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Soiitary ‘waves on nonlinear elastic rods. I

M. P. Soerensen, P. L. Christiansen, and P. S. Lomdahi®
Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK-2800 Lyngby,

Denmark

{Received 22 September 1982; accepted for publication 26 April 1984)

Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq

equations when transverse motion and nonlinearity in the elastic medium are taken into account.

Solitary wave solutions to these equations have been found. The present paper treats the

interaction between the solitary waves numerically. It is demonstrated that the waves behave

almost like solitons in agreement with the fact that the improved Boussinesq equations are nearly

integrable. Thus three conservation theorems can be derived from the equations. A new subsonic
- quasibreather is found in the case of a cubic nonlinearity. The balance between dispersion and

nonlinearity in the equation is investigated.
PACS numbers: 43.25.Cb, 43.40.Cw

INTRODUCTION

. Inrecent years exact soliton solutions to approximately
50 nonlinear partial differential equations (PDEs) or systems
of PDEs have been found. Solitons are solitary waves, i.e.,
localized, nonsingular waves (like humps or kinks) which
can propagate without changing their shape. In addition so-
litons retain their form after mutual interaction. The exis-
tence of such stable solutions is due to a balance between
dispersion and nonlinearity in the PDEs. Soliton solutions
are also linked to the exact integrability of the PDEs, thus to
the existence of infinitely many conservation theorems for
the equations. The first conservation theorems may be inter-
preted physically, for example, as conservation of energy
and momentum. The methods by which the exact soliton
solutions have been obtained are essentially the Backlund
transformation, Hirota’s method of bilinear differential op-
erators, and the inverse scattering transform. Nearly all
known solitons are solutions to evolution equations in one
spatial dimension. Among a number of recent monographs
of the subject we mention the textbook by G. L. Lamb' and
the survey edited by R. K. Bullough and P. J. Caudrey.?

Most physical systems are modeled by nonlinear PDEs
which are not exactly integrable. However, some of the equa-
tions are what we shall denote nearly integrable. At present,
we can only offer an approximate definition of this class of
equations. First, the equation must possess solitary wave so-
lutions as well as a finite number of conservation theorems.
Second, the PDE must reduce to an exactly integrable equa-
tion in the small amplitude limit, Finally, a numerical treat-
ment of the interaction between two solitary waves must
show that the waves essentially retain their shape after the
interaction. Thus only a small amount of linear disturbance
may be created as a result of the interaction.

In the present paper the propagation of acoustical
waves on a circular elastic rod is investigated. Nariboli’ first
presented a detailed analysis of the boundary value problem
for the cylindrical rod corresponding to vanishing surface
stresses based on a consistent perturbation procedure. He
uses a polynomial form of the elastic energy in the quadratic
approximation and justifies the validity in the “small” am-

*) Present address: Center for Nonlinear Studies, Los Alamos National Lab-
oratory, University of California, Los Alamos, NM 87545.
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plitude case. Physical nonlinearity due to a nonlinear consti- -
tutive relation for the elastic medium is thus neglected, while
the geometrical nonlinearity resulting from the Lagrangian
strain tensor is treated rigorously. A PDE for the longitudi-
nal strain which is closely related to the Korteweg—de Vries
equation is obtained. An explicit single solitary wave solu-
tion is given. Ostrovskii and Sutin* include physical nonlin-
earity by starting with the Taylor expansion of the elastic
energy with respect to the Lagrangian strain tensor. Their
treatment, which neglects geometrical nonlinearity, leads to
a fourth-order PDE related to Boussinesq’s equation (BE).
The BE contains u,.,, and (4?),, and is exactly integrable.®
In the PDE used by Ostrovskii and Sutin the term 4_,,
which accounts for the transverse motion, replaces u,,,, and
destroys the exact integrability. Iskander and Jain® denoted
this equation the improved Boussinesq equation (IBE) and
investigated numerically head-on collision between solitary
waves of the type found by Bogolubsky.” The authors of Ref.
6 computed the breakup of an initially static wave. They
concluded that the solitary waves interacted almost elasti-
cally (i.e., like solitons) for smaller amplitudes of the waves.
For increasing amplitudes they found a gradual transition to
inelastic behavior.

