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Abstract: High-performance dyes routinely employed in TiO2-based dye-sensitized solar
cells (DSSCs) were tested in cells assembled using Nb2O5 nanostructure-based photoanodes.
The sensitizers were chosen among both metal-complex (two Ru-based, N749 and C106, and one
Zn-based dye, DNF12) and metal-free organic dyes (DNF01, DNF11 and DNF15). Two different
sensitization processes were performed: the one commonly used for TiO2 photoanodes, and a new
process relying on high pressure by autoclavation. The assembled cells were characterized by current
density–voltage (J–V) curves under air mass (AM) 1.5 G illumination and in the dark, incident
photon-to-current efficiency (IPCE) measurements, and electrochemical impedance spectroscopy.
The tested cells show different proportional efficiencies of the dyes under investigation for Nb2O5-
and TiO2-based devices. Furthermore, the results were compared with those obtained in our previous
work using N719 anchored on Nb2O5. A remarkable efficiency value of 4.4% under 1 sun illumination
was achieved by coupling the C106 dye with a nonvolatile electrolyte. This value is higher than the
one attained under the same conditions by using N719.

Keywords: Nb2O5; metal-free organic/metal-complex dye; dye-sensitized solar cells; photovoltaic
property

1. Introduction

After almost thirty years since their first report, dye-sensitized solar cells (DSSCs) continue to
attract considerable scientific and technological interest for three main reasons:

• low cost of production;
• easy fabrication;
• wide range of applicable materials [1].

The main components determining the light-to-electric energy conversion efficiency of a DSSC
are the semiconductor (electron transport material, ETM), the sensitizing dye (light absorber) and the
electrolyte (redox mediator, RM). Therefore, at least as a first approximation, the spectral properties can
be improved by optimizing the dye’s optical characteristics, the charge injection by tailoring the dye
and semiconductor energy levels’ relative position, while charge transport and recombination can be
enhanced by acting on the ETM, the RM and on the semiconductor/dye/electrolyte interfaces. During
several years of study and investigation on DSSCs, different semiconductor metal oxides such as ZnO,
Nb2O5, SnO2, CeO2, WO3, In2O3, SrTiO3 and Zn2SnO4 have been considered as potential alternatives
to the principal and more efficient ETM, TiO2 (anatase) [2–5]. Among these semiconductors, Nb2O5

is an especially attractive alternative to TiO2 because of its wide band gap, exceeding 3 eV, and a
conduction band edge position (ECB) more negative than that of TiO2 [6,7]. Nevertheless, such a
feature is not necessarily beneficial for DSSCs. While it allows for higher open-circuit voltage, VOC,
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it is required to be used in conjunction with a more reducing dye in order to facilitate the electron
injection into the semiconductor conduction band [8,9].

Thus, a compromise must be found for the ECB position in order to attain an efficient electron
injection while maintaining a high photovoltage. Once the ETM and the RM are chosen, such
a balance could be achieved by a proper sensitizing dye. All the main crystalline phases of
Nb2O5 (pseudohexagonal, orthorhombic, tetragonal and monoclinic) possess large unit cells usually
bringing about small specific surface area (SSA) [10]. Nb2O5-reduced SSA limits the dye loading
on the photoanode, and consequently the IPCE, the short circuit current (JSC) and the device’s
energy-conversion efficiency. Therefore, different niobia morphologies aiming at increasing the number
of dye anchoring sites on the semiconductor surface have been previously investigated to develop
high-efficiency Nb2O5-based DSSCs [11–13]. Nonetheless, a full optimization of the photoanode
characteristics, in addition to the semiconductor properties, which include the morphology, the
crystallinity and the electronic structure, is necessary to find the best dye to use with it. Indeed, once
the ETM and the RM are fixed, the number of electrons that a photoanode can produce and route to
the external circuit depends on the following factors:

• width of the sensitizing dye HOMO–LUMO gap (EO-O);
• number of dye–semiconductor bonds;
• presence or absence of dye-molecule aggregates on the surface of the semiconductor;
• excited state oxidation potential of the dye (EOX*). The thermodynamic driving force for the

electron-injection process (∆Ginj) depends on this parameter;
• oxidation potential of dye in ground state (EOX). This parameter is closely linked to the driving

force of the dye regeneration (∆Greg);
• the ability of the dye to shield the surface of the semiconductor from the redox mediator in the

electrolyte solution [14].

