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Abstract
Exploring the power of linear programming for combinatorial optimization problems has been
recently receiving renewed attention after a series of breakthrough impossibility results. From an
algorithmic perspective, the related questions concern whether there are compact formulations
even for problems that are known to admit polynomial-time algorithms.

We propose a framework for proving lower bounds on the size of extended formulations. We
do so by introducing a specific type of extended relaxations that we call product relaxations and
is motivated by the study of the Sherali-Adams (SA) hierarchy. Then we show that for every
approximate extended formulation of a polytope P, there is a product relaxation that has the
same size and is at least as strong. We provide a methodology for proving lower bounds on the size
of approximate product relaxations by lower bounding the chromatic number of an underlying
hypergraph, whose vertices correspond to gap-inducing vectors.

We extend the definition of product relaxations and our methodology to mixed integer sets.
However in this case we are able to show that mixed product relaxations are at least as powerful
as a special family of extended formulations. As an application of our method we show an
exponential lower bound on the size of approximate mixed product relaxations for the metric
capacitated facility location problem (Cfl), a problem which seems to be intractable for linear
programming as far as constant-gap compact formulations are concerned. Our lower bound
implies an unbounded integrality gap for Cfl at Θ(N) levels of the universal SA hierarchy which
is independent of the starting relaxation; we only require that the starting relaxation has size
2o(N), where N is the number of facilities in the instance. This proof yields the first such tradeoff
for an SA procedure that is independent of the initial relaxation.
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1 Introduction

In the past few years there has been an increasing interest in exposing the limitations of
compact LP formulations for combinatorial optimization problems. The goal is to show a
lower bound on the size of extended formulations (EFs) for a particular problem. Extended
formulations add extra variables to the natural problem space; the increase in dimension
may yield a smaller number of facets. The minimum size over all extended formulations is
the extension complexity of the corresponding polytope. A superpolynomial lower bound
on the extension complexity is of intrinsic interest in polyhedral combinatorics and implies
that there is no polynomial-time algorithm relying purely on the solution of a compact linear
program. It does not however rule out efficient LP-based algorithms that combine algorithmic
steps of arbitrary type, such as preprocessing, primal-dual, etc., with linear programming.

In the seminal paper of Yannakakis [21] the problem of lower bounding the size of extended
formulations was considered for the first time: exponential lower bounds were proved for
symmetric extended formulations of the matching and TSP polytopes. Yannakakis [21]
identified also a crucial combinatorial parameter, the nonnegative rank of the slack matrix of
the underlying polytope P, and he showed that it equals the extension complexity of P. A
strong connection of the extension complexity of a polytope to communication complexity
was made in [21], by showing that the nonnegative rank of the slack matrix is at least the
size of its minimum rectangle cover. That connection has been exploited in several results on
the extension complexity of polytopes.

Fiorini et al. [13] lifted the symmetry condition on the result of [21] regarding the
TSP polytope, thus answering a long-standing open problem. The result was obtained by
showing that the correlation polytope has exponential extension complexity which in turn
was shown using communication complexity tools. Recently, Rothvoß [19] removed the
symmetry condition for the matching polytope as well, answering the second long-standing
open question of [21]. This was done by a breakthrough in bounding a refined version of the
rectangle covering number.

A more general question is that of the size of approximate extended formulations. This
problem was first considered in [7] where the methodology of [13] was extended to approximate
formulations and an exponential bound for the linear encoding of the n1/2−ε-approximate
clique problem was given. Subsequently, Braverman and Moitra [10] extended the former
bound to n1−ε–approximate formulations of the clique, following a new, information theoretic,
approach. Braun and Pokutta in [8] further strengthened the lower bounds by introducing
the notion of common information. Very recently, Braun and Pokutta [9] extended the result
of [19] to approximate formulations of the matching polytope by combining ideas of the
latter with the notion of common information.

In [11] it was proved that in terms of approximating maximum constraint satisfaction
problems, LPs of size O(nk) are exactly as powerful as O(k)-level relaxations in the Sherali-
Adams hierarchy. Their proof differs from previous work in showing that polynomials of low
degree can approximate the functional version of the factorization theorem of [21].

The metric capacitated facility location problem (Cfl) is a well-studied problem for
which, while constant-factor approximations are known [6, 2], no efficient LP relaxation with
constant integrality gap is known. An instance I of Cfl is defined as follows. We are given
a set F of facilities and a set C of clients, with each facility i having a capacity Ui and
each client j having a demand dj > 0. We may open facility i by paying its opening cost
fi and we may assign demand from client j to facility i by paying the connection cost cij
per unit of demand. The latter costs satisfy the following variant of the triangle inequality:
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cij ≤ cij′ + ci′j′ + ci′j for any i, i′ ∈ F and j, j′ ∈ C. We are asked to open a subset F ′ ⊆ F
of the facilities and assign all the client demand to the open facilities while respecting the
capacities. The goal is to minimize the total opening and connection cost. The question
whether an efficient relaxation exists for Cfl is among the most important open problems
in approximation algorithms [20]. In a recent breakthrough, the first O(1)-factor LP-based
algorithm for Cfl was given in [4]. The proposed relaxation is, however, exponential in size
and, according to the authors of [4], not known to be separable in polynomial time. To our
knowledge, there has not been a compact EF for approximate Cfl achieving even an o(|F |)
gap.