Bogolubsky’ considered a modified version of the IBE
in which (1), is replaced by (1), This equation may be
denoted the modified improved Boussinesq equation
(MIBE). A solitary wave solution to this equation was found
in Ref. 7. The same nonlinearity [(%),, ] has recently been
considered in a study of seismological waves by Bataille and
Lund® in which a Boussinesq equation modified in this man-
ner occurs.

Equations like BE, IBE, and MIBE also occur in the
continuum limit description of nonlinear lattices, in plasma
physics, and nonlinear electric transmission lines. In the lat-
ter example position x and time 7 may be interchanged in the
equations.®'° Present literature contains an increasing num-
ber of investigations of nearly integrable systems.

The present paper is structured in the following man-
ner: in Sec. I we derive the fourth-order PDE for the spatial
derivative of the displacement along the rod from the La-
grangian for systems which include nonlinear terms up to
fourth order in the elastic energy.'!' The reader may consult
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the references listed in the work'? for the experimental deter-
- mination of the corresponding elastic coefficients. Particular
cases considered are the third-order case and the genuine
fourth-order case with arbitrary signs of the elasticity coeffi-
cients. For the homogeneous rods the resulting PDEs for the
strain reduce to IBE and MIBE, respectively. Conservation
theorems for energy, momentum, and total displacement are
found.

Section II presents the solitary wave solutions to IBE
and MIBE and discusses the influence of the nonlinear term
and the dispersive term on the solutions. The values of the
conserved quantities for the solitary waves are given.

In Sec. IIl IBE and MIBE are reduced to the
Korteweg—de Vries equation (KdV) and the modified
Korteweg—de Vries equation (mKdV), respectively, by
means of the reductive perturbation technique'* in the small
amplitude limit. This procedure thus lowers the order of the
PDE from four to three. As a consequence, propagation in
only one spatial direction is permitted. In IBE and KdV the
nonlinearity is an even function of the solution in contrast to
MIBE and mKdV where the nonlinearity is odd. As a conse-
quence only soliton solutions are found in the former case
while both solitons and antisolitons exist in the latter case.
Solitions and antisolitons may be combined into a lower en-
ergy state called a breather. The analytical expression for the
mKdV breather is listed because it serves as initial condition
in our numerical solution of MIBE in Sec. IV. In this section
our numerical solution of initial value problems for IBE and
MIBE is presented. We shall consider propagation, colli-
sion, and breakdown of solitary waves and a new quasi-
breather solution for MIBE. In two appendices we treat the
elastic coeflicients and the numerical schemes used for the
computations.

A sequel to the present paper will treat reflection of
solitary waves at an end of the elastic rod with realistic
boundary conditions. Also reflection and transmission of
solitary waves at continuous and discontinuous changes in
the cross-section area of the elastic rod are investigated. Fis-
sion of solitary waves is observed.

I. DERIVATION OF WAVE EQUATIONS

We define the longitudinal displacement component of
a plane cross section along the isotropic circular-cylindrical
rod asu =W (X,T) where X is the position of the undisturbed
cross section and T is time. The exact solution for the linear
elastic (Hookeian) rod'*'® shows that u, is independent of
the radial variable R = (Y2 + Z?%"2 in the limit of long
wavelength. Similarly, «, is assumed to be independent of R
for a thin nonlinear elastic rod as long as the width of the
solitary wave solution is large compared with the diameter of
the rod.

