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ABSTRACT 

Teams of low-cost Unmanned Aerial Vehicles (UAVs) have gained acceptance as 

an alternative for cooperatively searching and surveilling terrains. These UAVs are 

assembled with low-reliability components, so unit failures are possible. Losing UAVs to 

failures decreases the team's coverage efficiency and impacts communication, given that 

UAVs are also communication nodes. Such is the case of a Flying Ad Hoc Network 

(FANET), where the failure of a communication node may isolate segments of the network 

covering several nodes.  

The main goal of this study is to develop a resilience model that would allow us to 

analyze the effects of individual UAV failures on the team's performance to improve the 

team's resilience.  

The proposed solution models and simulates the UAV team using Agent-Based 

Modeling and Simulation. UAVs are modeled as autonomous agents, and the searched 

terrain as a two-dimensional MxN grid. Communication between agents permits having 

the exact data on the transit and occupation of all cells in real time. Such communication 

allows the UAV agents to estimate the best alternatives to move within the grid and know 

the exact number of all agents' visits to the cells.  

Each UAV is simulated as a hobbyist, fixed-wing airplane equipped with a generic 

set of actuators and a generic controller. Individual UAV failures are simulated following 

reliability Fault Trees. Each affected UAV is disabled and eliminated from the pool of 

active units. After each unit failure, the system generates a new topology. It produces a 

set of minimum-distance trees for each node (UAV) in the grid. The new trees will thus 

depict the rearrangement links as required after a node failure or if changes occur in the 
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topology due to node movement. The model should generate parameters such as the 

number and location of compromised nodes, performance before and after the failure, 

and the estimated time of restitution needed to model the team's resilience. 

The study addresses three research goals: identifying appropriate tools for 

modeling UAV scenarios, developing a model for assessing UAVs team resilience that 

overcomes previous studies' limitations, and testing the model through multiple 

simulations. The study fills a gap in the literature as previous studies focus on system 

communication disruptions (i.e., node failures) without considering UAV unit reliability. 

This consideration becomes critical as using small, low-cost units prone to failure 

becomes widespread. 
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SECTION 1 

GENERAL INFORMATION 

 

1.1.     Motivation and Purpose of the Study 

The use of Unmanned Aerial Vehicles (UAV) systems or teams has grown recently, 

particularly for military missions, given their ability to reach a common goal through 

collaborative team effort and carry out tasks in places inaccessible or dangerous to 

humans (Li et al., 2018). Skoroboagatov et al. (2020) acknowledge several significant 

benefits of using multiple over individual UAVs: time efficiency, simultaneous actions, 

complementarity, fault tolerance, and flexibility.  

Considering the threat of the proliferation of accurate ballistic and cruise missiles, 

Hamilton & Ochmanek (2020) suggest employing large numbers of relatively low-cost, 

reusable, and expendable UAVs into the battle space. The aim is to saturate or exhaust 

the defense. Using teams of low-cost UAVs has been proposed in the military as a 

preventive measure on the assumption that the fault tolerance in UAV teams is higher 

than that of individual units when executing equivalent missions (Hamilton & Ochmanek, 

2020). However, questions on the reliability of low-cost UAVs abound, given the UAV 

failure rate of 1/103 flight hours against that of commercial aviation at 1/105 flight hours, 

a two-order higher magnitude (Petritoli, Leccese, & Ciani, 2018).  

Existing literature associates small and low-cost UAVs, based on their reduced 

dimensions, limited range, and lesser cost (about $10,000 as estimated in 2012). An 

example is the US Army RQ-7 Shadow (Abdullah, n/d), used by the Brigade Combat 
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Team. It has a 20 ft. wingspan, an approximate 60 lb. payload capacity, and an endurance 

of 9 hours from take-off to landing. 

Murtha (2009) suggests that the high failure rate of low-cost UAVs stems from 

their short, imperfect design cycles and a tendency to sacrifice redundant systems for cost 

savings. Smaller, usually lower-cost, UAVs carry limited equipment to reduce power 

consumption and overall aircraft weight (Phadke & Medrano, 2022). For this reason, they 

typically do not feature hardware redundancy because of size, weight, power, and budget 

constraints (Freeman, 2014). Nonetheless, studies testing low-cost UAVs' performance 

against larger, more complex UAVs in diverse surveyance applications (i.e., agriculture, 

topography, hydrology) have found them comparable (Grenzdörffer & Teichert, 2008; 

Koutalakis, Tzoraki, & Zaimes, 2019). Cook (2017) further questions whether increased 

UAV sophistication translates into improved results quality.  

