1,325 research outputs found

    Design-thinking, making, and innovating: Fresh tools for the physician\u27s toolbox

    Get PDF
    Medical school education should foster creativity by enabling students to become \u27makers\u27 who prototype and design. Healthcare professionals and students experience pain points on a daily basis, but are not given the tools, training, or opportunity to help solve them in new, potentially better ways. The student physician of the future will learn these skills through collaborative workshops and having dedicated \u27innovation time.\u27 This pre-clinical curriculum would incorporate skills centered on (1) Digital Technology and Small Electronics (DTSE), (2) Textiles and Medical Materials (TMM), and (3) Rapid Prototyping Technologies (RPT). Complemented by an on-campus makerspace, students will be able to prototype and iterate on their ideas in a fun and accessible space. Designing and making among and between patients and healthcare professionals would change the current dynamic of medical education, empowering students to solve problems in healthcare even at an early stage in their career. By doing so, they will gain empathy, problem-solving abilities, and communication skills that will extend into clinical practice. Our proposed curriculum will equip medical students with the skills, passion, and curiosity to impact the future of healthcare

    Resilience Model for Teams of Autonomous Unmanned Aerial Vehicles (UAV) Executing Surveillance Missions

    Get PDF
    Teams of low-cost Unmanned Aerial Vehicles (UAVs) have gained acceptance as an alternative for cooperatively searching and surveilling terrains. These UAVs are assembled with low-reliability components, so unit failures are possible. Losing UAVs to failures decreases the team\u27s coverage efficiency and impacts communication, given that UAVs are also communication nodes. Such is the case of a Flying Ad Hoc Network (FANET), where the failure of a communication node may isolate segments of the network covering several nodes. The main goal of this study is to develop a resilience model that would allow us to analyze the effects of individual UAV failures on the team\u27s performance to improve the team\u27s resilience. The proposed solution models and simulates the UAV team using Agent-Based Modeling and Simulation. UAVs are modeled as autonomous agents, and the searched terrain as a two-dimensional M x N grid. Communication between agents permits having the exact data on the transit and occupation of all cells in real time. Such communication allows the UAV agents to estimate the best alternatives to move within the grid and know the exact number of all agents\u27 visits to the cells. Each UAV is simulated as a hobbyist, fixed-wing airplane equipped with a generic set of actuators and a generic controller. Individual UAV failures are simulated following reliability Fault Trees. Each affected UAV is disabled and eliminated from the pool of active units. After each unit failure, the system generates a new topology. It produces a set of minimum-distance trees for each node (UAV) in the grid. The new trees will thus depict the rearrangement links as required after a node failure or if changes occur in the topology due to node movement. The model should generate parameters such as the number and location of compromised nodes, performance before and after the failure, and the estimated time of restitution needed to model the team\u27s resilience. The study addresses three research goals: identifying appropriate tools for modeling UAV scenarios, developing a model for assessing UAVs team resilience that overcomes previous studies\u27 limitations, and testing the model through multiple simulations. The study fills a gap in the literature as previous studies focus on system communication disruptions (i.e., node failures) without considering UAV unit reliability. This consideration becomes critical as using small, low-cost units prone to failure becomes widespread

    The effects of practice distribution upon the regional oscillatory activity in visuomotor learning.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The aim of this study was to investigate the effects of a massed compared to a distributed practice upon visuomotor learning as well as upon the regional oscillatory activity in the sensorimotor cortex. METHODS: A continuous visuomotor tracking task was used to assess visuomotor learning; the underlying neuronal correlates were measured by means of EEG. The massed practice group completed a continuous training of 60 minutes, while the distributed practice group completed four 15 minutes practice blocks separated by rest intervals. RESULTS: While the massed and the distributed practice group did not differ in performance, effects of practice distribution were evident in the regional oscillatory activity. In the course of practice, the massed training group showed a higher task-related theta power and a strong task-related power decrease in the upper alpha frequency over the sensorimotor cortex compared to the distributed practice group. CONCLUSIONS: These differences in the regional oscillatory activity indicate a higher cognitive effort and higher attention demands in the massed practice group. The results of this study support the hypothesis, that a distributed practice is superior to a massed practice in visuomotor learning