For an isotropic cylindrical rod under uniform longitu-
dinal tension the deformation is Aomogeneous and the radial
displacement, u,,4, is exactly given by"’

Ung = UX,R) = RF(Wy), (1)
where Wy = dW /dX and Fisanonlinear function. If F (W)
may be expanded in the form of a Taylor series,

F(Wy)= —a'lWx_a'zw)zr“a':;W?r—"', (2)
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the expansion coefficients are the first- and higher-order
Poisson ratios for which expressions in terms of the second-
and higher-order elastic constants are available up to fourth
order.?*?! For longitudinal elastic waves in an isotropic lin-
ear elastic rod the radial displacement in the long wave-
length limit is given by"*"* 4., = — gRW,.Equation (1)is
assumed to be valid also in the time-dependent inhomogen-
eous nonlinear case where the width of the solitary wave is
large compared with radius of the rod

Uag = UX,R,T)= RF[Wx(X,T)] (3)
In the absence of torsional deformations the displacement

gradient, du;/dX;, corresponding to the displacement field
u,= WX,T), u,qa = U(X,R,T) given by Eq. (3) becomes

Wy 0 o0

aui 12

= = YF'Wey F O (4)
R |ZF'Wy O F

in the Cartesian referenceframe, (X,,X,,X;) = (X,Y,Z ),in the
material description. Here F' is

pr__dF
dW,

according to Eq. (2).

Harmonic wave solutions in a linear elastic rod are giv-
en by W(X,T)= A explikX — «T)], where 4 is the ampli-
tude, k is the wavenumber, and @ is the cyclic frequency. For
these waves |[RWyy | = kR |Wy|. Thus in the long wave-
length limit |R Wy, | €| Wy | since kR €1. The former condi-
tion is expected to hold in the nonlinear case when the width
of the solitary wave is large compared with the radius of the
rod. In conjunction with Eq. (5) for o, <1 (n = 1,2,...) and
| Wy | <1 it follows that the off-diagonal elements in the dis-
placement gradient may be neglected, and Eq. (4) becomes

= _01_20.2WX—303W42"_.“ (5)

%y _ H;X 1(: g (6)
X, 0 0 F

with F given by Eq. (2).
With the displacement gradient given by Eq. (6) and F
given by Eq. (2) the elastic energy density (see Fig. 1) becomes
1 1 1
¢>=3!—E2W§ +§E3W} +IE4 Wi )

to the fourth order. Here E,, Young’s modulus, and the
higher order expansion coefficients, E, and E,, are given in
Appendix A. The potential energy density is

7 =Sp, (8

where S is the cross-sectional area.
The corresponding kinetic energy density (per length
unit of the rod) is given by

.7=J.%p(W§-+U§~)dS, 9
S

where p is the density of the elastic material. According to
Egs. {3) and (5) we get

Ur= —R(01+20,Wx +303W% + ) Wyr . (10)
Assuming that the higher order terms in 7 resulting from
Eqg. (10) are small compared with the higher order terms in
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(a)

(b)

FIG. 1. Elastic energy ¢, as function of derivative of displacement, W . (a)
Quadratic Hooke’s law corresponding to E;#0 and E, = 0 in (3). (b) Cubic
Hooke’s law corresponding to E; = Oand E, > 0 full curve (hard spring) and
E, <0 dot-and-dash line (soft spring) in (3).

Eq. (8) we get the Lagrangian density for the system

=T -7 =4Sp[W% +(Sa*/2m) Wr]
—\SE,W3 —\SE.WY —ASE,W% . (11)

The coefficients E,, E,, E,, o, S, and p may depend on X. The
Euler equation for this Lagrangian density is

4 ¥ 3 4L & FY =0 (12)
X oWy OT dW, J3X3T dWyr
yielding

a 1 2 1 4
— (SEW. — —(SE,W2%)+ —— (SE,W?}
3X( X)+23X( 3 x)+3 3X( Wx)

2
8;;T (Sz:z W’”) =0. (3

From the Hamiltonian density, 7= .7 + 7, we get
the Hamiltonian '