Alongside growth, UAV applications have become more complex, and the missions 

have gradually evolved into multiple-UAV (team) missions (Li et al., 2018). However, in 

teams, each unit loss progressively degrades the team's effectiveness. As individual units 

become disabled, the number of operative units continues to diminish, thus eroding their 

ability to cooperate within the group until the team can no longer achieve its mission 

objectives. Disruptions to the UAV team's activities require actions to minimize the effect 

of the failure of individual UAVs on team performance and availability and to reorganize 

and redistribute resources that fix the disruption and allow successful mission outcomes.  

Tran (2015) discusses two approaches for successful mission completion: 

designing for robustness and for resilience. He defines robustness in the context of a 

System of Systems (SoS) as "the reduced sensitivity of SoS performance to variations in 
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individual system performances that could potentially generate cascading effects across 

an SoS network" (p.11). The standard means to achieve robustness is overdesigning the 

system to reduce its probability of failure. This entails using high-reliability components 

or materials offering high performance and reduced system uncertainty, which incur 

additional costs. However, overdesign and redundancy are no longer affordable for 

organizations facing increasingly strict budgets and pressure for cost efficiency. Instead 

of focusing on designing an SoS insensitive to failure, a better approach may be to assume 

that system failure will occur at some point. A widespread acknowledgment is that 

eventual losses within an SoS are unavoidable due to their complexities and emergent 

behaviors, regardless of any cautionary measures taken. Alluding to the team's resilience, 

Tran (2015, p.12) concludes, "Therefore, designers should instead focus on how an SoS 

will adapt to failures while using remaining operational systems."  

To this end, knowing the resiliency of the UAV team is highly desirable in the 

planning stages of an operation. Operation planners would have information (mission 

type, topography of the terrain, number of units available for the task, and unit reliability) 

to estimate the potential impacts of a UAV team's disruption and, thus, its prospects for 

mission success. However, no framework currently exists to assess the team's resilience 

based on the reliability of the individual units. This framework would pave the way for 

implementing necessary adjustments to reach the desired outcomes. The purpose of this 

study is to fill the void of this lack of framework. 

1.2.  Context 

Increasing advances in drone technology have driven the growth of the unmanned 

aerial vehicle (UAV) global market from $10.72 billion in 2019. The UAV market is 
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projected to reach $25.13 billion by 2027, with a Compound Annual Growth Rate (CAGR) 

of 12.23%. Notably, the small UAV market segment is forecasted to be the fastest-growing, 

driven by demand for small military drones for Intelligence, Surveillance, and 

Reconnaissance (ISR) applications. Similarly, the highest CAGR is projected for fully 

autonomous UAVs, whose software systems refinements enhance the drones' capability 

for detecting real-time airspeed, altitude, and position for warfare missions, logistics & 

transportation, and disaster relief operations. (Fortune Business Insights, 2023). Other 

forecasts expect the global UAV payload market to reach $3 billion by 2027 (Shakhatreh, 

2019), with the payload being all equipment carried by UAVs, such as sensors, cameras, 

lidars, etc. 

Unmanned civilian aircraft such as UAVs are subject to Article 8 of the Convention 

on International Civil Aviation (Doc 7300), signed by the International Civil Aviation 

Organization (ICAO) and amended by its Assembly. It states that, with no persons on 

board the aircraft, the airworthiness (i.e., suitability for safe flight) objective primarily 

focuses on protecting people and property on the ground (Bestaoui, 2018). The Advisory 

Circular (AC) (2020) developed for ICAO Member States mandates that when operating 

UAVs above populated areas, applicants should address, among others, the UAV and 

control system's reliability and have mitigation measures in case of a system failure. 

A unit may experience hardware or software malfunctions, system bugs, or 

communication failures that can compromise its performance, disable it, or even cause it 

to crash. A preventative approach to such failures entails considering UAV unit reliability. 

Blanchard & Fabrycky (2011, p.262) define reliability as "the ability of a system to perform 

its intended mission when operating for a designated period or through a planned mission 
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scenario (or series of scenarios) in a realistic operational environment." Reliability is often 

expressed as the probability of success measured in terms of Mean Time Between Failure 

(MTBF), Mean Time To Fail (MTTF), Failure Rate (λ), or a combination of these.  

At the teams' level, the failure of a UAV unit would cause a communications 

disruption, a significant factor in mission success given the interdependency of current 

multiagent systems (Phadke & Medrano, 2022). Therefore, beyond individual unit 

reliability, the success of a UAV mission often depends on its resilience or the ability of 

the team to quickly and effectively respond to unexpected events, such as equipment 

malfunctions, adverse weather conditions, unexpected obstacles, or communication 

disruptions.  