Table 1 reports the electrochemical parameters EO-O, EOX and EOX*, with their respective literature
references, for each dye used in the present work. Furthermore, these values, together with ECB
(−0.56 V vs. Normal Hydrogen Electrode, NHE) [15] and the redox potential of the electrolyte (Eredox)
(I−/I3−, 0.35 V vs. NHE) [16], were used to calculate the driving force of the electron-injection process
(∆Ginj∗) and the driving force of the dye regeneration (∆Greg∗) (see Table 1). They represent a rough
estimate of the real values of ∆Ginj and ∆Greg, because the calculation does not take into account
the semiconductor/dye/electrolyte interactions. The goal of this work is to find a high-performance
dye for Nb2O5 photoanodes, by taking advantage of the sensitizers already successfully employed
in TiO2-based DSSCs. To the best of our knowledge, none of the previous researches in the literature
presents the optimization of the sensitizers for DSSCs relying on Nb2O5 photoanodes. The dyes were
chosen among both metal-complex dyes (two Ru-based dyes, N749 and C106, and one Zn-based dye,
DNF12) [17–19] and metal-free organic dyes (DNF01, DNF11 and DNF15) [20–22]. Sensitizers were
chosen in such a way to cover a broad range of light absorption (from 440 nm to 960 nm), obviously
taking into account the necessity of the redox potential of the electrolyte active species (I−/I3

−)
and the conduction band edge of the semiconductor to be, energetically, into the dye’s absorption
gap. Following these criteria, the assembled cells with wide-gap dyes (for example, DNF01) have
favorable ∆Greg∗ and ∆Ginj∗ values. Furthermore, Table 1 shows the performances exhibited by the
employed dyes in TiO2-based solar cells, and a diagram showing the energy alignment between the
ETM and each dye is reported in Figure 1. The chemical structures and the IUPAC names of these dyes
are reported in Figure 2 and in Table 2, respectively. They were chemisorbed on Nb2O5 mesoporous
structures obtained and characterized as already reported in the literature (sample E) [15]. Two different
sensitization processes were employed: the one commonly used for TiO2 photoanodes [23,24], and a
new process performed at high pressure by autoclavation [15]. The assembled cells were tested by J–V
curves under Air Mass (AM) 1.5 G illumination and dark, IPCE measurements and electrochemical
impedance spectroscopy (EIS).
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N749 1.61 0.62 −0.99 41.5 40.5 10.2 [17] 
C106 1.67 0.55 −1.12 54.0 33.8 10.6 [18] 

DNF12 1.98 0.89 −1.09 51.1 66.6 6.6 [19 
DNF01 2.80 1.21 −1.60 100 97.5 3.3 [20] 
DNF11 1.85 0.99 −0.86 28.9 76.2 7.6 [21] 
DNF15 1.74 0.74 −1.00 42.4 52.1 5.7 [22] 
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2,2′-bipyridine-N1,N1′]bis(thiocyanato-N)-, cis-Bis(isothiocyanato)(2,2′-bipyridyl-4,4′-
dicarboxylato)(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridyl)ruthenium(II) 
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3,3-dimethyl-1-octylindolin-2-ylidene)methyl)-3-(1-cyano-2-ethoxy-2-oxoethylidene)cyclobut-1-
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Figure 1. Schematic diagram of the relative positions of LUMO and HOMO levels of the employed dyes.

Table 1. Electrochemical parameters of the dyes, i.e., EO-O, EOX (HOMO) and EOX* (LUMO) are
reported (vs. NHE). Using these values and the redox potential value of I−/I3

− (0.35 V), ∆Ginj* and
∆Greg* were calculated. Furthermore, the best performances exhibited by the same dyes in TiO2-based
solar cells [η(TiO2) %] were reported, as well as the corresponding literature references.

Dye EO-O/V EOX/V EOX*/V ∆Ginj*/kJ mol−1 ∆Greg*/kJ mol−1 η(TiO2) % Ref.

N749 1.61 0.62 −0.99 41.5 40.5 10.2 [17]
C106 1.67 0.55 −1.12 54.0 33.8 10.6 [18]

DNF12 1.98 0.89 −1.09 51.1 66.6 6.6 [19]
DNF01 2.80 1.21 −1.60 100 97.5 3.3 [20]
DNF11 1.85 0.99 −0.86 28.9 76.2 7.6 [21]
DNF15 1.74 0.74 −1.00 42.4 52.1 5.7 [22]

Table 2. IUPAC names of the dyes.

