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INTRODUCTION 

The role of the respiratory system is to ensure adequate exchange of oxygen and carbon dioxide for 

ƚŚĞ ďŽĚǇ͛Ɛ ŵĞƚĂďŽůŝĐ ƌĞƋƵŝƌĞŵĞŶƚƐ͘ TŚis process of gas exchange requires adequate ventilation, passive 

diffusion across the alveolar surface and pulmonary perfusion. The assessment of pulmonary perfusion is 

therefore important in further understanding multiple physiological and pathophysiological mechanisms 

and also in the diagnosis and follow up of multiple pulmonary diseases.  

There are two broad approaches in MR imaging of the pulmonary circulation. Higher spatial, but 

lower temporal resolution MR angiography (MRA) allows for assessment of the structure of the pulmonary 

arterial and venous system. Whilst lower spatial but higher temporal resolution perfusion MRI allows for 

the assessment of capillary level tissue perfusion (1).  

Current clinical practice relies upon CTPA for the structural analysis of the pulmonary vasculature: it 

is readily available, fast, cheap and offers high spatial resolution. However, it requires exposure to 

approximately 5 mSv of ionising radiation, which is associated with increased risk of cancer and requires 

the use of iodinated contrast media, which is contraindicated in allergy or renal failure. Single photon 

emission computed tomography (SPECT) is currently the mainstay of clinical perfusion imaging. This 

requires injection of 100MBq of 99mTc labelled macro-aggregated human albumin, resulting in exposure 

to ionising radiation with an effective dose of 3mSv (2). Beyond exposure to ionising radiation the 

limitations of SPECT include: low spatial and temporal resolution, soft tissue attenuation (for example 

breast tissue or obesity) and movement from the diaphragm.  

Historically, pulmonary MRI has been limited by poor signal due to: low proton density; 

susceptibility differences between multiple air-tissue interfaces causing short T2*; and motion artefact 

from the heart and breathing (1,3,4). However, improvements in scanner hardware and short echo time 

pulse sequences combined with parallel imaging and view sharing techniques have allowed for reduced 

acquisition times, counteracting the short T2* and movement artefacts.  Imaging of pulmonary perfusion 

and particularly its quantification is further complicated by a number of physiological processes. There are 



physiological differences in pulmonary blood flow in expiration and inspiration (1). Furthermore there are 

anatomical differences in regional perfusion due to gravity, causing an apico-basal gradient when erect (5) 

or an antero-posterior gradient when supine (6). This perfusion heterogeneity is reduced in the prone 

position (7). Consideration is also required of the dual circulatory systems in the lungs: the pulmonary 

arteries carry deoxygenated blood from the right ventricle to the lungs to be oxygenated and the bronchial 

arteries carry oxygenated blood from the aorta to supply the pulmonary parenchyma with its metabolic 

requirements (1). Moreover, the pulmonary arteries and veins have a similar anatomical distribution and 

can be hard to distinguish so it is therefore important to ensure that the correct ͞phase͟ of blood flow is 

imaged. MRI of the lungs is also further constrained by patient factors: patients who are short of breath 

may not be able to breath-hold for much longer than 10 seconds and patient positioning and 

claustrophobia can also lead to scanning difficulties with movement artefacts or abortion of scans. 

CONTRAST ENHANCED METHODS 
 

CONTRAST ENHANCED MRA 

 

T1 shortening contrast agents can be used to produce high spatial resolution images of the 

pulmonary arteries and veins with 3D acquisitions within a single breath-hold. Currently this method is the 

mainstay of pulmonary MRA in the clinical setting. Typically, a bolus of gadolinium-chelated agent is 

administered into a large vein, usually in the antecubital fossa followed by a saline flush. Typical contrast 

doses are 0.1 mmol/kg body weight Gadovist followed by a 20ml saline flush injected at 5ml/sec. In order 

to reduce venous contamination and gain greatest arterial and venous separation, a single dose of 

gadolinium at a high injection rate should be used. 

The contrast administration is followed by acquisition of a T1 weighted 3D gradient echo dataset. 