In previous work [17, 18], we proved among other results for Cfl, unbounded integrality
gaps for the Sherali-Adams hierarchy when starting from the natural LP relaxation. We also
disqualified, with respect to obtaining a O(1) gap, valid inequalities from the literature such
as the flow-cover inequalities and their generalizations.

1.1 Our contribution
In this paper we propose a new approach for proving lower bounds on the size of approximate
extended formulations. Our contribution is summarized by the following.

First we introduce a family of extended relaxations of a given polytope which we call
product relaxations. The product relaxations are inspired by the study of the Sherali-Adams
hierarchy. Given a polytope K ⊆ [0, 1]d that corresponds to a linear relaxation of the problem
at hand, the Sherali-Adams relaxation SAt(K) at level t is produced by a lift-and-project
method, where initially every constraint in the description of K is multiplied with all t-subsets
of variables and their complements. The resulting products of variables are then linearized,
i.e., each replaced by a single variable, and finally one projects back to the original variable
space of K. The variable space of the product relaxations is exactly the space of the final
d-level Sherali-Adams relaxation, after linearization and before projection. The variables
have the intuitive meaning of corresponding to products over sets of variables from the
original space – the "intuitive meaning" of a variable is made precise through the notion of
the section f of an extended relaxation Q(x, y) of a polytope P (x). This is a function f that
maps an integer point x ∈ P (x) to a vector of values (x, y) = f(x) such that f(x) ∈ Q(x, y).
(See Section 2 for the necessary definitions).

We prove in Theorem 3 that for any ρ-approximate extended formulation of a 0-1 polytope
there is a product relaxation of the same size that is at least as strong. The proof is short
and accessible. Theorem 3 reduces lower bounding the size of an extended formulation,
which uses some unknown space and encoding, of a polytope P, to lower bounding the size
of product relaxations of P. In the product space we have the concrete advantage of knowing
the section of the target relaxation. We extend the definition of product relaxations and our
methodology to mixed integer sets. However in this case we are able to show that mixed
product relaxations are at least as powerful as a special family of extended formulations (cf.
Theorem 5).

We note that our approach does not rely on the notion of the slack matrix introduced by
Yannakakis [21]. It differs from that of [11] in which the slack functions of the factorization
theorem [21] were shown to be approximable, for max CSPs, by low-degree polynomials and
thus SA gaps are transferred to general linear programs.

Then we use a methodology for proving lower bounds for relaxations for which the section
is known and in particular for product relaxations. Similar arguments have been used in
the context of bounding the number of facets of specific polyhedra, but prior to our work,
they seemed inapplicable for lower bounding the size of arbitrary EFs which lift the polytope
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in arbitrary variable spaces. The method is the following: first define a set of vectors in
the space of the relaxation such that for each one of those vectors there is an admissible
objective function witnessing an integrality gap of ρ. We call that set of vectors the core.
Then show that, for any partition of the core into fewer than κ parts, there must be some
part containing a set of conflicting vectors. A set of infeasible vectors is conflicting if its
convex hull has nonempty intersection with the convex hull of {f(x) | x ∈ P (x) ∩ {0, 1}n},
which is always included in the feasible region of a product relaxation – here f(x) is the
section we associate with product relaxations. Thus, we get that at least κ inequalities are
needed to separate the members of the core from the feasible region and so κ is a lower bound
on the size of any ρ-approximate product relaxation. By considering the hypergraph whose
set of vertices corresponds to the aforementioned set of vectors and whose set of hyperedges
corresponds to the sets of conflicting vectors, the chromatic number of the hypergraph is
a lower bound on the size of every ρ-approximate extended formulation (cf. Theorem 8).
Moreover, there is always a core such that the chromatic number of the resulting, possibly
infinite, hypergraph equals the extension complexity of the polytope at hand. Thus the
characterization of extension complexity in Theorem 8 can be seen as an alternative to
the nonnegative rank of the slack matrix. The conflicting vectors are fractional solutions,
which are hard to separate from the integer solutions. The method comes closer to standard
LP/SDP integrality gap arguments than the existing combinatorial approaches for lower
bounding extension complexity.

When arguing about the polyhedral complexity of a specific polytope, i.e., the minimum
size of its formulation in the original variable space, the above method can always be simplified
to finding a set of gap–inducing vectors with the property that (almost) any pair of them are
conflicting. The underlying hypergraph reduces then to a simple graph that is very dense,
almost a clique, and thus has high chromatic number. We used this idea in a preliminary
version of this work [16] to derive exponential bounds on the polyhedral complexity of
approximate metric capacitated facility location, where only the classic variables are used
(cf. Corollary 14). A similar idea was independently used by Kaibel and Weltge in [15] to
derive lower bounds on the number of facets of a polyhedron which contains a given integer
set X and whose set of integer points is conv(X) ∩ Zd.