Dye IUPAC Name

N749 Tris(N,N,N-tributyl-1-butanaminium)[[2,2”6′,2”-terpyridine]-4,4′,4”-tricarboxylato(3-)-
N1,N1′,N1”]tris(thiocyanato-N)hydrogen ruthenate(4-)

C106
Ruthenate(2-), [[2,2′-bipyridine]-4,4′-dicarboxylato(2-)-N1,N1

′][4,4′-bis[5-(hexylthio)-2-thienyl]-
2,2′-bipyridine-N1,N1

′]bis(thiocyanato-N)-, cis-Bis(isothiocyanato)(2,2′-bipyridyl-4,4′-
dicarboxylato)(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridyl)ruthenium(II)

DNF12 Zinc(II)
5,15-Bis(3,5-di-tert-butylphenyl)-10-(bis(4-hexylphenyl)amino)-20-(4-carboxyphenylethynyl)porphyrin

DNF01 4-(diphenylamino)phenylcyanoacrylic acid

DNF11 (E)-3-(5-(4-(4-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)-
3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrol-1-yl)phenyl)furan-2-yl)-2-cyanoacrylic acid

DNF15
(3Z,4Z)-4-((5-carboxy-3,3-dimethyl-1-octyl-3H-indol-1-ium-2-yl)methylene)-2-(((E)-5-carboxy-
3,3-dimethyl-1-octylindolin-2-ylidene)methyl)-3-(1-cyano-2-ethoxy-2-oxoethylidene)cyclobut-1-
en-1-olate
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2. Results and Discussion

2.1. FESEM

Figure 3 shows the morphology of nanostructured material used to prepare the photoanodes.
Nb2O5 forms monodisperse mesoporous spheroidal particles according to the mechanism proposed
by Chen et al. [25].
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2.2. J–V Curves under 1 Sun AM 1.5 G Illumination and in the Dark

The DSSC parameters extracted from J–V curves under illumination and in the dark are reported
in Table 3, while the respective experimental curves are shown in Figures 4 and 5 (the abbreviation hp
refers to sensitization of Nb2O5 by the autoclavation process, the high-pressure sensitization). For the
C106 dye, only the results obtained with the conventional sensitization process are reported, because
the autoclavation process provoked the electrolyte contamination, probably due to dye molecules’
aggregation on the semiconductor surface. The beneficial effect of the autoclaving process is clear
(see Table 3, Figures 4 and 5) for all dyes except DNF11. The latter, similarly to C106, manifests a
dye “overloading” behavior, causing electrolyte contamination, thereby decreasing the overall cell’s
efficiency. The best improvement, as a result of the sensitization process by autoclavation, was observed
for the DNF12 dye (increase of 362% in efficiency). On the other hand, the smallest improvement
was detected for the dye DNF15 (efficiency increase 16%). Both these results are consistent with the
∆Ginj∗ values reported in Table 1, but mostly, with the dye coverage variation factor (see Table 6 and
Section 2.4). The DNF01 dye, despite having the highest ∆Ginj∗ and ∆Greg∗, displays a lower efficiency
enhancement than that of DNF12 (178% efficiency increase). Probably, its high HOMO–LUMO gap
(see Table 1 and normalized IPCE curves in Figure 9) and the relatively small molecular structure
(see Figure 2) that limits its ability to shield the Nb2O5 surface from the electrolyte undermine the
photoanode performance. Conversely, the DNF11 dye possesses a low ∆Ginj∗ but a bulky structure,
which should ensure a good shielding of the semiconductor carriers from the electrolyte redox shuttle,
and a favorable ∆Greg∗. Moreover, the VOC and FF value proved not to be affected by the autoclavation
process, suggesting that the device’s operating mechanism and ECB are not altered by the high-pressure
sensitization. Among the metal-based dyes, C106 is the one that has the highest driving force for
the electron-injection process (see Table 1). This feature could explain the very good performance of
the devices assembled using this dye. The values of series resistances (Rs) are estimated through the
relationship:

Rs = −
(

dI
dV

∣∣∣∣
VOC

)−1

, (1)

where I and V are the current and voltage in the DSSC device under illumination, respectively (see
Table 3). The series resistance arises from the opposition of the cell materials (including the contacts)
to current flow and, the light absorber being the only component changing in our devices, we can
assume that the main differences in the Rs value are due to the dye employed. Indeed, the total series
resistance of the cell is

