g(u) = [ + « u3 ' cubic cases, MIBE, 
numerically, a central difference approximation for the spa- 
tial and time derivatives is used. The resulting nine-point 
Crank-Nieolson system with a tridiagonal matrix is solved 
by Gauss elimination. The matrix has diagonal dominance. 
As a consequence the elimination procedure is stable? 

Discretization of {BI) with space step, Ax, and time 
step, At, in the quadratic case 

--u•+l + [2+(Ax) •] u• +•--uq+' p-- p+l 

= [(At)2--2](u•+, --2u• +u•_, ) +2(Ax)2u• q 

+ «(at )2 [ (.•+,)2 _ 2(u•)2 + (u•_,)21 

+ug-[-[2+(Ax)2lu• '+u•+, (B2) 

with u(pax•lAt)=u• q, p=0,1,...•N and q=0,1 ..... At 
x----0 and x = ! = NAx we use the boundary conditions 
ug = u•r = 0 for q = 0,1 ..... The initial conditions {35) are 
implemented as up ø =f(pAx,O) and u•----f(pAx,At) for 
p = o,L...dv. 

Similarly, cliscretization of IBI) in the cubic case yields 
(B2) with the nonlinear term replaced by 

q- «(At} 2 [ (u•+,)• -- 2(u• )3 + (u•,_, 

•O. L. Lamb, Elements of Soliton Theory (Wiley, New York, 1980). 
•R. K. Bu!lough and P. $. Caudrey, Solirons {Springer, l•r. lin, 1980). 
aG. A. Naxibali, "Nonlinear longitudinal dispersive waves in elastic rods," 
J. Math. Phys. Sci. 4, 64-73 (1970). 

•L A. Ostrovskii and A.M. Sutin, "Nonlinear elastic waves in rods," 
PMM J. Appl. Math. Mech. 41, 5tt3.-549 {1977}. 

•Reference 2, p. 172. 
aL. Iskandar and P. C. Jain, "Numerical solutions of the improved Bous- 
sinesq equation," Proc. Indian Acad. Sci. (Math. Sci.) 89, 171-181 0980}. 

71. L. Bogolubsky, "Some examples of inelastic soilton interaction," Comp. 
Phys. Commun. 13, 149-155 {1977}. 

aK. Bataillc and F. Ltmd, "Nonlinear waves in elastic media," Physica 6D, 
9•--104 {1982). 

9K. E. Longten, "Observations of soiltons and nonlinear dispersive trans- 
mission lines," in ,•olitons in Action, edited by K. Lonngren and A. Scott 
(Academic, New York, 1978}, plx 127-152. 

•øT. Yagi, "Solitons in a nonlinear inhomogeneous transmission line," ]. 
Phys. See. ]lm. 50, 2737-2744 (1981). 

•R. N. Thurston, "Waves in solids," in Handbuch der Physlk, edited by $. 

878 J. Acoust. Sec. Am., Vol. 76, No. 3, September 1984 Soorensen oral.: Solitary waves on nonlinear elastic rods 878 



Fliigge (Sprin•er, Berlin, 1974), Vol. Vi •'4, Mechsnics of Solids IV, pp. 
109-308. 

12Rf'ft'/'•/C•' 1 l, p. 222, 
•3L. Pochhammer, "'0her die Fortpfianzungsgeschwindigkeiteu kleiner 

Angew. Math. (Crelle181, 324--336 [1976). 
•nC. Chree, "The equations of an isotropic elastic solid in polar and cylindri- 

cal coordinates, their solutions and applications," Trans. Cambridge Phi- 
los. Soc. !4, 250-369 {1889}. 

• S A. E. H. Love, A Treatise on the Mathematical Th•ry of •!azticity (Dover, 
New York, 1944), pp. 287-291. 

•T. Hater, "'0her die Fortleitung von Ultraachallwellen in fezten StYben," 
Z. Angew Phys. i, 274-289 {1949). 

•?M. Redwood and L Lamb, "On the propagation of high frequency 
compressional waves in isotropic cylinders," Pro•. Phys. So(:. London B 
7o, 136-143 09•7). 

•. R. Hutchinson and C. M. Percival, "Higher modes oflongitudina! wave 
propagation in thin rods," L Acoust. Soc. Am. 44, 1204-1210 {1968). 

•gA. E. Green and J. E. Adldna;/•arge 
•or• • 19•). 

mO. • • "• ord• el•fic •ns• •d n•-• s• 
r• for VzS•" •d S• •un. 14, 98•987 (1974}. 

alU. • •d F. •h•bl, "G•b•-•u th• • •upl• su•r- 
•nd•g •d ma•k ph• t•sitions • AI5 •m•unds," Physi• 
l•, 227-2• (1981). 

a•. T•ufi •d C. C. Wei, "R•ucfive •u•ation meth• in non-• 
• pm•ti•, I," I. Phys. •. J•. •, •1-• (1968). 

•s• l, p. 139. 
•. L. P•m•, A. •. Fde• • M. M. •'Y•he•ch, "• •e r•- 

tio•p •tw• •e •hmn mlution of •e m• Ko•eg•e 
V • •fion •d •e •V •ff• mlution," Phys. • 47• 321-323 
(1974). 

•A. A. N•y•, "•er o•er eldtic •nsm• •h•" •v. Phys.- 
•d S• 6, 167•1675 (1965). 

ran, •ndon, 19•), p. 47. 

879 J. Acoust. Soc. Am., Vol. 76, No. 3,'September 1984 Soerensen eta/.: Solitary waves on nonlinear elastic rods 879 