We exhibit a concrete application of our methodology by proving in Theorem 12 an
exponential lower bound on the size of any O(N)-approximate mixed product relaxation
for the Cfl polytope, where N is the number of facilities in the instance. This result can
be shown to imply (cf. Theorem 13) that the Ω(N)-level SA relaxation for Cfl, which
is obtained from any starting LP of size 2o(N) defined on the classic set of variables, has
unbounded gap Ω(N). Note, that it is well-known that by lifting only the facility variables,
at N levels the integer polytope is obtained for Cfl [5]. This settles the open question of
[3] whether there are LP relaxations upon which the application of lift-and-project methods
captures the strength of preprocessing steps for Cfl. Our result establishes for the first time
such a tradeoff for a universal SA procedure that is independent of the starting relaxation
K. The proof follows the methodology outlined above and is different from the standard
arguments that apply only to the SA lifting of a specific LP. Our earlier SA construction
in [18] applied the local-global method [12] that constructs an appropriate distribution of
solutions for each explicit constraint of the starting LP.

We leave as an open problem the extension of the equivalence between product and
extended relaxations from 0-1 programs to mixed integer sets. We also believe that it would
be of interest to revisit known extension-complexity lower bounds using our method, so as to
obtain simpler proofs.
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2 Preliminaries

X ⊆ Rd, is a mixed integer set if there is p ∈ {1, . . . , d − 1} such that d = n + p and
X ⊆ {0, 1}n × [0, 1]p. A valid relaxation of the mixed integer set X is any polyhedron P such
that conv(X) ⊆ P . Given a valid relaxation P of X, such that conv(X)∩ ({0, 1}n× [0, 1]p) =
P ∩ ({0, 1}n × [0, 1]p), the level k Sherali-Adams (SA) procedure, k ≥ 1, is as follows [1].
Let P be defined by the linear constraints Ax− b ≤ 0. For every constraint π(x) ≤ 0 of P ,
for every set of variables U ⊆ {xi | i = 1, . . . , n} such that |U | ≤ k, and for every W ⊆ U ,
consider the lifted valid constraint: π(x)

∏
xi∈U−W xi

∏
xi∈W (1 − xi) ≤ 0. Linearize the

system obtained this way by replacing (i) x2
i with xi for all i (ii)

∏
xi∈I⊆[n] xi with xI and (iii)

xk
∏
xi∈I⊆[n] xi, where k ∈ {n+ 1, . . . , d} with vIk. SAk(P ) is the projection of the resulting

linear system onto the original variables {x1, . . . , xd}.We call SAk(P ) the relaxation obtained
from P at level k of the SA hierarchy. It is well-known that SAn(P ) = conv(X) (see, e.g.,
[5]). If X is a 0-1 set, i.e., X ⊆ {0, 1}d, the above definitions hold mutatis mutandis and
SAd(P ) = conv(X).

Given a polyhedron K(x, y) = {(x, y) ∈ Rd ×Rdy | Ax+By ≤ b} the projection to the x-
space is defined as {x ∈ Rd | ∃y ∈ Rdy : Ax+By ≤ b}, denoted as projx(K(x, y)). An extended
formulation (relaxation) of a polyhedron P (x) ⊆ Rd is a linear system K(x, y) = {(x, y) ∈
Rd × Rdy | Ax + By ≤ b} such that projx(K(x, y)) = P (x) (projx(K(x, y)) ⊇ P (x)). The
size of a polyhedron P (x) is the minimum number of inequalities in its halfspace description.
The extension complexity of P (x) is the minimum size of an extended formulation of P (x).

We define now ρ-approximate formulations as in [7]. Given a combinatorial optimization
problem T , a linear encoding of T is a pair (L,O) where L ⊆ {0, 1}∗ is the set of feasible
solutions to the problem and O ⊂ R∗ is the set of admissible objective functions. An instance
of the linear encoding is a pair (d,w) where d is a positive integer defining the dimension of
the instance and w ⊆ O∩Rd is the set of admissible cost functions for instances of dimension
d. Solving the instance (d,w) means finding x ∈ L∩{0, 1}d such that wTx is either maximum
or minimum, according to the type of problem T. Let P = conv({x ∈ {0, 1}d | x ∈ L}) be the
corresponding 0-1 polytope of dimension d. Given a linear encoding (L,O) of a maximization
problem, the corresponding polytope P, and ρ ≥ 1, a ρ-approximate extended formulation of
P is an extended relaxation Ax+By ≤ b of P with x ∈ Rd, y ∈ Rdy such that

max{wTx | Ax+By ≤ b} ≥max{wTx | x ∈ P} for all w ∈ Rd and
max{wTx | Ax+By ≤ b} ≤ρmax{wTx | x ∈ P} for all w ∈ O ∩ Rd.

For a minimization problem, we require

min{wTx | Ax+By ≤ b} ≤min{wTx | x ∈ P} for all w ∈ Rd and
min{wTx | Ax+By ≤ b} ≥ρ−1 min{wTx | x ∈ P} for all w ∈ O ∩ Rd.

The ρ-approximate extension complexity of 0-1 integer polytope P (x) ⊆ [0, 1]d is the
minimum size of a ρ-approximate extended formulation of P. Given an extended formulation
Q(x, y) of P (x), a section of Q is defined as a vector-valued boolean function g(x) : {0, 1}d →
Rd+dy such that for x ∈ P (x)∩{0, 1}d, g(x) belongs toQ(x, y) and projx(g(x)) = x. Intuitively,
the section extends the encoding of solutions to the auxiliary variables y. Clearly, if a particular
extended formulation Q has been specified a priori, different such functions can be defined
by filling in the last dy coordinates of g(xo) with a value from {y ∈ Rdy | Axo +By ≤ b}.