Resilience is a broad concept applied throughout multiple disciplines; it defines 

how well a system handles disruptions during normal functioning (Phadke & Medrano, 

2022). More precisely, resilience is the ability of an information system to continue to: (i) 

operate under adverse conditions or stress, even if in a degraded or debilitated state, while 

maintaining essential operational capabilities; and (ii) recover to an effective operational 

posture in a time frame consistent with mission needs (Information Technology 

Laboratory, n/d).  

A resilient UAV team can improve mission success by adapting to changing 

environments and maintaining its operational effectiveness in the face of unexpected 

events. Reliability and resiliency concepts are critical to a UAV team's mission outcomes 

and, as such, are the focus of this study. 
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1.3. Research Question and Goals 

This study proposes a framework incorporating individual UAV reliability in a 

team model under a Flying Ad Hoc Network (FANET) structure, with unit failures 

modeled using representative scenarios of UAV environments. We can use this model to 

evaluate the impact of unit losses on their team performance, assess the team's resilience, 

and propose mitigation measures to restore the team's communication and complete the 

mission. Since we use representative scenarios based on realistic elements, the resulting 

model is more realistic and behaves more accurately than known models for UAV swarm 

resilience evaluation, such as those from Tran, Balchanos, et al., 2016; Tran et al., 2016; 

Tran et al., 2015; Bai et al., 2020; Petritoli et al., 2018; and Jakaria & Rahman, 2018 in 

which the team's failures are modeled by randomly detaching network nodes.  

Therefore, the overall research question underlying this study is, how can we 

design a framework that assesses the resilience of a UAV team accounting for unit 

reliability?  

The goal of developing a model for mitigating system failure by considering the 

reliability of individual units and their impact on mission success drives this study. The 

study met three overarching research goals to answer the posed question: 

Research Goal 1. Identify appropriate tools for modeling UAV scenarios. To 

build the model, apply the Reliability and Resilience Theory principles, tools for 

Reliability Calculation, Fault Trees, UAV technology, and Agent-Based Modeling and 

Simulation. 
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Research Goal 2. Develop a model for assessing UAV team resilience that 

overcomes the limitations of previous studies. Previous studies approach the model's 

resilience by using random detachment of nodes. A more realistic model is possible as 

data is available for modeling the removal of the nodes from the team by the incidence of 

failures in individual UAVs.  

Research Goal 3. Validate the model. Agent-based simulations are difficult to 

validate (Klügl, 2008), where validation determines whether a simulation model 

accurately represents the original. Klügl presents a validation framework for agent-based 

simulation that includes several strategies: Face Validation, Sensitivity Analysis, 

Calibration, Plausibility Check, and Statistical Validation. 

1.4. Contributions 

The proposed model for UAV teams subject to failures simulates the impact of 

individual UAV failures on the team communication performance and allows identifying 

measures to mitigate the disruption and continue with the mission. It addresses the 

current lack of a resilience model that assesses the resilience of UAV teams subject to 

individual UAV failures.  

The study fills a gap in the literature as previous studies focus on system 

communication disruptions (i.e., node failures) without considering UAV unit reliability. 

This consideration becomes critical as using small, low-cost units prone to failure 

becomes widespread. As noted earlier, the UAV market trends toward increased use of 

autonomous, small/low-cost UAVs, especially their use in swarms for military and 

disaster relief missions. This trend implicitly acknowledges the unavoidability of UAV 
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unit failures. It also suggests the importance of considering their reliability and creates 

the opportunity and desirability for this study.  

Providing a tool for assessing UAV system resilience based on the reliability of its 

constituent units yields the following potential contributions to the community of UAV 

technologists: 

a. The model would simulate a UAV team's performance on a search or surveillance 

mission and calculate its resilience. When done in the early stages of the operation design, 

it allows implementing any necessary changes to the system and its components to 

increase team resilience and thus approach the mission with greater confidence. 

b. The model offers a framework for modeling and simulating UAV teams' behavior 

under multiple conditions, such as the number of units, size of the terrain (grid), 

probability of failure of each unit, and maximum distance between units to maintain 

communication links, among others. Such a framework would allow UAV team designers 

to discover the underlying collective behavior of the system and therefore design 

proactively. 

c. The proposed allows for assessing the financial implications of a UAV team 

configuration. By simulating a proposed team's performance and ability for fault recovery 

(resilience), decision-makers can explore cost-effective options to complete the intended 

mission within a budget. 