H=r (T + ¥)dX | (14)

a
——(SpW.
c?T(p r)+
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which is a conserved quantity since dH /dT =0 when W
satisfies (13). Another conserved quantity is the momentum
defined as

P=f Sp WpdX . (15)

[Integration of (9) with respect to X yields dP /dT = 0 when
zero boundary conditions for Wy, etc. at infinity are ap-

plied.]
An equivalent formulation of (13) is
an a [1 [a (Szptr2 )”
&l _ | == 16
ax T ax[sp ax o Par)]) U6
and

an_1 9 ( 1 » o, 1 ,)]

oL __ % |s(Ew, + —EW:L +—E, W[,

T~ Sp dX xt oy BWat g B W
(16b)

where 2 = T(X,T). Integration of (16a) with respect to X
yieldsdD /dT = 0 where the total displacement Dis given by

D=f Wy dX, (17)

when zero boundary conditions for £2 and W, at infinity are
used. ,
For a homogeneous rod (13) reduces to

Wy — Wy + flw,) Wy + Weryy =0 (18)
in dimensionless coordinates x = X /(oS /27) and
t=T\E,/(oSp/2m)

in the following special cases: for E;#0 and E, = 0 (material
with quadratic Hooke’s law) we introduce

wix,t) = W(X,T) Es/(E,0S /2).

Asaresult f(w,) = w,. For E; = 0 and E,=0 (material with
cubic Hooke’s law) we introduce

wix,t) = W(X,T)JIE,|/(oJSE,/2m)
and flw,) = +wy .

The dimensionless strain u = w,, satisfies (18) with the
nonlinear term replaced by }(1”),, and + §(«°),, in the qua-
dratic and cubic cases (B1). These equations are denoted IBE
and MIBE, respectively.

Il. SOLITARY WAVE SOLUTIONS AND CONSERVED
QUANTITIES

In the quadratic case a solitary strain wave is

u(x,t) = 3(c* — 1) sech?[ (/& — 1/2¢)x —xo —ct)] , (19)
where the velocity ¢ satisfies |¢| > 1 and x = x,is the position
of the wave at ¢ = 0. [For |c| <0 Eq. (19) yields an unbound-
ed negative periodic solution. For ¢ = + 1 we get the nega-
tive unbounded localized solutionu = — 12/(x — x, F¢)*]
In the cubic case with the nonlinear term + §(u?),,, we
find solitary and antisolitary strain waves
ulx,t) = + J6c& — 1 sech [(VZ — 1/¢c)x — xo —ct)]
(200
for upper and lower sign and |c| > 1. (Real solutions for
|c}]<1 are not found.) In the cubic case with nonlinear term

Soerensen ot &/.: Solitary waves on nonlinear elastic rods 873



— }(t%),. we get unbounded localized solutions for |¢|>1
and unbounded periodic solutions for |c| < 1. Equation (20)
shows that both solitary and antisolitary waves exist in the
cubic case with + §(u%),, term in contrast to the quadratic
case where only positive solitary waves are found.

In the absence of the dispersive term, u,,,,, in the wave
equations we get the nonlinear simple wave solution
u=f[x—cluy] where f is an arbitrary function and
c(u) =1 + u or 1 + u* in the quadratic and cubic cases

+ §(t%)x- Thus the amplitude dispersion makes the larger
amplitudes |u|, move faster or slower than the smaller am-
plitudes causing a steepening of the front or the back side of
the wave. We shall see an example of this effect in Sec. IV.

If, on the other hand, the nonlinear term is cancelled in
the wave equation we get the linear solution

u =fdk ak)explik(x —t AT+ K9],

where #i(k ) is the spectrum of u as function of the wavenum-
ber k. The group velocity for this waveisc, = (1 + k7%~
Thus the frequency dispersion for this wave makes the com-
ponents with larger wavenumbers move slower. This ten-
dency may balance steepening of the wave due to the nonlin-
earity. As a result we find a positive solitary wave in the
}(1?),, case and positive and negative solitary waves in the
J(#), case. As we shall see in Sec. IV the two mechanisms
do not balance each other for a negative wave solution in the
quadratic case and in the — }(s°),, case.