I Definition 1. Given a 0-1 integer polytope P (x) ⊆ [0, 1]d, a product relaxation D(z) of
P (x) is an extended relaxation D(z) of P (x), where z ∈ R2d−1 and for every nonempty
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subset E ⊆ {x1, x2, . . . , xd} of the original variables, we have a variable zE , (where z{xi}
denotes xi, i = 1, . . . , d), and there is a section f(x) of D s.t. the corresponding coordinate
of f at E is fE(x) =

∏
xi∈E xi. We refer to this function f as the product section.

Let f denote the product section. Define the canonical product relaxation of P as
D̂ = conv{f(x) | x ∈ P (x)∩{0, 1}dx}. The polytope D̂ corresponds to the “tightest” possible
product relaxation.

For a mixed integer set M(x,w) ⊆ {0, 1}dx × Rdw the corresponding mixed integer
polytope P (x,w) is conv(M(x,w)). In case one starts from a mixed integer polytope, the
additional z variables of the product relaxation correspond to sets that contain at most
one fractional variable. Including only one fractional variable in each product, mimics the
variable space of the final-level SA relaxation.

I Definition 2. Let P (x,w) ⊆ [0, 1]dx × Rdw be a mixed integer polytope. A mixed product
relaxation D(z) of P (x,w) is an extended relaxation D(z) of P (x,w), where z ∈ R(dw+1)2dx−1,
with z{wj} = wj , j = 1, . . . , dw, and
(i) for every set ∅ 6= E ⊆ {x1, x2, . . . , xdx

} we define dw + 1 variables: one that we denote zE
and, for each fractional variable wj , j = 1, . . . , dw, one that we denote zEwj . Moreover z{xi}
denotes xi, i = 1, . . . , dx.
(ii) there is a section f(x,w) of D s.t. the corresponding coordinates of f are fE(x,w) =
(
∏
xi∈E xi) and, for each variable wj , j = 1, . . . , dw, fEwj

(x,w) = (
∏
xi∈E xi) · wj . We refer

to this function f as the mixed product section.

The canonical product relaxation of P (x,w) is similarly defined as D̂ = conv{f(x,w) |
(x,w) ∈ P (x,w) ∩

(
{0, 1}dx × Rdw

)
}.

Note that the lifted polytope produced by the d-level (dx-level) Sherali-Adams procedure
applied on some specific linear relaxation of the 0-1 polytope P (x) (mixed integer P (x,w)),
after linearization and before projection to the original variables, is a (mixed) product
relaxation.

3 The expressive power of product relaxations

In this section we show the following. For every 0-1 polytope P (x) and every (approximate)
extended formulation Q(x, y) = {(x, y) ∈ Rdx × Rdy | Ax + By ≤ b} of P (x) there is a
product relaxation T [Q(x, y)] whose size is at most that of Q(x, y) and is at least as strong.

A substitution T is a linear map of the form y = Tz where T is a dy × (2dx − 1) matrix
and z is a 2dx − 1 dimensional vector having a coordinate zE for each nonempty set E of the
form {xi | i ∈ S ⊆ 2{1,...,dx}}. For any substitution T, the translation of Q(x, y), denoted
T [Q(x, y)], the formulation resulting by substituting T(i)z, for yi, i = 1, ..., dy. Here T(i)
denotes the ith row of T. If in addition T [Q(x, y)] is a product relaxation of P (x) we say that
it is a translation of Q to product relaxations (recall that the original variables xi coincide
with the variables z{xi}). Observe that the number of inequalities of T [Q(x, y)] is the same
as in Q(x, y). The translation may heighten exponentially the dimension, but since our
methodology will give lower bounds on the size of the product relaxations those bounds
apply to the size of Q(x, y) as well.

I Theorem 3. Given a 0-1 polytope P (x) ⊆ [0, 1]dx , for every polytope Q(x, y) such that
P (x) ⊆ projx(Q(x, y)) there is a translation T [Q(x, y)] to product relaxations such that
P (x) ⊆ projx(T [Q(x, y)]) ⊆ projx(Q(x, y)).
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Proof. We shall give a substitution T for the variables y ∈ Rdy of Q(x, y) so that the theorem
holds. Let g(x) be a section of Q(x, y) (recall that a section associates every feasible 0-1
vector x of P (x) to a specific y such that (x, y) ∈ Q(x, y)).

Observe that the coordinates of the product section plus the constant 1 correspond exactly
to the monomials of the Fourier basis. We denote by (p, 1) ∈ Rn+1 the vector resulting from
p ∈ Rn by appending the scalar 1 as an extra coordinate. By basic functional analysis (see,
e.g., [14]), there is a dy × 2dx matrix A such that

g(x) = A · (f(x), 1) (1)

We define the substitution T by linearizing the above equation; we replace the sections g
and f with the corresponding variable vectors y and z (recall z is the product vector) to
obtain:

y = A · (z, 1).

Obviously projx(T [Q(x, y)]) ⊆ projx(Q(x, y)): from any feasible solution (x0, z0) of
T [Q(x, y)] we can derive a feasible solution (x0, y0) of Q(x, y) by setting y0 equal to Az0.