More specifically, the study contributes to the state-of-the-art knowledge of UAV 

system resilience. The collective behavior of the UAV team is challenging to describe and 

model using analytical tools. It is generally a complex system with multiple parts 

interacting and influencing each other. In some cases, it is tough, if not impossible, to 
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produce a model that analytically describes all interactions of their components. On the 

other hand, agent-based modeling and simulations such as those proposed here take a 

bottom-up approach. They allow describing the behavior of a complex system, such as a 

team of autonomous UAVs, by modeling each agent engaged in the collective behavior.  

Although this study does not consider learning and adaptation in agent behavior, 

using an agent-based modeling framework for UAV teams offers a means to estimate the 

effect of eventual changes on team performance. Such a framework would apply when the 

behavior of individual units is subject to changes due to hardware and software 

modifications, potential improvements, or failure of any component. It would allow 

evaluation of the effect of changes and alterations to the network topology and hence, its 

requirements for changes in routing algorithm parameters used in the mobile network. 

Additionally, it would allow assessing the consequences of losing units on the team's 

performance. 

This study fills a gap in the body of knowledge on UAV team resilience, as previous 

studies (e.g., Tran, 2015; Tran et al. , 2017; Bai et al., 2020) attribute randomness to unit 

failures, therefore not accounting for their reliability. The main contribution of this study 

is that it presents a means to measure the resilience of a team of small, low-cost UAVs in 

a way that captures the reality of the failures associated with these vehicles and thus yields 

a more accurate prediction than that offered by previous studies. 
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SECTION 2 

BACKGROUND AND LITERATURE REVIEW 

 

2.1. Unmanned Aerial Vehicles (UAV) 

UAVs have advantages over ground robots, such as their capacity to fly while avoiding 

obstacles. (Bestaoui, 2020). Uses for UAVs are diverse in the military and civil 

environments: supporting public safety, search and rescue missions and disaster 

management, remote sensing, construction and infrastructure inspection, precision 

agriculture, delivery of goods, monitoring of road traffic, surveillance, and wireless 

coverage, and others. 

Unmanned vehicles are classified by size as very small (30-50 cm), small (50 cm-2 m), 

medium (5-10 m), and large (larger than 10 m). They may also be classified depending on 

their military or civil use and their operation technology for fixed, rotary, and flappy 

wings. Finally, unmanned aerial vehicles can be either remote-guided or autonomous.  

UAV systems, such as teams of remote-controlled and autonomous aerial vehicles, 

have gained significant attention, given their capabilities to carry out tasks in places 

inaccessible or dangerous to humans (Li et al., 2018). Another noteworthy option is that 

of teams of UAVs working to reach a common goal through collaborative team effort. In 

fact, using multiple UAV teams instead of a single UAV has been growing recently, 

particularly for military missions.  
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Using multiple UAVs has advantages over the use of individual UAVs. Skoroboagatov 

et al. (2020) mention several significant benefits of using more than a few UAVs over an 

individual UAV: time efficiency, lower cost, simultaneous actions, complementarity, fault 

tolerance, and flexibility. They consider as a threat the proliferation of accurate ballistic 

and cruise missiles. Low-cost UAVs have been proposed in the military as a preventive 

measure: "The general answer to this class of threats is to put enough small UAVs into the 

battle space to saturate or exhaust the defense" (Hamilton & Ochmanek, 2020). Teams of 

low-cost UAVs are used for this purpose. 

Although the fault tolerance in teams of UAVs is higher than the fault tolerance of 

individual units when executing equivalent missions. In teams, each unit loss 

progressively degrades the group's effectiveness. As individual units become disabled, the 

number of operative units continues to diminish, thus eroding their ability to cooperate 

within the group until the team can no longer achieve its mission objectives. 

2.2.    Agent-based Simulations (ABS) 

Bonneau (2002) offers a practical view of Agent-Based Modeling (ABM): ABM is 

not a technology but a mindset where a system is described from the perspective of its 

constituent units. He stresses that though ABMs are easily implemented, people may 

wrongly assume that the concepts are easy to master when the idea behind ABM is 

profound. He discusses areas of application such as flows (traffic, evacuation from 

disasters, etc.). Flow management may simulate the traffic of individual vehicles on a 

regional transportation network and estimate air pollution emissions generated by 

vehicle movements. An example is the simulation of stock markets, as in the case of a 

project for NASDAQ in which their model allowed the regulator to test and predict the 
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effects of different financial strategies. In the case of a theme park,  Bonneau defines ABM 

as "the most natural and easiest way of describing the system."  

Macal and North (2010) comprehensively overview agent-based modeling and 

simulation (ABMS). They explain the main ABS concepts, discuss some applications in 

multiple fields and disciplines, and identify methods and toolkits for developing agent 

models. They rely on agent-based modeling to prototype complex and adaptive systems 

dynamics. They explain that systems are modeled from the bottom-up: agent-by-agent 

and interaction-by-interaction. Self-organization can often be observed in such models. 