Rs = RFTO + RPt + RNb2O5 + RD + RC + Rdye (2)

where RFTO is the sheet resistance of the FTO glass collector, RPt the charge-transfer resistance at
the platinized counter-electrode in the electrolyte-regeneration process, RNb2O5 the electron-transport
resistance in the semiconductor matrix, RD diffusion resistance in the electrolyte, RC contact resistance,
and Rdye the charge-transfer resistance at photoanode (inversely proportional, at least as a first
approximation, to dye amount, and depending on the dye employed). In this case, RFTO, RPt, RNb2O5 ,
RC and RD can be considered identical for all devices, thus for each dye we can calculate a resistance
difference in percent (∆Rs(%)) (see Table 4) between the normal sensitization series resistance (Rns)
and the high-pressure sensitization series resistance (Rhp), as follows:

∆Rs(%) =
Rhp

s − Rns
s

Rns
s

× 100 =
Rhp

dye − Rns
dye

Rns
dye

× 100. (3)
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Table 3. DSSC cell parameters obtained from J–V curves under illumination and in the dark. The
devices obtained by the high-pressure sensitization process are denoted with hp.

Dye VOC/V JS/mA
cm−2 η/% FF Rs/Ω J0/nA

cm−2 m

N749 0.5911 ± 0.0001 0.9 ± 0.1 0.36 ± 0.03 0.7 ± 0.1 660 ± 100 8 ± 1 2.06 ±0.01
N749 hp 0.6008 ± 0.0001 1.8 ± 0.2 0.7 ± 0.1 0.7 ± 0.1 370 ± 100 1 ± 0.2 1.85 ± 0.01

C106 0.6844 ± 0.0001 9.4 ± 0.7 4.4 ± 0.3 0.7 ± 0.1 110 ± 40 11 ± 2 2.15 ± 0.01
DNF12 0.5792 ± 0.0001 0.8 ± 0.1 0.26 ± 0.02 0.6 ± 0.1 730 ± 110 14 ± 1 2.16 ± 0.01

DNF12 hp 0.5796 ± 0.0001 3.1 ± 0.2 1.2 ± 0.1 0.7 ± 0.1 240 ± 60 7 ± 1 1.97 ± 0.01
DNF01 0.5717 ± 0.0001 0.5 ± 0.1 0.18 ± 0.02 0.6 ± 0.1 1160 ± 100 41 ± 12 2.48 ± 0.01

DNF01 hp 0.6106 ± 0.0001 1.6 ± 0.1 0.50 ± 0.04 0.5 ± 0.1 940 ± 120 20 ± 2 2.388 ± 0.003
DNF11 0.6444 ± 0.0001 4.1 ± 0.4 1.9 ± 0.2 0.7 ± 0.1 190 ± 50 30 ± 6 2.36 ± 0.01

DNF11 hp 0.6444 ± 0.0001 2.3 ± 0.2 1.1 ± 0.1 0.8 ± 0.1 370 ± 100 1.7 ± 0.2 1.88 ± 0.01
DNF15 0.5250 ± 0.0001 0.9 ± 0.1 0.31 ± 0.02 0.6 ± 0.1 630 ± 110 17 ± 3 2.00 ± 0.01

DNF15 hp 0.5289 ± 0.0001 1.1 ± 0.1 0.36 ± 0.06 0.6 ± 0.1 520 ± 130 3.1 ± 0.3 1.77 ± 0.01
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Table 4. Percent resistance difference (∆Rs(%)) between the normal sensitization series resistance and
the high-pressure sensitization series resistance values.

Dye ∆Rs(%)

N749 −44 ± 22
DNF12 −67 ± 20
DNF01 −19 ± 14
DNF11 95 ± 45
DNF15 −17 ± 11

The negative values indicate a decrease of the charge-transfer resistance at photoanode because of
an increased amount of dye anchored on Nb2O5 (see Table 4). Indeed, the only positive value of ∆Rs(%)

is found for DNF11, the only dye found to show a dye coverage decrease following autoclavation
process (see Table 6). The reported Rs values show the same trend of device efficiency (see Table 3).
Furthermore, the Rs values are consistent with the semicircle radius in Nyquist plots (see Figure 7).
J–V curves in the dark under forward bias (Figure 5) were acquired for all cells to obtain the values of
J0 (which gives an estimation of the recombination processes’ kinetics) and the ideality factor m, which
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accounts for the semiconductor/dye/electrolyte interface’s deviation from the ideal diode model. J0

and m calculations were carried out through the following equations:

Jdark = J0

(
e

qV
mkBT − 1

)
, (4)

which, in the high-voltage region, can be simplified to:

Jdark ≈ J0

(
e

qV
mkBT

)
. (5)

To extrapolate the values of J0 and m, the Equation (8) is rearranged in the logarithmic form:

ln Jdark ≈ ln J0 +
qV

mkBT
. (6)

The high values of J0 and m for the DNF01 dye explain the poor performance of the DSSCs
assembled with this dye. Furthermore, we can note that, despite the good values of J0 and m for the
N749 dye, the efficiencies of DSSCs assembled using such a dye are quite low, probably because of
the low ∆Ginj∗ and ∆Greg∗(see Table 1). Finally, it is important to highlight the different proportional
efficiency of the dyes under investigation for Nb2O5 and TiO2 in DSSCs, as shown in the pie charts
in Figure 6. Indeed, using Nb2O5, the proportional DSSC efficiency of C106 doubled, while those
of N749 and DNF15 decreased considerably compared to TiO2. This behavior, excluding DNF11 for
its favorable value of ∆Greg∗ (see Table 1) and its good semiconductor shielding, could be explained
considering that DNF15 and N749 are the dyes with the lowest value of ∆Ginj∗ (see Table 1). The
same dyes absorbed on TiO2, on the basis of the reduction potential of the conduction band of the
semiconductor (−0.49 V vs. NHE) [15], would undergo an increase of ∆Ginj∗ values of about 30%,
that is, 58.9 and 57.9 kJ mol−1 for DNF15 and N749, respectively, with respect to Nb2O5. The same
explanation (considering ∆Ginj∗) justifies the increased proportional efficiency of C106 in DSSCs.
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2.3. Electrochemical Impedance Spectroscopy (EIS)

The effects of the different dyes, chemisorbed on Nb2O5, on the electron transport and
recombination kinetics in the photoanode were studied by electrochemical impedance spectroscopy.
The Nyquist plots are reported in Figure 7. In general, the increase of the semicircle radius means a
growth of the internal resistances of the device [26]. For the C106, DNF01 hp, DNF11 and DNF12 hp
dyes, it was found that the charge-transfer resistance values at the Nb2O5/dye/electrolyte interface
are comparable with those of anatase-based devices. On the other hand, for the N749 hp and DNF15
hp, an increase of charge-transfer resistance is quite evident. The cell’s Bode phase plots (1–104 Hz) are
shown in Figure 8. The values of the electrical parameters obtained by the fit of EIS spectra using the
transmission line model are reported in Table 5. The high value of the transport resistance (Rtr) for
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the Nb2O5/C106 photoanode can be explained by the fact that the semiconductor is evenly coated
by the dye, the semiconductor being identical for all the cells and, consequently, its contribution
to Rtr. Similarly, we may reasonably justify the low value of electron diffusion length (Le) and
therefore assign the recombination phenomena to the dye–electrolyte interface rather than to the
semiconductor–electrolyte interface. This assumption is backed up by low ∆Greg∗ for C106 (see
Table 1). The high value of Le for DNF01, 70 µm, is in line with the relatively small dimensions of the
dye molecule that facilitate the electron diffusion from dye to semiconductor. Furthermore, considering
the cells assembled with the dyes DNF12 and DNF01, it is interesting note how the recombination
resistance (Rrec) decreases with the autoclavation process. For DNF01, the decrease of Rrec is probably
due to dye aggregation on Nb2O5 (see Table 6). Indeed, the intermolecular energy transfer may
decrease the electron injection [20]. This hypothesis makes the high ∆Ginj∗ value less relevant for
DNF01 (see Table 1). Likewise, for DNF12, the decrease of Rrec may be explained by the intermolecular
interactions of the dye (see Section 2.4). Finally, for DNF15, the clear Rrec enhancement agrees with the
negative trend of the chemical capacitance (Cµ) switching from normal sensitization to high-pressure
sensitization (see Table 5). Indeed, the semiconductor–dye interactions could shift downwards the
Fermi level of electrons (EFn) in the semiconductor, thus increasing the recombination barrier from
semiconductor to dye [27]. Cµ and EFn are related by

Cµ = L(1− p)q g(EFn) = L(1− p)q
αqNL
kBT

exp[α(EFn − ECB)/kBT], (7)

where L is the Nb2O5 film thickness, p its porosity, g(EFn) the density of bandgap states, NL the total
density of bandgap states and α the parameter that describes the exponential trap distribution of
electrons below the conduction band. Therefore, L, p, NL, α and EC in DNF15 and DNF15 hp being the
same (considering that VOC did not change (see Table 3), it is reasonable to assume a constant value of
EC), EFn decreases with Cµ. On the other hand, the positive trend of Cµ for N749 may be related to
significant IPCE spectral shift as a result of semiconductor–dye interactions (see Section 2.4).