Typical imaging parameters are: TR=2.5-3 ms, TE=1.0-ϭ͘ϱ ŵƐ͕ ɲсϯϬ-40°, matrix=40×192×256, FOV=460 mm, 

parallel imaging factor R=2 (3). In order to synchronise image acquisition with peak contrast enhancement 

in the pulmonary vessels, a bolus tracking technique can be employed: a test bolus with a time resolved 



test scan is used to assess the optimal time from injection to acquisition of central k-space, resulting in 

images from a single time point (3). An important consideration in pulmonary MRA is the rapid transit of 

blood through the lungs (3-5 seconds). Centric elliptic phase encoding, with the scan acquisition starting at 

peak enhancement ensures maximum SNR and optimal separation of arterial and venous phases. 

The contrast bolus passage may also be imaged with time resolved 3D view sharing acquisitions, 

such as TRICKS (Time Resolved Imaging of Contrast KineticS), allowing for haemodynamic assessment of 

the pulmonary circulation. These view-sharing methods under-sample k-space and share missing k-space 

between datasets, giving a higher nominal temporal resolution, with the risk of spatio-temporal 

interpolation artefacts. Other methods for k-space sampling such as spiral acquisition and view sharing can 

further reduce scan times, with some centres producing high spatial resolution MRA images with temporal 

resolution of 1 second through spiral-TRICKS acquisition (8). 

Whilst the majority of clinical MRA is currently performed using extracellular contrast media such 

as gadobutrol (Gadovist TM) and gadobenate dimeglumine (Multihance TM), there is also the potential to 

perform pulmonary MRA using intravascular (blood pool) media such as Gadomer-17,  Gadofosveset 

trisodium and ferumoxytol (9). The long residency time of these agents can enable high SNR and spatial 

resolution with averaging over several breath-holds, however arterial and venous phase separation is 

sacrificed (9). Blood pool agents for clinical pulmonary MRA is very helpful in patients that cannot hold 

their breath as non breath-hold heavily averaged MRA acquisition methods can be used. 

DYNAMIC CONTRAST ENHANCED PERFUSION MRI 

 

With a similar methodology to contrast enhanced MRA but using lower spatial and higher temporal 

resolution image acquisition, T1-weighted dynamic contrast enhanced (DCE) perfusion images of the first 

pass of a gadolinium contrast bolus can be performed. Typical imaging parameters would be: TR=2.0-

2.5ms, TE=0.8- ϭ͘ϬŵƐ͕ ɲсϯϬ-40°, matrix=32×96×128, FOV=460mm. A lower dose of contrast is needed e.g.  

0.05ml per kg patient weight of gadobutrol (Gadovist TM). Again, the nominal temporal resolution of the 

acquisition can be increased with parallel imaging and view sharing (1) but this can result in spatio-



temporal blurring of the signal. In clinical practice, images acquired with a frame rate of around 0.5 s per 

3D lung volume can preserve spatial resolution sufficient for diagnostic purposes. 

Perfusion images can be qualitatively assessed by subtraction of the baseline dataset from the peak 

enhancement dataset, allowing for a rapid assessment of perfusion defects and their anatomical location. 

With more detailed post-processing of the entire time resolved data, quantitative assessment of contrast 

passage kinetics can be made. Pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean 

transit time (MTT) can then be quantified and parametric maps of these metrics can be generated from 

voxel-wise analysis. For absolute quantitative analysis an arterial input function (AIF) is measured in a large 

feeding artery, often the main pulmonary artery for lung imaging (3).  

Once the AIF has been established, the signal time curve of a voxel can be converted to 

concentration time course from the assumption of a linear relationship between signal intensity and 

contrast concentration. A model free approach using the following equation can be used: 

ሻݐሺܥ ൌ ݇ ܵሺݐሻ െ ܵ଴ܵ଴  

Where S(t) is the signal time-course, S0 is the mean signal before contrast enhancement and k is an 

unknown constant. For absolute quantitative analysis,T1 mapping is required in order to convert signal 

intensity to contrast agent concentration (mmol/litre (mM)). One method of T1 mapping used in 

quantitative perfusion analysis is the variable flip angle approach. Using a Levenberg-Marquardt fitting 

algorithm tissue density at equilibrium (m0) and T1 relaxation at equilibrium can be calculated via: 

ሻߙሺݏ ൌ ݉଴ sin ͳ ߙ െ ͳ଴ͳܧ െ cos ߙ  Ǥ   ͳ଴ܧ
Where ܧͳ଴ = exp(-TR.R10). TR = repetition time used in acquiring the T1-weighted flip angle images. Most 