Patterns, structures, and behaviors not explicitly programmed into the models arise 

through agent interactions. Macal and North propose a methodology for modeling 

through a checklist of guidance questions for adopting an ABMS solution. He suggests 

relevant questions to know the specific problem to be solved with ABMS: the role of the 

agents in the model, entities, behaviors, agent environment, and model validation. 

Law (2015) presents a description of Agent-Based Simulation (ABS) from an 

author's perspective with a traditional view of modeling and simulation, and points out 

the power of ABS for simulating complex systems. He thus considers that ABS is a 

variation of Discrete Event Simulation (DES) through examples of systems modeled 

under traditional DES and as ABS. Whereas Law discusses emergent behavior as a result 

of agents' interaction over time, he points out that a system does not need to show 

emergent behavior as a condition to model under ABS.  

Abar et al. (2017) review literature and tools for Agent-Based Modeling and 

Simulation. They compare a total of eighty-five agent-based modeling and simulation 

tools for license requirements and availability; source code; type of agent based on their 



 

14 
 

interaction behavior (reactive agents, mobile, belief-desired intention, deliberative, 

evolutionary, etc.); the programming language for Application Program Interface (API) 

for model development; Integrated Development Environment (IDE); Operating System 

platform and Implementation platform; and model development effort (Complex, Hard, 

Moderate, Simply, Easy). Abar et al. clarify that some of the tools mentioned in their 

survey never were implemented or stopped receiving support, which is a shortcoming of 

their study. 

2.3. UAV Team Modeling 

Cybulski et al. (2021) present "a method of modeling a UAV swarm with the 

addition of generating a behavior policy for swarm elements based on a constructed 

model." This method of modeling UAV swarms grounds on "bigraphs with tracking" 

following work by Milner et al. (2009). Their work takes a different approach in 

considering a tighter connection between the mission requirements and model elements 

and the limitation of using identical behavior for all swarm elements. The model 

generation is a bottom-up method that can be automated, starting with the mission 

requirements as bi-graphical diagrams and robot capabilities with non-adaptive behavior.  

Cybulski et al. first define a UAV swarm mission as a Tracking Bigraphical Reactive 

System (TBRS) to create the model. Subsequently, the TBRS is transformed into state 

space represented as a directed multigraph in which the edges correspond to actions 

performed by swarm elements and vertices representing the states. A walk is a finite-

length alternative sequence of vertices and edges from the initial state to the vertex 

representing the final state. Cybulski et al. provide some recommendations for future 

users of this method, particularly the dimensional growth of the systems.  
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Soon-Jo et al. (2018) produced a thorough overview of 239 influential sources on 

the modeling, control, planning, sensing, design, and implementation of aerial swarms. 

They address the challenges of transitioning from 2-D to 3-D and integrating autonomous 

aerial swarm systems with other types of robots. They consider different kinds of robots 

using a hierarchical approach, as these are prevalent in the machine learning and control 

fields. Their paper introduces the topic by providing a general consideration of swarming 

robots, swarm autonomy, the use of hierarchical architecture, and the relation of 

timescales on systems dynamics and control systems' properties.  

Later, Cybulski et al. cover the stability and controllability of swarms, types of 

multiagent systems, models for dynamic swarm systems, physics-based models for robot 

agents, synchronization with leader following, leader selection and sensor placement, 

synchronization, and stability for swarms. They also discuss swarm trajectory generation 

and motion planning, simultaneous planning with distributed assignment, collision 

avoidance and collision-free motions, aerial manipulation, and external control of aerial 

swarms. Finally, they focus on target search and tracking, surveillance and monitoring, 

and cooperative aerial mapping. They also discuss platforms, vehicle power management, 

pose and state estimation, and communication infrastructure.  

Wang et al. (2018) present an alternative system of autonomous UAV swarms used 

for Search and Rescue (SAR) operations, in which each UAV can switch behavior. The 

UAVs make the proper decision on which behavior model to adopt. The decision to select 

the behavior derives from rule-based architecture and depends on the environment. For 

the implementation, a central mission controller generates decision policies. This 

controller mission is usually given to the ground station, disseminating the rules each 
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agent must observe. All UAVs share an initial working memory, including the world state 

and decision policies. Rules are specified precisely using Linear Temporal Logic (LTL) 

formulas. They create models for the behavior using the Partial Observable Markov 

Decision Process (POMDP). A version of the system is simulated with two agents.  