Table 5. Transport resistance, recombination resistance, chemical capacitance, electron diffusion
length and charge collection efficiency values obtained by the fit of EIS spectra using the transmission
line model.

Dye Rtr /Ω Rrec/kΩ Cµ/F Le/µm Charge Collection Efficiency

N749 270 ± 30 4.6 ± 0.4 (1 ± 1) × 10−7 40 ± 10 0.9 ± 0.1
N749 hp 210 ± 10 6.3 ± 0.6 (9 ± 1) × 10−6 55 ± 10 1.0 ± 0.1

C106 440 ± 50 1.3 ± 0.1 (4.5 ± 0.4) × 10−5 17 ±1 0.8 ± 0.1
DNF12 200 ± 20 4.8 ± 0.5 (1.0 ± 0.1) × 10−5 50 ± 20 1.0 ± 0.1

DNF12 hp 190 ± 20 2.9 ± 0.3 (1.1 ± 0.1) × 10−5 40 ± 10 0.9 ± 0.1
DNF01 130 ± 20 6.0 ± 0.6 (1.3 ± 0.1) × 10−5 70 ± 10 1.0 ± 0.1

DNF01 hp 110 ± 10 2.0 ± 0.2 (1.2 ± 0.1) × 10−5 40 ± 20 1.0 ± 0.1
DNF11 180 ± 20 2.5 ± 0.3 (1.9 ± 0.2) × 10−5 40 ± 10 0.9 ± 0.1

DNF11 hp 310 ± 30 5.0 ± 0.5 (1.5 ± 0.2) × 10−5 40 ± 10 0.9 ± 0.1
DNF15 140 ± 20 5.2 ± 0.5 (1.4 ± 0.1) × 10−5 60 ± 10 1.0 ± 0.1

DNF15 hp 230 ± 30 17 ± 2 (5 ± 1) × 10−6 90 ± 30 1.0 ± 0.1

Table 6. Dye-coverage variation calculated according to Equation (8).

Dye Dye-Coverage Variation (%)

N749 107
DNF12 621
DNF01 115
DNF11 −77
DNF15 60
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2.4. Incident Photon-to-Current Efficiency (IPCE)

In Figure 9, the normalized quantum efficiency curves for each dye are reported. These results
show how the photoanodes sensitized with C106, DNF11 and N749 possess the widest absorption
spectra. The IPCE spectra were used to evaluate the dye-coverage variation (%) after the autoclavation
process by calculating of IPCE area ratio as follows:

Dye coverage varation (%) =

∫ 800 nm
400 nm (IPCE(hp)− IPCE) dλ∫ 800 nm

400 nm IPCE dλ
× 100. (8)
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This evaluation is reliable because the only variable among the tested DSSCs is the amount
of adsorbed dye. Furthermore, it is reasonable to exclude morphology variation because of
the autoclavation process, considering the low process temperature and the insolubility of the
semiconductor in the solvent used [15]. The calculated values (see Table 6) indicate a six-fold increase
of dye coverage for DNF12, an about one fold increase for DNF01, DNF15 and N749, and a decrease for
DNF11. The latter is in agreement with the observed electrolyte contamination in the DNF11 hp DSSC,
and the result achieved for DNF12 is in agreement with its ∆Rs(%) value (see Table 4). Nevertheless,
the value of dye-coverage variation (%) for DNF12 appears overestimated because of the presence
of a new absorption at 700 nm after the autoclavation process (see Figure 10b). The reason for the
appearance of this additional absorption peak is not known. Furthermore, in the DNF12 spectrum, all
the absorption peaks exhibit a redshift after the autoclavation process (Figure 10b). A similar behavior
is displayed by N749, while DNF15 exhibits a blueshift (see Figure 10a). These results are indicative of
∆Ginj e ∆Greg variations due to the autoclavation process.



