80 research outputs found

    One-Way Reversible and Quantum Finite Automata with Advice

    Full text link
    We examine the characteristic features of reversible and quantum computations in the presence of supplementary external information, known as advice. In particular, we present a simple, algebraic characterization of languages recognized by one-way reversible finite automata augmented with deterministic advice. With a further elaborate argument, we prove a similar but slightly weaker result for bounded-error one-way quantum finite automata with advice. Immediate applications of those properties lead to containments and separations among various language families when they are assisted by appropriately chosen advice. We further demonstrate the power and limitation of randomized advice and quantum advice when they are given to one-way quantum finite automata.Comment: A4, 10pt, 1 figure, 31 pages. This is a complete version of an extended abstract appeared in the Proceedings of the 6th International Conference on Language and Automata Theory and Applications (LATA 2012), March 5-9, 2012, A Coruna, Spain, Lecture Notes in Computer Science, Springer-Verlag, Vol.7183, pp.526-537, 201

    Unbounded-error quantum computation with small space bounds

    Full text link
    We prove the following facts about the language recognition power of quantum Turing machines (QTMs) in the unbounded error setting: QTMs are strictly more powerful than probabilistic Turing machines for any common space bound s s satisfying s(n)=o(loglogn) s(n)=o(\log \log n) . For "one-way" Turing machines, where the input tape head is not allowed to move left, the above result holds for s(n)=o(logn)s(n)=o(\log n) . We also give a characterization for the class of languages recognized with unbounded error by real-time quantum finite automata (QFAs) with restricted measurements. It turns out that these automata are equal in power to their probabilistic counterparts, and this fact does not change when the QFA model is augmented to allow general measurements and mixed states. Unlike the case with classical finite automata, when the QFA tape head is allowed to remain stationary in some steps, more languages become recognizable. We define and use a QTM model that generalizes the other variants introduced earlier in the study of quantum space complexity.Comment: A preliminary version of this paper appeared in the Proceedings of the Fourth International Computer Science Symposium in Russia, pages 356--367, 200

    Two-tape finite automata with quantum and classical states

    Full text link
    {\it Two-way finite automata with quantum and classical states} (2QCFA) were introduced by Ambainis and Watrous, and {\it two-way two-tape deterministic finite automata} (2TFA) were introduced by Rabin and Scott. In this paper we study 2TFA and propose a new computing model called {\it two-way two-tape finite automata with quantum and classical states} (2TQCFA). First, we give efficient 2TFA algorithms for recognizing languages which can be recognized by 2QCFA. Second, we give efficient 2TQCFA algorithms to recognize several languages whose status vis-a-vis 2QCFA have been posed as open questions, such as Lsquare={anbn2nN}L_{square}=\{a^{n}b^{n^{2}}\mid n\in \mathbf{N}\}. Third, we show that {anbnknN}\{a^{n}b^{n^{k}}\mid n\in \mathbf{N}\} can be recognized by {\it (k+1)(k+1)-tape deterministic finite automata} ((k+1)(k+1)TFA). Finally, we introduce {\it kk-tape automata with quantum and classical states} (kkTQCFA) and prove that {anbnknN}\{a^{n}b^{n^{k}}\mid n\in \mathbf{N}\} can be recognized by kkTQCFA.Comment: 25 page

    Egy tankönyvi szövegrészlet mondatszerkesztési sajátossága

    Get PDF
    corecore