    Brain stimulation modulates driving behavior

    Get PDF
    BACKGROUND: Driving a car is a complex task requiring coordinated functioning of distributed brain regions. Controlled and safe driving depends on the integrity of the dorsolateral prefrontal cortex (DLPFC), a brain region, which has been shown to mature in late adolescence. METHODS: In this study, driving performance of twenty-four male participants was tested in a high-end driving simulator before and after the application of transcranial direct current stimulation (tDCS) for 15 minutes over the left or right DLPFC. RESULTS: We show that external modulation of both, the left and the right, DLPFC directly influences driving behavior. Excitation of the DLPFC (by applying anodal tDCS) leads to a more careful driving style in virtual scenarios without the participants noticing changes in their behavior. CONCLUSION: This study is one of the first to prove that external stimulation of a specific brain area can influence a multi-part behavior in a very complex and everyday-life situation, therefore breaking new ground for therapy at a neural level

    Early Physics Measurement at the LHC with ATLAS

    Get PDF
    The expectations for first physics results at the ATLAS experiment at the Large Hadron Collider is reviewed for the HEP-MAD'09 conference

    Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability

    Get PDF
    There is evidence of a strong capacity for functional and structural reorganization in the human motor system. However, past research has focused mainly on complex movement sequences over rather short training durations. In this study we investigated changes in corticospinal excitability associated with longer training of elementary, maximum-speed tapping movements. All participating subjects were consistent right-handers and were trained using either the right (experiment 1) or the left thumb (experiment 2). Transcranial magnetic stimulation was applied to obtain motor evoked potentials (MEPs) from the abductor pollicis brevis (APB) muscle of the right and the left hand before and after training. As a result of training, a significant increase was observed in tapping speed accompanied by increased MEPs, recorded from the trained APB muscle, following contralateral M1 stimulation. In the case of subdominant-hand training we additionally demonstrate increased MEP amplitudes evoked at the right APB (untrained hand) in the first training week. Enhanced corticospinal excitability associated with practice of elementary movements may constitute a necessary precursor for inducing plastic changes within the motor system. The involvement of the ipsilateral left M1 likely reflects the predominant role of the left M1 in the general control (modification) of simple motor parameters in right-handed subject

    Temporal and spatial patterns of cortical activation during assisted lower limb movement

    Get PDF
    Human gait is a complex process in the central nervous system that results from the integrity of various mechanisms, including different cortical and subcortical structures. In the present study, we investigated cortical activity during lower limb movement using EEG. Assisted by a dynamic tilt table, all subjects performed standardized stepping movements in an upright position. Source localization of the movement-related potential in relation to spontaneous EEG showed activity in brain regions classically associated with human gait such as the primary motor cortex, the premotor cortex, the supplementary motor cortex, the cingulate cortex, the primary somatosensory cortex and the somatosensory association cortex. Further, we observed a task-related power decrease in the alpha and beta frequency band at electrodes overlying the leg motor area. A temporal activation and deactivation of the involved brain regions as well as the chronological sequence of the movement-related potential could be mapped to specific phases of the gait-like leg movement. We showed that most cortical capacity is needed for changing the direction between the flexion and extension phase. An enhanced understanding of the human gait will provide a basis to improve applications in the field of neurorehabilitation and brain-computer interface

    Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation

    Get PDF
    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents

    Laparoscopic motor learning and workspace exploration

    Get PDF
    Background: Laparoscopic surgery requires operators to learn novel complex movement patterns. However, our understanding of how best to train surgeons’ motor skills is inadequate and research is needed to determine optimal laparoscopic training regimes. This difficulty is confounded by variables inherent in surgical practice – e.g. the increasing prevalence of morbidly obese patients presents additional challenges related to restriction of movement due to abdominal wall resistance and reduced intra-abdominal space. The aim of this study was to assess learning of a surgery related task in constrained and unconstrained conditions using a novel system linking a commercially available robotic arm with specialised software creating the novel kinematic assessment tool (Omni-KAT). Methods: We created an experimental tool that records motor performance by linking a commercially available robotic arm with specialised software that presents visual stimuli and objectively measures movement outcome (kinematics). Participants were given the task of generating aiming movements along a horizontal plane to move a visual cursor on a vertical screen. One group received training that constrained movements to the correct plane whilst the other group was unconstrained and could explore the entire ‘action space’. Results: The tool successfully generated the requisite force fields and precisely recorded the aiming movements. Consistent with predictions from structural learning theory, the unconstrained group produced better performance after training as indexed by movement duration (p < .05). Conclusion: The data showed improved performance for participants who explored the entire action space, highlighting the importance of learning the full dynamics of laparoscopic instruments. These findings, alongside the development of the Omni-KAT, open up exciting prospects for better understanding of the learning processes behind surgical training and investigating ways in which learning can be optimised
    corecore