Energies 2018, 11, 975 12 of 15
Energies 2018, 11, x FOR PEER REVIEW  12 of 15 

 

 

 

Figure 10. IPCE curves used to calculate the dye-coverage variation (%): (a) IPCE curves of DNF15, 
N749 and DNF11 devices; (b) IPCE curves of DNF01 and DNF12 devices. 

3. Materials and Methods 

In this section, only the materials used for the sensitizing-solution preparation are reported. The 
materials used for the synthesis of Nb2O5 mesostructure powder, the screen-printing paste 
preparation, electrolyte composition and device fabrication are reported in detail in our previous 
work [15]. 

Solvents: acetonitrile (Sigma Aldrich, Milan, Italy, ≥99.9%) and tert-butyl alcohol (Sigma Aldrich, 
≥99.5%). 

Metal-based dyes: N749 (black dye, Sigma Aldrich, ≥85%), C106 (Sigma Aldrich, ≥85%) and DNF12 
(Dyenamo, Stockholm, Sweden). 

Metal-free organic dyes: DNF01 (Dyenamo), DNF11 (Dyenamo) and DNF15 (Dyenamo). 
Additive: chenodeoxycholic acid (Sigma Aldrich, ≥97%). 

3.1. Preparation of Nb2O5 Nanoparticles 

In brief, 1.99 g of 1-hexadecylamine (HDA) was added to 200 mL of 2-propanol under magnetic 
stirring. After HDA dissolution, 0.8 mL of 0.1 M aqueous KCl were added to solution. Finally, 3.8 mL 
of Nb(OC2H5)5 were added and a white precipitate formed. The precipitate was left undisturbed for 
24 h and then filtered. After filtration, the solid was autoclaved at 160 °C for 16 h in a solution of 
water–ethanol–33% aqueous ammonia (0.5:1:0.04). The obtained solid was calcined at 500 °C in air 
for 2 h. 

3.2. DSSC Preparation and Assembly 

Nb2O5 photoanodes were prepared by screen printing as reported in our previous works [28–
30]. The photoanode thickness used was of 10 ± 1 µm. To improve the interconnectivity of the 
particles and the dye-adsorption properties of the photoanodes, these were impregnated with a 0.2 
M solution of Nb(OC2H5)5 [7]. For each Nb2O5 photoanode, two different sensitizing processes were 
employed: the commonly used one for anatase photoanode [28–30], and a high-pressure process [15]. 
In the latter, the photoanodes were autoclaved at 90 °C for 12 h in 100 mL of sensitizing dye solution. 
The dye solutions’ compositions were chosen according to the best ones reported in the literature for 
TiO2 [17–22]: 

 N749: mixture of acetonitrile and tert-butyl alcohol (volume ratio: 1/1), 500 µM dye concentration 
and 20 mM chenodeoxycholic acid concentration; 

Figure 10. IPCE curves used to calculate the dye-coverage variation (%): (a) IPCE curves of DNF15,
N749 and DNF11 devices; (b) IPCE curves of DNF01 and DNF12 devices.

3. Materials and Methods

In this section, only the materials used for the sensitizing-solution preparation are reported. The
materials used for the synthesis of Nb2O5 mesostructure powder, the screen-printing paste preparation,
electrolyte composition and device fabrication are reported in detail in our previous work [15].

Solvents: acetonitrile (Sigma Aldrich, Milan, Italy, ≥99.9%) and tert-butyl alcohol (Sigma Aldrich,
≥99.5%).

Metal-based dyes: N749 (black dye, Sigma Aldrich, ≥85%), C106 (Sigma Aldrich, ≥85%) and
DNF12 (Dyenamo, Stockholm, Sweden).

Metal-free organic dyes: DNF01 (Dyenamo), DNF11 (Dyenamo) and DNF15 (Dyenamo).
Additive: chenodeoxycholic acid (Sigma Aldrich, ≥97%).

3.1. Preparation of Nb2O5 Nanoparticles

In brief, 1.99 g of 1-hexadecylamine (HDA) was added to 200 mL of 2-propanol under magnetic
stirring. After HDA dissolution, 0.8 mL of 0.1 M aqueous KCl were added to solution. Finally, 3.8
mL of Nb(OC2H5)5 were added and a white precipitate formed. The precipitate was left undisturbed
for 24 h and then filtered. After filtration, the solid was autoclaved at 160 ◦C for 16 h in a solution of
water–ethanol–33% aqueous ammonia (0.5:1:0.04). The obtained solid was calcined at 500 ◦C in air for
2 h.