ĐŽŵŵŽŶůǇ ƚŚƌĞĞ ǀĂůƵĞƐ ŽĨ ĨůŝƉ ĂŶŐůĞ ;ɲͿ ĂƌĞ ƵƐĞĚ ŐĞŶĞƌĂůůǇ ŝŶ ƚŚĞ ƌĂŶŐĞ ŽĨ Ϯ-ϯϱȗ͘ ϰD post-injection 

longitudinal relation rates R1(t) are then calculated: 

ܴͳሺݐሻ ൌ  െ ൬ ͳܴܶ ൰ Ǥ ݈݊ ͳ െ ሺܣ ൅ ሻͳܤ െ cos Ǥ ߙ ሺܣ ൅   ሻܤ



WŚĞƌĞ ɲ с ĨůŝƉ ĂŶŐůĞ͕ A с ΀“;ƚͿ ʹ S(0)]/(M0sin ɲͿ͕ B с ;ϭ - ܧͳ଴)/(1 ʹ ĐŽƐɲ ܧͳ଴). Gadolinium concentration 

maps can then be calculated using the equation: 

ሻݐሺܥ ൌ  ܴͳ ሺݐሻ െ ܴͳ଴Ըͳ  

Where Ըͳis the experimental relaxivity of Gadolinium (4.39 s-1 mM-1 at 37 ȗCͿ (10). Following contrast 

concentration mapping the concentration time-curves are fitted using the Gamma variate function: 

ሻݐሺܥ ൌ ݐሺܭ െ ሻܽ݁ܶܣ െ ሺݐ െ  ሻܾܶܣ

Where K is a constant scale factor, t is time after injection, AT is appearance time of the contrast agent 

in the voxel and a/b are arbitrary parameters. It is worthwhile noting that for gadolinium based contrast 

agents, unlike iodinated contrast agents, contrast concentration and signal intensity are not linearly related at 

higher concentrations. Constant K is related to tissue density, imaging sequence parameters, contrast agent 

and inspiration level. Hence, it is important that these are kept constant during the experiment (11). 

Following the indicator dilution theory (12), once the concentration time course of the AIF is known, 

CAIF(t), pulmonary blood flow (PBF) can be calculated: 

ሻݐ௏ைூሺܥ ൌ න ܨܤܲ ஺ூிሺ߬ሻǤܥ ܴሺݐ െ ߬ሻ݀߬௧
଴ ൌ ሻݐ௔ሺܥሾ ܨܤܲ  ٔ ܴሺݐሻሿ 

Where CVOI(t) is the contrast time course of the region of interest, R is the concentration of contrast 

remaining at time t and ٔ denotes the convolution integral (11,13). Pulmonary blood volume (PBF) and 

mean transit time (MTT) are defined as (13):  

ܸܤܲ ൌ ׬  ׬ஶ଴ݐሻ݀ݐ௏ைூሺܥ ஶ଴ݐሻ݀ݐ஺ூிሺܥ  

ܶܶܯ ൌ  ܨܤܸܲܤܲ

Noise filtering is required before these calculations can be reliably made (11) since the inherent image SNR 

is low. In order for perfusion quantification, it is assumed that there is a linear relationship between signal 

and concentration. This is not a true assumption and linearity is only seen in a small range of low 

concentrations of contrast. This is a particular problem for the AIF as the contrast passes in a compact 



bolus (i.e. high concentration) (14). A robust contrast administration protocol is therefore paramount. One 

method for overcoming this is to use a smaller dose of contrast such as 0.05ml/kg at a rate of 4ml/second 

as suggested above. This has the advantage of only requiring a single injection, but with a reduction in SNR 

in the perfusion image. Another method is to use 2 boluses: a low dose injection to calculate the AIF and a 

second larger dose to give better SNR in the lung perfusion image (15). When using this split bolus 

technique the AIF must be recalculated to match the bolus used in the lung imaging part of the sequence. 

As contrast kinetics are involved, the bolus used to calculate the corrected AIF is shifted by injection 

ĚƵƌĂƚŝŽŶ ʏ (16): 

ሻݐ஺ூிሺܥ ൌ  ෍ ݐ௣ ሺܥ ൅ ሻ௏߬ݍ ௏೛Τ
 

It is also important to ensure that there is sufficient time between the first and second bolus to allow for 

wash-out of contrast. 