Brust and Strimbu (2015) propose a solution for using swarm formation with a 

leader to attain high-quality forest mapping. It applies a leader election algorithm to a set 

of autonomous micro-UAVs. The leader unit gathers information from the swarm's 

collective and leads it to the destination. Additionally, the leader UAV controls 

communication with the base station. The UAVs in the swarm sense and register the 

events of the environment. The leader collects and processes information from them, 

reacting to avoid obstacles and acting for route planning and maneuvers. The leader unit 

is selected based on its characteristics. Each unit keeps track of its neighbor's position, 

allowing it to maintain its formation.  

Brust and Strimbu's algorithm assigns "weights" to each one of the units. 

Nevertheless, the relation between the given weight and their use and relevance within 

the formation is unclear. Their proposed scheme was simulated with swarms of 4, 8, and 

12 UAVs. For each simulation, the time to travel between two points ({25,25,25} and 

{100,100,100}) was observed and charted. Results show no time difference between 4 and 

8 UAVs; nevertheless, the travel time was substantially higher for the case of 12 UAVs. 

They offer no report on their analyses of the results.  

Skoroboagatov et al. (2020) offer a survey based on reviewing 87 papers discussing 

multiple UAV systems with an emphasis on real-life applications. The paper covers the 

advantages of multiple-UAV systems, such as time efficiency, lowered costs, the 
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possibility of accomplishing simultaneous actions, complementarity, fault tolerance, and 

flexibility. At the same time, they discuss disadvantages, such as legal restrictions, piloting 

complexity, and safety issues. Skoroboagatov et al. also explain some UAV applications 

in real-life scenarios like video surveillance, photogrammetry, networks, traffic 

monitoring, load carrying, and search-and-rescue. Finally, they discuss a taxonomy for 

multiple UAVs, the data analysis of the reviewed literature used to carry out the 

publication, communication technologies used in UAV teams, and future trends for 

multiple UAV systems. 

2.4. Autonomous Agents 

An agent perceives its environment through sensors and acts upon that 

environment through actuators (Russel & Norvig, 2021). The agent function specifies 

actions in response to any percept sequence; its program implements the agent function 

of mapping from percepts to actions. So, typically, the agent runs in a computer device 

that interacts with sensors through input ports and issues the command signals to the 

corresponding actuators through output ports.  

An agent is rational if, for each possible percept sequence, it selects an action to 

maximize its performance measures based on the evidence provided by the percept 

sequence and whatever built-in knowledge the agent has. The agent is autonomous if it 

gains knowledge from its percepts and not merely from the designer (Russel & Norvig, 

2021).  

UAVs are often used in robotics and modeled as agents. Their identifiable building 

blocks are sensors, percept sequences, agent programs, and actuators. Cameras, 

communication antennae, GPS, and accelerometers are part of the set of sensors in the 
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payload of any ordinary UAV. An inboard computer (controller) reads the signals from 

sensors, and the controller processes them according to a specific module. It then outputs 

the signals to the corresponding actuators (servos, amplifiers, motors, etc.).  

2.5. Multiagent Systems 

In a team of autonomous agents, the agents perceive their environment not only 

through their sensors but also from information about the perceived environment of other 

agents that share or not their sequence of percepts. Agent-agent communication is 

required to enable and synchronize their interaction. Creating a multiagent environment 

instead of a single-agent environment results in substantial complexity—specifically, 

decision-making. What to do when more than one agent inhabits the environment will 

depend on the relationship among these agents (Russell & Norvig, 2021).  

2.6. Multiagent Communications 

Interaction among autonomous agents is required to achieve the goals, such as 

sharing goals and knowledge (sequence of percepts). Efficient and reliable 

communication is a dominant consideration if the system's response requires fluidity. 

Autonomous agents may be mobile; therefore, it is necessary to handle mobility without 

restricting the system's autonomy. Each agent may move at high speed and with 

unpredicted direction, making communication challenging. Agents themselves may 

actively participate in the communication infrastructure.  

Communications requirements in environments of mobile multiagents have been 

resolved primarily using ad hoc networks. These networks emerge as a solution in cases 

where no infrastructure is available to fulfill the needs of communications between agents 
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and between base stations and agents. Adding to Bekmeczi et al., Guillen-Perez and Cano 

(2018) differentiate the three major approaches for implementing ad hoc networks: 

MANET, for mobile networks, which directly connect mobile devices such as cell phones, 

laptops, sensors, etc.; VANET, for vehicle networks serving automobiles, buses, 

ambulances, etc.; and FANET, networks of flying vehicles. One of the features of FANETs 

is that the work allocated to them determines the mobility of the nodes (Wheeb et al., 

2022). 