We will now show that P (x) ⊆ projx(T [Q(x, y)]). It suffices to show that for every
x′ ∈ P (x)∩ {0, 1}dx the vector f(x′) is feasible for T [Q(x, y)] as required by the definition of
product relaxations. Observe that by letting the z vector take the values f(x′), by (1) we get
that the quantities involved in the inequalities of T [Q(x, y)] are the exact same quantities
involved in the corresponding inequalities of Q(x, y) for g(x′). But by the definition of section,
g(x′) is feasible for Q(x, y) and thus f(x′) is feasible for T [Q(x, y)].

J

I Corollary 4. A lower bound b on the size of any product relaxation D which is a ρ-
approximate extended formulation of the 0-1 polytope P (x), for ρ ≥ 1, implies a lower bound
b on the size of any ρ-approximate extended formulation Q(x, y) of P (x).

Let P (x,w) be a mixed integer polytope. The notion of the section of P for some extended
relaxation Q(x,w, y) of P is more challenging. Intuitively, the solutions are characterized by
two parts – a boolean part of the 0− 1 assignments on the integer variables x and a "linear"
part of the real variables w in the following sense: once the boolean part (the "hard" one) is
fixed, the linear part can be obtained as the feasible region of a (usually small) system of
inequalities, possibly empty.

Motivated by the above we define the following type of sections for an extended formulation
Q(x,w, y) of a mixed-integer polytope. A mixed-linear section of EF Q is a section g for
which at variable yi the value gi(x′, w) for a given integer vector x′ is an affine function on
w denoted gx′i (w). If there is such a mixed-linear section for Q(x,w, z), we say that Q is an
extended formulation with a mixed linear section. An example of EFs with a mixed linear
section are formulations arising from the SA procedure where y is the vector of the new
variables corresponding to the linearized products. The following theorem can be proved
similarly to Theorem 3.

I Theorem 5. Given a mixed integer polytope P (x,w) ⊆ [0, 1]dx ×Rdw , for every ρ-approxi-
mate, ρ ≥ 1, extended formulation Q(x,w, y) with a mixed linear section, there is a translation
T [Q(x,w, y)] to mixed product relaxations such that

P (x,w) ⊆ projx,w(T [Q(x,w, y)]) ⊆ projx,w(Q(x,w, y)).
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Proof. Let the dimension of P (x,w) be d = dx + dw. We shall give for the variables y ∈ Rdy

of Q(x,w, y) a substitution T so that the theorem holds.
Consider a variable yi and the corresponding coordinate of the mixed linear section,

gx
′

i (w) =
∑
j b
x′

i wj + cx′ for each x′ ∈ {0, 1}dx and i = 1, . . . , dy.
First, we will prove a helpful claim which states a fact from elementary Fourier analysis

in our setting. For x, s ∈ projx
(
P (x,w) ∩ ({0, 1}dx × Rdw )

)
, define the boolean indicator

operator χs(x) to be 1 when s = x and 0 otherwise. First, we will show that this operator
can be expressed as a linear combination of the product sections constrained to monomials
with only boolean variables. In other words, we determine coefficients asE , E ⊆ {x1, . . . , xdx},
such that χs(x) =

∑
E a

s
EfE(x). The translation of the indicator operator is(x) of an integer

solution s is a linear expression of the form Tis =
∑
asEP [E ](x). We shall iteratively generate

the coefficients asE . The only nonzero coefficients will be those corresponding to sets of
variables that are supersets of the set of variables being 1 in s – let that set be Es1 . We give
the construction iteratively starting from |Es1 | to dx, defining in step k the coefficients of such
sets of size k.

In the first iteration simply set aEs
1

= 1. At step k > |Es1 |, for each set E ′ of size k that is
a superset of Es1 , set asE′ = −

∑
E⊂E′ a

s
E . This concludes the definition of the coefficients.

I Claim 3.1. For each integer solution s′ ∈ projx
(
P (x,w) ∩ ({0, 1}dx × Rdw )

)
, χs(s′) =∑

E a
s
EfE(s′).

Proof of the claim. By overloading the notation, we denote by s both the integer solution
and the support of that integer solution, that is the set {xi | si = 1}. If s′ ⊇ s then the
nonzero terms of the sum

∑
E a

s
EfE(s′) are exactly those that correspond to sets E such

that s ⊆ E ⊆ s′. We have that
∑
E a

s
EfE(s′) =

∑
E⊆s′ a

s
E which, by the construction of the

coefficients, is 1 if s = s′ and 0 if s′ ⊃ s, as required. Otherwise, if s− s′ 6= ∅, then all the
fE(s′) with nonzero coefficients are 0, so

∑
E a

s
EfE(s′) = 0.

By Claim 3.1 we have that for an integer vector s ∈ {0, 1}dx the indicator operator χs(x)
is equal to

∑
E⊆{x1,...,xdx}

asEfE(x). For each set of integer variables E and each fractional
variable wj let zEwj denote the corresponding mixed product variable and fEwj (x,w) the
corresponding coordinate of the mixed product section. It is now easy to show the following.

I Claim 3.2. For each mixed integer solution (x′, w′), and for i = 1, . . . , dy,
gx
′

i (w′) =
∑
j

∑
E a

s
Eb
x′

i fEwj
(x′, w′) +

∑
E a

s
Ecx′fE(x′).