NON-CONTRAST ENHANCED MRA AND PERFUSION IMAGING 
 

Long acquisition times and problems with artefacts, such as motion, have limited the use of non-

contrast enhanced MRA. Improving MR technologies, concerns about the use of gadolinium from the risk 

of nephrogenic systemic fibrosis (17) and the desire for non-invasive techniques for paediatrics have 

increased the motivation for non-contrast enhanced methodology for MR perfusion and angiography.  

Double inversion recovery fast spin echo (DIR FSE) imaging, also known as black blood imaging, 

provides images of the pulmonary vasculature where the flowing blood returns no signal. This is 

particularly useful in the assessment of slow flow or thrombo-embolic disease, which are shown as an area 

of high signal intensity surrounded by the low signal intensity of flowing blood. The vessel walls are also 

well visualised.  

ECG gated 3D partial-Fourier Fast Spin Echo (FSE) sequences utilise the difference between fast flow 

and slow flow on T2 signal. In systole, arterial flow is fast and causes a void of T2 signal, whereas in 



diastole, flow is reduced and returns high T2 signal. Venous systems have slow flow in systole and diastole. 

Hence, a subtraction image of the systolic from diastolic image gives high T2 signal in the arterial system 

(18). This method requires ECG gating to allow separation of the diastolic and systolic images, and brings 

with it the risk of mis-registration.  

Balanced steady-state free procession (bSSFP) produces images with the signal proportional to the 

T2/T1, through refocusing gradient echoes and alternating phases of RF pulses to create a coherent steady 

state. The TR must be kept very short as bSSFP is susceptible to field inhomogeneity (19). SSFP is 

particularly useful in imaging the blood, which has long T2 when compared to the surrounding tissues (3) 

and has short acquisition times allowing for short breath-holds (19). The high contrast between pulmonary 

blood pool and lumen make bSSFP an effective tool for assessment of thrombus when MRA and CTPA are 

inconclusive (20) and a fast 3D bSSFP acquisition provides a quick and contrast free means of generating a 

pulmonary angiogram (21). 

Arterial spin labelling (ASL) images are produced by radiofrequency excitation of the water protons 

in ďůŽŽĚ ƵƉƐƚƌĞĂŵ ŽĨ ƚŚĞ ŝŵĂŐŝŶŐ ĨŝĞůĚ ŽĨ ǀŝĞǁ ƚŚƌŽƵŐŚ ĂŶ ŝŶǀĞƌƐŝŽŶ ƉƵůƐĞ͘ TŚĞƐĞ ͞ƚĂŐŐĞĚ͟ ƉƌŽƚŽŶƐ ƚŚĞŶ 

flow into the field of view to be imaged (14,18,22). A control image is also taken and the images tend to be 

presented as a subtraction of the control image from the tagged image. ASL in the lungs is challenging as 

ECG gating requires a regular heartbeat (14), but can be improved with newer labelling techniques 

including continuous arterial spin labelling (CASL), pulsed arterial spin labelling (PASL) and a combination as 

pseudo-continuous arterial spin labelling (pCASL) (23). ASL using the spin echo entrapped perfusion image 

(SEEPAGE) allows for a single shot acquisition within 5 seconds. SEEPAGE completely supresses the 

backgrŽƵŶĚ ƚŝƐƐƵĞ͕ ƐŽ ŽŶůǇ ƚŚĞ ͞ƚĂŐŐĞĚ͟ protons flowing into the field of view return signal. This has the 

advantage of requiring no subtraction (so no mis-registration) and allows rapid acquisitions within short 

breath-holds (24). All of these spin-labelling techniques are by nature slice selective methodologies, and 

therefore limited in terms of lung volume coverage.  



Time of flight (TOF) MRA is commonly used in neurovascular and peripheral vascular imaging, but poor 

spatial resolution, sensitivity to motion (cardiac or respiratory), multiplanar flow directionality and 

insensitivity to slow flow and sensitivity to susceptibility artefacts limits the utility of TOF MRA in the lungs 

(25).  

Phase contrast MRA with velocity sensitizing gradients can be used to quantitatively map the blood 

flow in the major vessels in the lungs in 3-dimensions and can provide insight in to pulmonary vascular 

resistance and non-steady and turbulent flow in the pulmonary arteries (1,18). Typical velocity encoding 

settings of venc 150cm/s would be used to map flow in the pulmonary artery but this may need 

adjustment for slower flow in diseases such as pulmonary hypertension where flow velocity is slower and 

directionality is helical. Recent developments with 3D view shared phase contrast methods allow 3D time 

resolved imaging of blood flow in the pulmonary arteries (26). Recent developments with 3D view shared 

phase contrast methods allow for the acquisition of 4D flow  in the pulmonary arteries (26,27).  