From (14), (15), and (17) we derive the conserved quanti-
ties for the solution (19)

H=(E30SS/27/E%) h,

h = 24¢%|c|(c® — 1P/ (1)
P=((E,pS)"*/En2r] p,
-p= —cd, 22)
and )
D =(E,0 S /27/E;)d,
d = 12)c|(? — 1)'% (23)

with |¢|> 1. Here we have introduced the corresponding
normalized quantities A4, p, and d, which are conserved in the
case of a homogeneous rod.

The conserved quantities for the solution (20) become

H=(E2oS\S/2a/|E,|) A,

h = 12c|(* — 1)% (24)
P=(E, 08 JpS2a/\|EJ)p, p= — cd; (25)
and

D=(oSE;/2a/|E,)d, d= +m6lc|; = (26)

with |¢|> 1.
The relationship p = — ¢d in both cases can be seen
directly from the traveling wave assumptions (19} and (20).

Note that |d | and | p| have the lower bound 7 /6 in the cubic
case.
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IIl. RELATIONSHIP TO INTEGRABLE EQUATIONS

In order to illustrate the relationship of our wave equa- ‘
tions to integrable equations we use the reductive perturba-
tion expansion®

uxt)= 3 € u,Er) O<e<l, (27)
with

E=elx—1)6], r=eRr12V6), (28)
and’ . )

E=e"[lx—1)6], 7=¢€"x/12/6), (29)

respectively. To the lowest order we then obtain the KdV
equation

ul,. + 6“] ulg + ulEEE = 0 (30)
from IBE and the mKdV equations

Uy, + 6U g + ygge =0 (31)
from MIBE.

The KdV equation and the mKdV equation with the
upper sign are integrable and multisoliton solutions have
been found. In the latter case antisoliton solutions exist and
soliton and antisoliton may combine into a breather.” The
resulting small amplitude solution becomes

uprt) = — 4gg 8P —(B/a)sin & tanh ¥

1+ (B/afsindsecit ¥ ¥
+0(€) (32)

with
@ =2ea/6) {[1 + {1 — B |x—1},
V=286 {[1+(a®—18%)']x—1},
a and A being positive constants. The resulting group and
phase velocities for the breather are ¢, =1 + (8%/3 - a?)€
and ¢, =1 + (8% — a?/3)€, respectively. (An example is
shown in Fig. 10.)

We note that the mKdV equation (31) with the lower
sign has a shock wave type solution.?*

IV. NUMERICAL RESULTS

In this section we present our numerical solutions of the
following initial value problems

2 —
N Uy — Uy + Y1) sx + Uhne =0 0<x<l (33a)
Uy — ty + Hi)er + Uy =0 O<e<ty, (33b)
and
u(0,) =u(lt) =0, - (34

u(x,0)=f(x,0} and u,(x,0)=f,(x0). (35)
In the initial condition (35) f(x,z) will be specified for each
numerical experiment. The results are obtained by the finite
difference scheme described in Appendix B.

In Figs. 2 and 3 we show that solitons are able to survive
head-on collision in the case of a quadratic nonlinearity (33a)
and a cubic nonlinearity (33b). In the initial conditions (35)
we use
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FIG. 2. Head-on collision between two solitary waves in quadratic case.
Numerical solution of (33a}{36a} with /=200, 7, =66, N=2,
¢, = — ¢, = 1.4, x5y = 80, and x4, = 120.