2.7.  Reliability and Resilience of UAV Teams 

Teams of low-cost, autonomous, small, or micro UAVs have become an attractive 

alternative for surveillance, searching, area mapping, land photography, and other 

applications. Assembling these vehicles using low-cost components with uncertain 

reliability requires all necessary provisions to minimize the effect of the failure of 

individual UAVs on team performance and availability. When one UAV fails and is 

deactivated, it may create undesirable outcomes. For example, if an uncontrolled UAV 

were to crash into an inhabited territory and cause damage to persons or property. At the 

same time, the missing unit creates a void by losing data from the coverage of the 

corresponding area surveyed, which may create inconsistency in the team's state.  

In some UAV teams, the units are also communication nodes. Missing units may 

disrupt the message flow, risking the completion of the mission for lack of coordination. 

For instance, if the dismissed UAV were in the middle of an information update being 

shared with other UAVs or if the unit was functioning as a communication node in an ad-

hoc network used by the team. In both cases, necessary actions would be required to 

reorganize and redistribute resources to fix the disruption. 
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A resilience model would allow designing a system that maintains or recovers the 

team's capability after a disruption. In our scenarios, the capability corresponds to the 

total number of messages received in the network.   

2.7.1. Elements of Reliability 

Ross (2006) provides an example for simulating the reliability function, where he 

considers a system of n components in which each one is either functioning or failing. The 

equations that follow describe the calculation of the reliability function of a parallel 

system with n independent components; Figure 1 illustrates the difference between series 

and parallel structures.  

 

Figure 1. Reliability of series and parallel models. Adapted from Ross (2019). 
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For each component, Ross defines a Boolean function si that takes value = 1 if the 

component i works and zero if otherwise. Ross describes the state vector s = (s1, . . ., sn) 

and a nondecreasing function:  structure φ (s1, . . ., sn) that similarly takes value = 1 if the 

system works under the state vector and 0 if otherwise. He refers to the most common 

structure functions, series structures, in which the system works if and only if all its 

components function, and a parallel structure, in which the system works if at least one 

of its components works.  

Ross defines the k-out-of-n structure function. The reliability function r (p1, . . .,pn) 

represents the probability that the system works when the components are independent, 

with component i functioning with probability pi where i = 1, …, n. Finally, Ross defines 

the reliability function for series and parallel systems in terms of pi. He shows a way to 

simulate the Si by generating uniform random numbers U1, . . ., Un and comparing with pi 

giving Si = 1, if Ui < pi or 0, if Ui > pi. System reliability refers to the probability that the 

system safely operates during the operational lifetime.  
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The complement of the reliability is scaled with the lifetime to obtain the average 

failure probability per hour. Besides reliability, mean time to failure (MTTF) is a standard 

measure of interest. Degraded states consider systems in which some faults have already 

occurred. If the system is degraded, it still safely operates but provides reduced 

functionality. Figure 1 above shows the mathematical relationships among the elements 



 

23 
 

of reliability as a sequence of operations describing a parallel structure and ending with 

the reliability function calculation in a parallel system with independent components.  

2.7.2. Reliability Model Precedent 

Koeneke, Babiceanu, & Seker's (2019) "Target Area Surveillance Optimization with 

Swarms of Autonomous Vehicles" study is a precedent for this study. It considered a team 

(swarm) of UAVs modeled as a multiagent system surveilling a hostile territory modeled 

as a discrete search area, mapped as a rectangular grid. A modified ACO (ant colony 

optimization) algorithm selected the trajectory of the UAV agents during their 

surveillance mission, with the searching criteria prioritizing the least visited path. Given 

their communication capabilities, UAVs broadcasted and received each other's positions 

in the grid. A separate communication channel updated the results of the surveilled 

locations to a central station. 

Swarm agent processors ran cooperation algorithms specific for distributed 

multiagent systems, which allowed updating the total visit count for all cells in the grid at 

any time. Having real-time data on the transit and occupation of all cells enables UAV 

agents to estimate the best alternatives to move within the grid. UAV agents prevent a 

collision by broadcasting their positions to the rest of the swarm before moving to the 

next cell. A conflict resolution protocol is triggered if multiple agents attempt to move to 

the same cell. Upon completing the mission, the UAV swarm would fly to a gathering point 

where the data is collected and assembled, and the battery re-charging process for the 

next task is started. 
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The algorithm resulting from this study assumed that the cost of UAVs would be 

kept at a minimum and did not consider any UAV redundancies due to component costs. 

However, Koeneke, Babiceanu, & Seker's algorithm relies on the idea that agent reliability 

is critical to maintaining the team's availability and operativity and, thus, is optimally 

suited for modeling UAV behavior.  