Time resolved imaging of the lungs during free breathing with Fourier decomposition (FD) analysis 

can be used as a surrogate method to image lung perfusion without the need for contrast or ECG gating. 

Fourier decomposition has recently been applied to lung ventilation and perfusion imaging (28). During 

inspiration the lungs increase in volume, reducing parenchymal signal, increasing again in expiration. 

During systole, high blood velocity causes dephasing of the MR signal, reducing signal. The respiratory 

changes occur at a rate of 12-20 beats per minute and the cardiac changes at a rate of 60-80 beats per 

minutes on average. The difference in frequencies allows for separation using Fourier Decomposition (FD), 

to give ventilation weighted or perfusion weighted images (29) which have been used for perfusion 

quantification (30).  

CLINICAL APPLICATIONS OF PULMONARY MRA AND PERFUSION 

IMAGING 
 

An area that has had significant interest for MR angiography and perfusion is in the assessment of 

pulmonary emboli (PE)(25), particularly in young or pregnant patients who benefit from the avoidance of 



radiation exposure. Real time MR with SSFP (True FISP) produces T2 weighted images in which blood in the 

pulmonary arteries is bright and thrombus is dark. A major advantage of this method is that it is unaffected 

by patient movement. A study of 39 cases with suspected PE gave sensitivity of 83% and specificity of 100% 

for the diagnosis of acute PE (31). Further studies using contrast enhanced MRA have also shown 

sensitivity similar to that of SPECT and CTPA (32,33) . However, the PIOPED III study, conducted in seven 

centres, assessing 371 patients (104 with PE) using contrast enhanced MRA, was less optimistic. They 

found that 25% of patients had inadequate image quality, with the majority of these due to poor arterial 

opacification and motion artefacts. Sensitivity and specificity for acute PE were 78% and 99%, although this 

is increased when combined with venography (34). The lower spatial resolution of MRA over CTPA may 

account for this low sensitivity. The PIOPED researchers recommend that MRA for acute PE is only 

performed in certain centres who regularly perform it, and only in patients with contraindications to 

standard tests. The perfusion defects from obstruction of the pulmonary vascular bed have a characteristic 

wedge shape. DCE MRI has been shown to have a high agreement with SPECT (35). Quantitative 

assessment of perfusion can also predict the presence of acute PE and predict outcome, with PBF being the 

most accurate parameter (36). Interestingly, two sites (UW-Madison and U of Arizona) have been using 

contrast enhanced MRA for the primary diagnosis of pulmonary embolism in young women and in patients 

with iodinated contrast allergy with good results (32). The negative predictive value of MRA for the 

exclusion of pulmonary embolism is >97%. More recent data recently presented by the UW-Madison group 

has shown even better outcomes (NPV 99%) (37). There is a performance gap between the efficacy 

(sensitivity and specificity of MRA vs CTA for PE detection) of MRA from the PIOPED III study and the real 

world performance of this test (effectiveness). This may be related to the fact that sub segmental PE, 

which are not well seen on contrast enhanced MRA, are not clinically significant.   These results will need 

to be repeated at other sites, but suggest that there has been premature abandonment of this imaging test 

for the primary diagnosis of PE. The use of MRA can also be performed as a follow-up for known 

pulmonary embolism to mitigate the amount of medical radiation for these patients.   



Perfusion MRI may be particularly useful in the assessment of chronic PE. It has been shown that 

MR perfusion can be used to screen for perfusion defects in patients with chronic thrombo-embolic 

pulmonary hypertension (CTPEH) (38) and can differentiate the perfusion patterns of CTEPH and idiopathic 

pulmonary artery hypertension as they have focal defects or diffuse reduction in perfusion respectively 