Slxt)= i 3ci—1) mhz(% (x — xo; — cit))

i=1

i (36a)
and
fixt)= 3 861 sech(" = x —c,t))
) (36b)

respectively. Here N is the number of solitary waves. The
solitons retain their shape and velocity after the collision in
both cases. The radiation field between the solitons after the
collision is slightly stronger in the cubic case than in the
quadratic case. Similarly, Figs. 4 and 5 show takeover in the
two cases. Even though the maximal value of u is approxi-
mately three times as big in the quadratic case as in the cubic
case the radiation appears to be of the same order of magni-
tude. The approximately solitonic behavior can be explained
by reducing the equations to the KAV and the mKdV equa-
tions by means of the reductive perturbation theory as
shown in Sec. III and invoking the properties of the soliton
solutions of these equations. As we saw in Sec. II only posi-
tive solitary waves exist in the quadratic case. However, in
the cubic case we have found solitary waves and antisolitary
waves. Figures 6 and 7 illustrate head-on collision and ta-

u
X
T

FIG. 3. Head-on collision between two solitary waves in cubic case. Nu-
merical solution of (33b}{36b) with / =200, 2, =66, N=2,6,=6,=1,
¢, = — ¢, = 1.5, xo; = 80, and x,, = 120.
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<>

FIG. 4. Takeover of two solitary waves in the quadratic case. Numerical
solution of (33a)-(36a) with /=200, ¢, =66, N=2, ¢, =25, ¢, =15,
Xoy = 10, and xg, = 20.

keover of such waves. The radiation is stronger in both cases
than for the corresponding solitary—solitary wave interac-
tion. Figure 8 shows a solitary wave and an antisolitary wave
traveling closely together with the same velocity in a breath-
erlike bound state. The total momentum of this wave is zero
while each of its components has a momentum p, with abso-
lute value >/6. The wave travels with a decreasing group
velocity < 1. For ¢ > ¢, we have observed that the wave stops
and becomes singular. In Fig. 9 we have two antisolitary
waves and one solitary wave. In this case one of the antisoli-
tary waves and the solitary wave travel in a breatherlike state
-as in Fig. 8. The other antisolitary wave takes off with a
velocity which is slightly smaller (¢ = 1.15) than the initial
velocity (¢ = 1.3).

In Fig. 10 we consider the collision between two breath-
ers of small amplitude. In our initial condition f(x,t)is now
the sum of two mKdV breathers traveling in opposite direc-
tions

flxe)
2 cos D, —(B;/a;) sin P, tanh ¥,
= —462 I — >
<1 14 (B;/a;) sin @, sech” ¥,

ech ¥,,
(37)

U
X
T

FIG. 5. Takeover of two solitary waves in the cubic case. Numerical solu-
tion of (33b}-{36b) with /=200, 1, =66, N=2, 6,=8,=1, ¢;=2.5,
= 1.5, Xoy = 10, and Xgp = 20.
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FIG. 6. Head-on collision between solitary and antisolitary wave in cubic
case. Numerical solution of (33b}{36b) with /=200, f, = 77, N=2,
—8,=8,=1,¢,= —¢; = 1.3, X5, = 80, and x,, = 120.

FIG. 7. Takeover of solitary and antisolitary wave in cubic case. Numerical
solution of (33b|{36b) with /=200, t,=66, N=2, §,= —§,=1,
¢, = 2.5, ¢; = 1.5, x5, = 15, and x4, = 35.

FIG. 8. Coupling of solitary and antisolitary wave in cubic case. Numerical
solution of (33b}{36b) with I=200, r, =185, N=2, §,= —6,=1,
€, = ¢; = 1.3, x5, = 20, and x,, = 23.

876 J. Acoust. Soc. Am., Vol. 76, No. 3, September 1984

~\ 7 *

R AN
N ” \ \/

FIG. 9. Coupling of one solitary and two antisolitary waves in cubic case.
Numerical solution of (33b}{36b). Parameters /=200, ¢, = 90, N =3,
—8,=6,==8,=1, ¢,=c;=¢,=13, x5, =20, x5,=23, and

X3 =26.