To conclude the definition of T , set

yi =
∑
x′

∑
j

∑
E
asEb

i
x′zEwj +

∑
x′

∑
E
asEcx′zE , i = 1, . . . , dy.

which implies

yi =
∑
x′

∑
E
asE(
∑
j

bix′zEwj + cx′zE), i = 1, . . . , dy

By Claim 3.2, using arguments similar to the ones in the proof of Theorem 3, it follows that
that P (x,w) ⊆ projx,w(T [Q(x,w, y)]) ⊆ projx,w(Q(x,w, y)). J

I Corollary 6. A lower bound b on the size of any mixed product relaxation D which is a
ρ-approximate extended formulation of the 0-1 mixed integer polytope P (x,w) implies a lower
bound b on the size of any ρ-approximate extended formulation Q(x,w, y) of P (x,w) with a
mixed linear section.

STACS 2015



576 Extended Formulation Lower Bounds via Hypergraph Coloring?

4 A method for lower bounding the size of LPs with known sections

Here we present a methodology to lower bound the size of relaxations that achieve a desired
integrality gap. For simplicity we do not deal in this section with mixed integer sets.

Our method can be summarized as follows. Let G(z) ⊆ [0, 1]d be a 0-1 polytope. We
design a family I of instances parameterized by the dimension d. For each instance I ∈ I
of dimension d we define a set of points CI ⊆ [0, 1]d \G(z) which we call the core of I with
respect to G. Note that the points of the core must be infeasible for G. To prove a lower
bound r(n) on the size of G it suffices to show that at least that many inequalities are needed
to separate CI from G. Additionally, for a minimization problem with O being the set of
admissible objective functions, if for some z ∈ CI there is an admissible cost function wz
such that wTz z < ρ−1OptI,wz

, 0 < ρ ≤ 1, where OptI,wz
is the cost of the optimal integer

solution with respect to wz, we call z ρ-gap inducing wrt O. If we design the core so that all
its members are ρ-gap inducing, the lower bound will hold for ρ-approximate formulations.

To define constructively the core for a specific family of extended formulations of a
polytope P the sections of the variables z must be known. This requirement is fulfilled by
the product relaxations we will focus on. By Theorem 3 above, proving a lower bound on
the size for an arbitrary extended relaxation Q(x, y) of a polytope P (x) can be reduced to
a proof of the same bound on the size of a corresponding product relaxation D(z). The
following meta-theorem shows that such a proof can always be obtained by proving the
existence of a suitable core for the product relaxation. Recall the definition of the “tightest”
product relaxation of P (x), D̂, in Section 2. We say that a set of vectors s ⊆ [0, 1]d \ D̂ is
conflicting if conv(s) ∩ D̂ 6= ∅. Any single valid inequality of D̂ cannot separate all points of
a conflicting set. Given a set Od ⊆ Rd of admissible objective functions associated with a 0-1
polytope P (x) ⊆ [0, 1]d, we define Õd ⊆ R2d−1, to contain the vectors in Od extended with
zeroes in the coordinates corresponding to the non-singleton product variables.

I Theorem 7. Given a 0-1 polytope P (x) ⊆ [0, 1]d, and an associated set of admissible
objective functions Od ⊆ Rd, the ρ-approximate extension complexity, ρ ≥ 1, of P (x) is at
least r(n), iff there exists a family of instances I(n) and, for every I ∈ I, a core CI wrt D̂,
which consists of ρ-gap inducing vectors wrt Õd, with the following property: for any partition
of CI into less than r(n) parts there must be a part containing a set of conflicting vectors.

Proof. Assume first that the ρ-approximate extension complexity is at least r(n). Define CI
to be the set of all ρ-gap inducing product vectors. If we can partition CI into less than r(n)
parts so that there is no conflicting subset s in any part, then we can define an inequality for
each part of the partition that separates the vectors of at least that part from D̂. But we
know that less than r(n) inequalities cannot separate all the ρ-gap inducing product vectors.
Thus we have that for any decomposition of those vectors into less than r(n) parts there
must be a part containing a set of conflicting vectors.

Conversely, assume we can find a core CI wrt D̂ consisting of ρ-gap inducing vectors such
that for any partition of CI into less than r(n) sets there must be a part containing a set
of conflicting vectors. Then the size of D̂ is at least r(n). If not, there is a decomposition
into less than r(n) parts where each part consists of the core members separated by each
inequality – in case a member is separated by more than one inequality, we arbitrarily include
it into just one of the resulting parts. Observe that CI is not only a core wrt D̂ but also is a
core wrt any ρ-approximate product relaxation of P. By Theorem 3, the lower bound r(n)
applies to the size of any ρ-approximate extended formulation of P. J

Let H(CI) be the, possibly infinite, hypergraph with vertices the members of CI and
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hyperedges the conflicting subsets of CI . Theorem 7 can be restated more conveniently:

I Theorem 8. Given a 0-1 polytope P (x) ⊆ [0, 1]d, and an associated set of admissible
objective functions Od ⊆ Rd, the ρ-approximate extension complexity, ρ ≥ 1, of P (x) is at
least r(n), iff there exists a family of instances I(n) and, for every I ∈ I, a core CI wrt D̂,
which consists of ρ-gap inducing vectors wrt Õd, such that H(CI) has chromatic number r(n).