3.2. DSSC Preparation and Assembly

Nb2O5 photoanodes were prepared by screen printing as reported in our previous works [28–30].
The photoanode thickness used was of 10± 1 µm. To improve the interconnectivity of the particles and
the dye-adsorption properties of the photoanodes, these were impregnated with a 0.2 M solution of
Nb(OC2H5)5 [7]. For each Nb2O5 photoanode, two different sensitizing processes were employed: the
commonly used one for anatase photoanode [28–30], and a high-pressure process [15]. In the latter, the
photoanodes were autoclaved at 90 ◦C for 12 h in 100 mL of sensitizing dye solution. The dye solutions’
compositions were chosen according to the best ones reported in the literature for TiO2 [17–22]:

• N749: mixture of acetonitrile and tert-butyl alcohol (volume ratio: 1/1), 500 µM dye concentration
and 20 mM chenodeoxycholic acid concentration;

• C106: mixture of acetonitrile and tert-butyl alcohol (volume ratio: 1/1), 300 µM dye concentration
and 2 mM of chenodeoxycholic acid concentration;
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• DNF01: acetonitrile solution, 500 µM dye concentration and 40 mM chenodeoxycholic
acid concentration;

• DNF11: mixture of acetonitrile and tert-butyl alcohol (volume ratio: 1/1), 125 µM
dye concentration;

• DNF12: ethanol solution, 200 µM dye concentration and 400 mM chenodeoxycholic
acid concentration;

• DNF15: mixture of acetonitrile and tert-butyl alcohol (volume ratio: 1/1), 200 µM
dye concentration.

After the sensitization process, thesensitized Nb2O5 photoanodes were washed with ethanol and
acetonitrile to remove the excess dye. Once dried, DSSCs were assembled using a platinized FTO
glass slide as counter-electrode. Through a 1 mm diameter hole present on the counter-electrode,
the space between the two electrodes was filled with a nonvolatile electrolyte containing 0.6 M
1-ethyl-3-methylimidazolium iodide (EMII), 0.5 M 4-tert-butylpyridine (TBP), 0.1 M GuSCN, 0.1 M
LiI and 0.03 M I2 in benzonitrile [31]. A minimum of 3 cells were prepared for each dye and each
sensitization process to ensure reproducibility.

3.3. FESEM

Field-emission scanning electron microscopy analysis of the morphology of the semiconductor
was performed using a Zeiss (Oberkochen, Germany) Auriga FESEM. The SEM is equipped with a
Schottky field-emission Gemini column. Operating range 100 V–30 kV. Resolution: 1.0 nm at 15 kV.

3.4. DSSC Test

The assembled devices were tested in the same way of our previous work [15]. J–V curves, under
simulated AM 1.5 G solar radiation and in the dark, were acquired by a Solartron Analytical (Leicester,
UK) 1286 electrochemical interface (EI). The solar radiation was generated by an Asahi Spectra (Tokyo,
Japan) HAL-320 class A solar simulator. Electrochemical impedance spectra (EIS) under illumination
at a bias value around the maximum power-point voltage were acquired by using EI coupled with
a Solartron Analytical 1260 frequency response analyzer (FRA). The data acquisition for the EI and
FRA measurements was performed using the Full Combo ZPLOT/CorrWare software (version 3.3b,
Scribner Associates Inc., Southern Pines, NC, USA). The fit of the impedance spectra was carried out
with the ZView software (version 3.3b, Scribner Associates Inc., Southern Pines, NC, USA) using the
transmission line model [32]. The incident photon-to-current conversion efficiency, IPCE, curves were
recorded in DC mode using a custom-made apparatus controlled by custom-made LabVIEW-based
software (version 2010, National Instruments, Austin, TX, USA).

4. Conclusions

In this work, different dyes, already successfully employed in TiO2-based DSSCs, were used in
Nb2O5 photoanodes to assemble DSSC devices with a nonvolatile benzonitrile-based electrolyte. We
found that the best-performing sensitizer among those tested is the C106 dye. The efficiency achieved
with this dye is 4.4%, under 1 sun, an improvement of 29% compared to the same semiconductor
sensitized with the N719 (η = 3.4%), as reported in our previous work [15]. Furthermore, in the case of
C106, it is not necessary to use the autoclavation process for the sensitization of the semiconductor.
The high performance of the C106 is probably due to the higher driving force for the electron-injection
process compared to that of N719.
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