FIG. 10. Head-on collision between two small-amplitude breathers in cubic
case. Numerical solution of (33b}~(35) and (37). Parameters [ = 400, ¢, = 50,
e=0.1,a,=a,=3, B, =5;=1, x,, = 200, and x4, = 600.

FIG. 11. Breakup of static wave in cubic case. Numerical solution of (33b}-
(35) and (38). Parameters I = 100, ¢, = 30, ¢ = 1.75, and x, = 50.

Sosrensen af 4/. : Solitary waves on nonlinear elastic rods 876
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with
¢,_ﬁ“1 ( al — p)é](x xo,)+(—1)'t]

w=—[[1+( 1) o — x4 (- 13t

For the parameter values chosen the corresponding group
and phase velocities for the two breathers become
¢g = 1091 and ¢, = 1 0.98. The breathers are seen to
survive the collision with minimal radiation.

Figure 11 shows the breakup of a static wave given by

Soet) =6 —1 sech [(JT=T1/c)x—x)] . (38)
This wave contains the potential energy
v =2|e|(2¢? 4+ 1)cZ — 1. For the parameters in the figure
v = 35.8. The static wave breaks up into two solitary waves
with velocities ¢ = + 1.23. According to (24) the corre-
sponding energy is 2X16.0 = 32.0. Thus approximately
10% of the energy is lost to the radiation seen in the figure.

Figures 12 and 13 show the time evolution of two differ-
ent negative solitary waves in the quadratic case. The waves
are given by

flet)= —3(c — 1)sech? [(VT —1/2¢)(x —x, —c1)] .
(39)

In the former figure the velocity is so close to unity (¢ = 1.1)
that the amplitude (0.63} becomes so small that the disper-
sion term dominates. As a consequence the solitary waves
evolve into an oscillating solution. In the latter figure c = 1.2
and the amplitude becomes 1.32. Now the solitary wave
evolves into a singular solution very rapidly. Thus blowup
has been shown to occur before ¢ = 6. Here the nonlinear

term dominates and c{u) = 1 + u due to the amplitude dis-
persion. For the negative solitary wave the larger amplitudes
( < 1) will travel more slowly causing a steepening of the back
front of the wave as seen in Fig. 13. For the initial condition
(39) the amplitude value separating the oscillatory case and
the blowup case has been determined to 0.83. Similar results
have been obtained for the — §(u?),, case. Here the initial
condition (36b) with n = 1 and §, = 1 yields the amplitude

FIG. 12. Time evolution of negative solitary wave in quadratic case. Oscilla-
tory solution results. Numerical solution of (33a}-(35) and (39). Parameters
1=200, t; = 70, ¢ = 1.1, and x5 = 100.
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FIG. 13. Blowup of negative solitary wave in quadratic case. Numerical
solution of (33a}35) and (39). Parameters /=40, t, =5, ¢ = 1.2, and
x5 =20.

value 0.93 separating the oscillatory case and the blowup
case.

V. CONCLUSIONS

Longitudinal waves on nonlinear elastic rods are gov-
erned by improved Boussinesq equations in the absence of
torsional displacements provided that the length of the
waves is large compared with the radial dimension of the
rod.

Solitary wave solutions to the improved Boussinesq
equations, modeling elastic rods with quadratic and cubic
nonlinearities, have been investigated numerically. The
waves turn out to behave almost like solitons, i.e., little linear
radiation is created during their interaction. This result
agrees with the fact that the improved Boussinesq equations
in the present model are almost integrable, i.e., they reduce
to the integrable KdV and mKdV equations in the small
amplitude limit. Inclusion of neglected higher order terms
may reduce the integrability of the system. A new quasi-
breather solution is found in the cubic case. Disturbance of
the balance between dispersion and nonlinearity is shown to
give oscillatory or singular behavior of the waves.
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APPENDIX A
The elastic energy up to fourth order can be written
$= 5/11‘11' + 2ul, +A31:: + B, + Gl