Theorem 7 suggests that the best possible lower bound on the extension complexity can
always be achieved by proving the existence of an appropriate core in the product space. In
the applications in this paper we implement a version of the method that imposes stronger
requirements on the decomposition, namely the constructed hypergraph will be a clique.

5 Lower bounds for approximate mixed product relaxations for Cfl

For Cfl, the linear encoding NCfl = (L,O) is defined as follows. For a Cfl instance, given
the number n of facilities, the number m of clients, the capacities K ∈ Rn+ and the demands
D ∈ Rm+ , we use the classic variables yi, i = 1, . . . , n, xij , i = 1, . . . , n, j = 1, . . . ,m with
the usual meaning of facility opening and client assignment respectively. The set of feasible
solutions (y, x) is defined in the obvious manner. Thus for dimension d = n+nm, L∩{0, 1}d
is completely determined by the quadruple (n,m,K,D). The set of admissible objective
functions O ∩ Rn+nm is the set of pairs (f , c) where f ∈ Rn+ are the facility opening costs
and c = [cij ] ∈ Rnm+ are connection costs that satisfy cij ≤ ci′j + ci′j′ + cij′ .

The capacitated facility location problem with general capacities and demands is a mixed
integer optimization problem where the facilities are opened integrally but the clients are
allowed to be assigned fractionally to the set of opened facilities. In this section, we show an
exponential lower bound on the size of any mixed product relaxation of the Cfl polytope.

In our proof we will consider a parameterized instance I = I(3n,m,U, d) with uniform
capacities U and uniform unit demands d = 1, where 3n is the number of facilities, and m the
number of clients. Furthermore we will have that the number of clients is m = n4 + 1 and the
capacities and demands are such that (n4 + 1)−nU = 2−n2 . Observe that n3 < U < (n3 + 1).
In order to define the core CI of the instance I we first describe a random experiment based
on whose outcome we will later define the members of the core. Given disjoint sets k, l ⊆ F
of size n each, the random experiment defines a distribution Dk,l over mixed integer vectors
in the classic encoding. These vectors correspond in general to pseudo-solutions. The follow-
ing experiment defines the distribution Dk,l. The quantities x̄ij are defined in Lemma 9 below.

Random Experiment
Facilities in k are always opened.
Case 1. With probability 1− 20

n2(1+1/n) all facilities in F − l are opened and those of l are
closed. Distribute evenly the client demand to facilities in k. Note that this outcome of the
experiment does not respect the capacities.
Case 2. Otherwise, i.e., with probability 20

n2(1+1/n) , pick at random a subset q of the facilities
in F − k with at least one facility from l and open them. Assign randomly demand to each

facility i in q∩ l so that i takes
∑

j
x̄ij

10/n2 units and the rest of the demand is equally distributed
to the facilities in k.

I Lemma 9. The expected vector (ȳ, x̄) wrt Dk,l is the following: ȳi = 1 for i ∈ k, ȳi =
1 − 10

n2(1+1/n) for i ∈ F − k − l, ȳi = 20(2n−1)
n2(1+1/n)(2n−1) for i ∈ l. For all j ∈ C, x̄ij = 1−n−2

|k|

for i ∈ k, x̄ij = 0 for i ∈ F − {k ∪ l}, x̄ij = n−2

|l| for i ∈ l.
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The distribution Dk,l will be subsequently used to define the members of the core CI . Let
E be a subset of integer variables in the original space, i.e., E ⊆ {y1, . . . , y3n}. We denote
by EDk,l

[E ] the expectation of the event where all the variables in E have value 1, i.e., the
expectation of the product

∏
yik
∈E yik . Similarly, we denote EDk,l

[Exij ] the expectation of the
product (

∏
yik
∈E yik ) · xij . Let χ(case1), χ(case2) be the 0-1 random variables that indicate

whether Case 1 and Case 2 occur, respectively. We denote by EDk,l
[E ∩case1] the expectation

of the product (
∏
yik
∈E yik ) · χ(case1) and by EDk,l

[Exij ∩ case1] the expectation of the
product (

∏
yik
∈E yik ) · xij · χ(case1). Similarly for Case 2. Intuitively, EDk,l

[Exij ∩ case1] is
the "mass" that Dk,l assigns to xij over all outcomes of case 1 where the variables of E have
value 1.

To simplify notation, we use z(i) instead of zi to refer to a coordinate of vector z indexed
by i. From now on, P denotes the Cfl polytope and D̂ its canonical product relaxation.

I Definition 10. Fix a set k ⊂ F of size n. The core CI of the instance I(3n, n4 + 1, U, 1)
wrt D̂ is the following set of product vectors: ∀l ⊂ F with |l| = n and k∩ l = ∅ and for every
set E of integer variables and for every fractional variable xij we define zk,l(E) = EDk,l

[E ]
and zk,l(Exij) = EDk,l

[Exij ].

Now we are ready to state the key Lemma 11 from which our main theorem will be
derived. The proof of the lemma is quite technical and is deferred to the full version. A
sketch is presented in Section 6.

I Lemma 11. For any two zk,l, zk,l′ ∈ CI such that l−l′ 6= ∅ there is some z ∈ conv(zk,l, zk,l′)
which is feasible for D̂.