(39). Further work has shown that contrast enhanced MRA and non-contrast enhanced MRA with SSFP can 

be used to diagnose CTEPH with a high sensitivity, with the SSFP imaging being particularly useful in 

identifying proximal disease, but is limited for sub segmental disease (20). PBF has been shown to improve 

in CTEPH patients who have had pulmonary endarterectomy (40). There is also an increase in MTT in 

patients with pulmonary arterial hypertension (PAH), which shows a modest correlation with mPAP (41,42) 

and in patients with combined emphysema and fibrosis MTT correlates with mean pulmonary artery 

pressure and pulmonary vascular resistance (43). In addition, in patients with PAH, pulmonary transit times 

have been shown to correlate with markers of disease severity, mean right atrial pressure and pulmonary 

vascular resistance (44) and are predictive of mortality at univariate analysis and have equivalent 

prognostic value to invasive measures taken at right heart catheterisation (45). Analysis of pulmonary 

arterial flow is also proving to be useful in pulmonary hypertension. Sanz et al showed that average 

pulmonary arterial velocity showed a strong correlation with mean pulmonary artery pressure (46) and 4D 

phase contrast MRI is also providing insights into the complex flow pattern that occur in pulmonary 

hypertension patients. Reiter et al. showed that patients with pulmonary hypertension have vortices in 

their pulmonary arterial blood flow, whereas healthy volunteers did not. Furthermore they showed a very 

strong correlation between the duration of vertical blood flow and mean pulmonary arterial pressure (47). 

In COPD the mean pulmonary blood flow (PBF), mean transit time (MTT) and pulmonary blood 

volume (PBV) are heterogeneous and decreased (13), likely due to regional hypoxic vasoconstriction. The 

perfusion defects seen in COPD can be differentiated from vascular obstruction as they are not wedge 

shaped (35). One study of 45 patients with COPD showed a high correlation in the distribution of MR 

perfusion defects and parenchymal destruction on CT (48). Patients with emphysema also show a loss of 

the normal physiological increase in PBV that is associated with expiration (49). DCE perfusion scores have 



been shown to correlate with markers of COPD severity: a reduction in PBF and PBV is associated with 

worsening CT emphysema score, airflow limitation and DLCO (50,51). Furthermore, exacerbations of COPD 

are associated with a prolonged MTT and TTP (52). 

In 11 children with cystic fibrosis (CF), it was shown that MRI perfusion defects correlated well with 

parenchymal abnormalities (53). In younger patients the changes are more prominent on perfusion MRI 

than morphological changes on CT, raising the possibility of an early biomarker for disease progression 

(54). Perfusion MRI may be used to monitor response to therapy (54) and differentiate reversible from 

irreversible regions of disease (55). This is particularly useful in CF, as the patients are young and repeated 

exposure to radiation from CT should be reduced. As these patients are young, a technique such as ASL or 

Fourier Decomposition, which require no cannulation or contrast injection would beneficial and have 

shown promising results in young patients. Although they does rely upon good patient compliance (due to 

requirement of breath holds), challenging in young children (56). 

The high spatial resolution of pulmonary MRA allows for the direct assessment of pulmonary 

vascular anatomy. This can be utilised to assess for pulmonary vascular abnormalities such as anomalous 

pulmonary venous return, pulmonary artery atresia and pulmonary artery arterio-venous malformations 

(AVMs) (1,57). Time resolved MRA, such as TRICKs, allows for assessment of right to left shunting (58), 

complementary to pulmonary to systemic (Qp:Qs) shunt assessment using pulmonary and aortic phase 

contrast imaging.  

To date there is very limited information published on the role of perfusion MRI in pulmonary 

fibrosis. Whilst not directly related to perfusion, DCE-MRI can differentiate inflammatory and fibrotic 

lesions: inflammatory predominant biopsies showed early enhancement and fibrotic predominant biopsy 

sites showed late enhancement in 26 cases of fibrotic lung disease (59). Furthermore, a comparison of 27 

systemic sclerosis and 10 healthy patients showed that there was a reduction in PBV corrected for lung 

volume (60). As there is a high incidence of PH in fibrotic lung disease, qualitative and quantitative 

measures of pulmonary perfusion would be an interesting area for future research. 



 

Conclusion 

Improvements in MRI technology have triggered increasing interest in pulmonary MR perfusion and 

angiography. Whilst multiple methods of image acquisition are available, the mainstay of current clinical 

use is contrast enhanced MRA and DCE MRI. Modest concerns regarding the widespread use of gadolinium 

based contrast agents and the requirement for IV access have increased interest in non-contrast enhanced 

techniques, although these methods are currently confined to research. Pulmonary MRA and MRI 

perfusion are routinely used in the clinical assessment of patients with pulmonary hypertension (PH). 