+ A1 + BJiLL + CJ3 + DI, (A1)
" where the three invariants are given by
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I =19, 12=i77u Nji» 13=§77:j77jk Nii » (A2)
where 7, is the Lagrangian strain tensor given by
Ju; du; du, Ju
’l]‘-i 1 i 'j k k (A3)

T2ax, " ax,  ax, ax,’
with summation over repeated indices. In Eq. (A1) 4 and u
are the Lamé constants, and A4,, B;, C; and A4, B,, C,, D,
denote the third- and fourth-order isotropic elastic con-
stants, respectively. Insertion of Eq. (6) into Eq. (A3) yields

We+iWk 0 0
Ni; = 0 F+1\F? 0 (A4)
0 0 F+1F?

and
I =Wy +2F+} (W% +2F?%),

By =A(1 =20, + 21 + 207),

E;=3A(1 —20y)(1 + 207 ~ 40,) + 6u(1 + 40,0, — 207)

L=} [W}+2F>+ W% +2F + W% +2FY],
L= [Wx+2F°+3 (W% +2F%)
+3(Wy+2F5) +} (WS +2F9)].  (AS)
Substituting the expansion of F in terms of Wy from Eq. (2)
we obtain
I=(1=20) Wy + §(1 + 207 —40,) W%
+2(010, —03) Wy + O (W),
12=(5+‘7%) W +(i-"i + 2010 Wi
+({ +107 —30ios + 03 +20005) Wk,

L=@3-30))Wx+(+0] —2000) Wk. (A6)

Inserting 1,, I,, and I, into Eq. (A1) and comparing with Eq.
(7) we obtain

+ 645(1 — 204)° + 3B5(1 — 204 )(1 + 207) + 2C(1 — 207)

and

E,=34 [(l + 20% - 40'2)2 + 16(1 — 20))(0,0, — 03)] + 6u(1 + 20: + 80% - 2401'0'2 + 160,7,)
+ 364,(1 — 20, )41 + 207 — 40,) + 6B5[2(1 — 20,){1 + 40,0, — 207)
+ (1 4+ 20} —40,)(1 + 207)] + 12G,(1 + 20} — 40} 0,)

+244,(1 — 20" + 12B(1 — 20,(1 + 207) + 6C,(1 + 207 + 8D,(1 — 20,)(1 — 207).

Explicit expressions for the second- and third-order
Poisson ratios, o, and o3, in terms of elastic constants up to
fourth order are available for cubic symmetry in Refs. 20 and
21. By using the isotropy relations for these elastic con-
stants® o, and o; may be expressed in terms of the isotropic
elastic constants up to fourth order as defined by Eq. (Al).

APPENDIX B
In order to solve

Uyy — Uy + [g(u)]xx + Uspree = 01
with
o) = 5142. quadratic case, IBE,
“ | £14? cubic cases, MIBE,
numerically, a central difference approximation for the spa-
tial and time derivatives is used. The resulting nine-point
Crank-~Nicolson system with a tridiagonal matrix is solved
by Gauss elimination. The matrix has diagonal dominance.
As a consequence the elimination procedure is stable.?®
Discretization of (B1) with space step, 4x, and time
step, 4¢, in the quadratic case
—wr 2+ @AxPludt —ult
= [[ArP —2](ud,, —2u2 +ui_,) +2(Ax) uf
+4AP[(uE 1) —2(u)* + (4] -41)°]

+u27) — 2+ AxP 1w~ +ul )

(B1)

(B2)
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(A7)

I
with u(pAxqAt)=ui, p=0,1,.,N and ¢=0,1,.... At
x =0 and x == NAx we use the boundary conditions
ud =u% =0 for ¢ =0,1,... . The initial conditions (35) are
implemented as 4 =f(pAx,0) and u} =f(pdx,At) for
p=01,_..N.

Similarly, discretization of (B1) in the cubic case yields
(B2) with the nonlinear term replaced by

+ AP [(4841)° —2(u0 ) + (15_41)°] -
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