I Theorem 12. Given the family of Cfl instances I(3n, n4 + 1, U, 1), each member of CI
is Ω(n)-gap inducing and χ(H(CI)) = 2Ω(n). Therefore, there is a constant c > 0, s.t. any
cN-approximate EF for Cfl with a mixed linear section has size 2Ω(N), where N is the
number of facilities.

Proof. Since we proved in Lemma 11 that any two members of the core CI form a conflicting
set, H(CI) is a clique and thus its chromatic number is |CI | =

(2n
n

)
= 2Θ(n). For each member

of the core zk,l there is an admissible cost function wk,l inducing Θ(n) gap: facilities in l
have unit opening costs and every other facility has 0 opening cost. The facilities in k ∪ l
and all the clients are co-located, and the rest of the facilities are co-located at distance 2n2

from the former. Observe that each feasible mixed integer solution has a cost of at least 1
since either some facility in l must be opened integrally or at least 2−n2 client demand has
to be assigned to some facility in F − k − l. On the other hand the cost of zk,l wrt wk,l is
Θ(n−1) since the (y, x) projection of zk,l is the expected vector (ȳ, x̄) of Dk,l. J

For every instance I of Cfl it is easy to see that there is an exact mixed product
relaxation of size 2Np where p is polynomial in the size of the instance. The idea is to define
a formulation for each choice of the opened facilities and then take the convex hull of those
polytopes.

I Observation 5.1. There is an exact mixed product relaxation of the Cfl polytope of size
2Np, where p = Θ(mN), N and m being the number of facilities and clients respectively.

I Theorem 13. Let P be any linear relaxation of the Cfl polytope for the family of instances
I(3n, n4 + 1, U, 1) that uses the encoding NCfl and has size 2o(n). There is a constant c > 0,
such that for all t ≤ cn, the integrality gap of SAt(P ) is Ω(n).
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Proof. Observe that for every level of SA there is a suitable projection of CI that yields
a legal core with respect to the product variables used in that level. Therefore, the lower
bound on the size implied by Theorem 12 holds at all levels. The number of the inequalities
of the t-level SA relaxation after the lifting and linearization stages, and before projection,
obtained from any starting relaxation P of size r is less than r

(
n
t

)
2t. By choosing t ≤ cn,

with c sufficiently small, we obtain that r
(
n
t

)
2t ≤ r2δn for a small δ > 0. By Theorem 12 we

get that for this value of t, the integrality gap on the given family of instances is Ω(n). This
is asymptotically tight since SA is known to produce an exact formulation after 3n levels J

We obtain as a direct consequence a lower bound on the size of formulations that use
only the classic variables yi, xij .

I Corollary 14. Let P be any linear relaxation of the Cfl polytope that uses the encoding
NCfl and has integrality gap o(N), N being the number of facilities. Then P has size 2Ω(N).

6 Proof sketch for Lemma 11

In the first part of the proof we will show that by exchanging some measure of some
components of the two product vectors zk,l, zk,l′ of the core, we can construct two new
product vectors z∗k,l, z∗k,l′ each of which is feasible for D̂. Consider the two sets of facilities
l − l′ and l′ − l. Clearly |l − l′| = |l′ − l| > 0, since l 6= l′ and |l| = |l′| = n. We construct a
product vector z∗k,l based on zk,l and making some alterations and, symmetrically, a product
vector z∗k,l′ based on zk,l′ . We give below the construction of z∗k,l.

Construction of z∗k,l
For any set E containing only facilities from F − l′ with at least one from l− l′: z∗k,l(E) =

zk,l(E)+EDk,l′ [E∩case1] (Similarly, for any i, j, z∗k,l(Exij) = zk,l(Exij)+EDk,l′ [Exij∩case1] ).
In the case set E contains only facilities from F−l with at least one from l′−l we have z∗k,l(E) =
zk,l(E)−EDk,l

[E ∩ case1]. (Similarly, for any i, j, z∗k,l(Exij) = zk,l(Exij)−EDk,l
[Exij ∩ case1]

). In any other case and for any i, j let z∗k,l(E) = zk,l(E) and z∗k,l(Exij) = zk,l(Exij).
Next we show, and this is by far the most complicated part of the proof, that the

constructed z∗k,l and z∗k,l′ are indeed the expected vectors of distributions D∗k,l and D∗k,l′ ,
respectively, over feasible mixed integer product solutions. In the last step of the proof we
show the following, which is an easy consequence of the construction of z∗k,l and z∗k,l′ .
I Claim 6.1. 1/2(z∗k,l + z∗k,l′) ∈ conv(zk,l, zk,l′).

7 Discussion

In the proof of our result for Cfl we provided a core whose underlying hypergraph is actually
a graph and moreover a clique. For other problems, especially for 0-1 polytopes, we believe
that the power of general hypergraphs needs to be exploited, if one wishes to derive a tight
bound on the extension complexity. Observe that our methodology requires only the existence
of a suitable core, and thus, one could possibly employ probabilistic arguments to prove the
existence of suitable hypergraphs of high chromatic number.

In the case of mixed integer polytopes, we believe that the mixed product relaxations
can be shown to be strong enough to simulate any extended formulation, as is the case for
product relaxations and 0-1 polytopes.

Acknowledgements We thank the anonymous reviewers of an earlier version for valuable
comments.
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