There is great potential for the role of MRI to be expanded in the diagnosis and serial assessment of 

patients with pulmonary embolism, cystic fibrosis, COPD and in the assessment of patients with pulmonary 

vascular abnormalities (such as arteriovenous malformations and anomalous venous drainage). Further 

methodological developments of MRI sequences coupled with clinical implementation of some of the 

techniques described, will help to further current understandings of pulmonary and pulmonary vascular 

disease.  
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Figure 1: A diagrammatic representation of the basic principles of MR angiography against perfusion MR  

 

 

 

 

 

MRA: 

 High spatial resolution 

 Lower temporal resolution 

 Structural information 

Perfusion MR: 

 Lower spatial resolution 

 High temporal resolution 

 Functional information 



Figure 2:  

 

 

Legend Figure 2: A maximum intensity projection image from a normal contrast enhanced MR angiogram 

in a healthy volunteer. There is extensive venous contamination on this image, highlighting the importance 

of adequately timing the contrast bolus.  

 

  



Figure 3. 

 

Legend figure 4: A normal MR angiogram showing contrast passage dynamics with 15 consecutive 

maximum intensity projection images with a temporal resolution of 1.0 sec/frame acquired using a spiral 

TRICKS technique. Image reprinted with permission from Wiley (8). © 2009 Wiley-Liss, Inc. 

  



Figure 4: 

 

Legend Figure 4: The time-course of dynamic contrast enhanced MRI showing a single coronal slice in a 

healthy volunteer. The top row of images shows the non-ƐƵďƚƌĂĐƚĞĚ ͞ƌĂǁ͟ ŝŵĂŐĞƐ͕ ƚŚĞ ƐĞĐŽŶĚ ƌŽǁ ƐŚŽǁƐ 

the subtracted images and the bottom row shows the pulmonary parenchymal signal change over time. 

Please note that the images were acquired with a temporal resolution of 0.5 seconds but are displayed 

with a temporal resolution of 1.5 seconds. 

 

  



Figure 5:  

 

  

Legend Figure 5: Parametric maps of perfusion with a display of the Pulmonary Blood Volume (PBV), 

Pulmonary Blood flow (PBF) and Mean transit time (MTT) derived from post processing of a post contrast 

MR perfusion examination using the arterial input function in a patient with COPD. Please note the 

perfusion heterogeneity on the parametric maps. 

 

 

  



Figure 6: 

 

 

Figure 6 SSFP MRA: Comparison of 2mm slice coronal reconstructed unenhanced CT (a) with a 1.9mm 

isotropic bSSFP MR image (b) and 50mm maximum intensity image projections of the CT (c) and bSSFP MRI 

(d). Reproduced with permission from Wiley (61). © 2009 Wiley-Liss, Inc. 

  



Figure 7:

 

 

Legend Figure 7: Coronal HASTE image in a patient with a left hilar non-small cell lung cancer (a). A coronal 

perfusion weighted SEEPAGE image from more dorsal position (b), shows a large associated perfusion 

defect in the left upper lobe. This may be useful in planning for surgery and radiotherapy. Image reprinted 

with permission from Wiley (24). © 2009 Wiley-Liss, Inc. 

  



 

Figure 8  

 

Legend Figure 8:  4D flow mapping vortices of blood flow in the pulmonary trunk showing mean voxel 

velocity and directionality of flow (Image courtesy of Dr Guilhem Collier, University of Sheffield). 

  



Figure 9:  

 

Legend figure 9: Image A shows a coronal TrueFISP image in a patient with right interlobar artery 

pulmonary embolus (arrow). The sagittal perfusion weighted Fourier Decomposition (c) image shows 

perfusion defects in the right upper and lower lobe, with no defect present on the corresponding 

ventilation/density image (b).These images  (b and c)  are   examples of a ventilation perfusion mismatch 

using the Fourier decomposition method.  Images reprinted with permission from Wiley (29). © 2009 

Wiley-Liss, Inc. 

  



Figure 10  

 A 

B 

Legend Figure 10: Twenty year old  female college student presenting with a positive D-dimer to the 

student health service.  3D Contrast enhanced MRA in the coronal projection (A) was performed showing a 

left lower lobe perfusion defect (arrows) and  the axial reformations show (B)  bilateral pulmonary emboli 

(arrows). The patient was sent home on subcutaneous heparin and was advised to stop her oral 

contraception.  

 