2.7.3. Network Threats and Adaptation 

Tran et al.'s 2015 ABS approach for evaluating the agility of adaptive C2 

(Command Control) networks, "Evaluating the agility of adaptive command and control 

networks from a cyber complex adaptive systems perspective," is applied to a hypothetical 

military scenario where UAVs are assigned to maintain surveillance over enemy and 

neutral agents in a defined battlefield. The model uses random and targeted node 

removals to model threats in C2 networks since this method enables consideration of 

different network threats. A node removal can represent a targeted cyber-attack on a 

crucial node, random failure, or physical damage to a node. It is assumed that node 

attacks and failures result in total loss of functionality, causing the node and its links to 

be removed from the network when attacked. Targeting by recalculated degree (RD) 

removes nodes with the highest degree at each attack, updating the degree of all nodes 

once the network structure is changed. 

Network adaptation is modeled by allowing nodes to rewire links randomly 

following a node removal event. Only links disconnected by the most recent node removal 

can be rewired. A time delay between when a node is removed and when the network 

adapts is implemented to represent the time it may take to decide how to adjust and 

rewire existing links. Rewired nodes choose new neighbors randomly; if a node is already 
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connected to all other nodes, that node does not rewire its link. Network researchers have 

considered similar defensive or adaptive mechanisms to improve network resilience; 

however, most of these studies either pre-emptively rewire links or randomly restitute 

disconnected links anywhere in the network. 

Tran et al.'s study considers a military scenario in which targeted nodes are 

simulated by random removal. The model proposed in this study entails a non-adversarial 

scenario in which the individual units' failures' effects compromise UAVs. These failures 

are modeled using a Fault Tree Reliability Model, in which the manufacturer provides the 

probability of failure of each component. The rewiring of nodes follows a selection of a 

minimum distance tree given by Dijkstra's shortest path. As a result, the expectation is to 

have a model with higher realism and effectiveness than the model in which nodes are 

removed and rewired randomly. 

2.7.4. Resilient vs. Robust System-of-Systems 

In "A Network-based Cost Comparison of Resilient and Robust System-of-

Systems" (Tran et al., 2016) 's scenario, a team of unmanned aerial vehicles (UAVs) is 

tasked with maintaining surveillance over a set of adversaries on a specified battlefield. 

The UAVs are networked together to enable communications, primarily sharing known 

locations of adversaries. In this SoS network, nodes represent UAVs, and links represent 

data links. An agent-based model is used to simulate and compare the performance of the 

network designs. As in their previous study, the model contains three types of agents: 

UAVs, adversaries, and neutrals. Simulations include 20 agents of each type, all moving 

within a square battlefield split into 36 search grids. UAVs attempt to maintain awareness 

of the location (i.e., current search grid) of other agents on the battlefield by sensing 
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nearby agents and sharing information with teammates. Messages sent between agents 

are received or dropped; corrupted or false messages are not considered. Network attacks 

occur every 200-time steps in a simulation; network adaptation occurs 100-time steps 

after each episode.  

C2 performance is measured with an awareness metric, A(t), calculated using 

Shannon's information entropy. Awareness is normalized to be within [0, 1]. The metric 

is formulated such that a UAV with complete uncertainty of the locations of all other 

agents of interest at time t has an awareness A(t) = 0. In this context, total uncertainty 

means the UAV gives all other agents a 1/36 probability of being in each search grid. A 

UAV with an awareness A(t) = 1 would have complete certainty of the current grid of every 

agent of interest. The mean awareness of all UAVs is used as the performance data in 

resilience metric calculations. The scenario shows Rtotal increasing initial density due to 

the increase in node density.  

This study compares two design approaches: for the robustness and resilience of 

UAV teams. Both methods of simulating failures and node rewiring are based on random 

disablement. At the same time, the proposed study focuses on resilience. It considers that 

the effect of individual unit failures disables UAVs. As indicated, failures are modeled 

using a Fault Tree Reliability Model, in which the manufacturer gives the probability of 

failure of each component. The rewiring of nodes follows a selection of a minimum 

distance tree given by Dijkstra's shortest path. 
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2.7.5. Performance-based System Resilience 

Tran et al. (2017) use an information exchange network model to demonstrate the 

framework's applicability in "A framework for the quantitative assessment of 

performance-based system resilience." They use stochastic simulation under an 

information exchange network model to demonstrate the framework's applicability 

toward system design. The network model is based on Dodds, Watts, and Sabel's model 

for organizational networks to simulate information exchange in a network. The exchange 

is modeled by messages passed between source and target nodes along existing paths in 

the network. Each node in the network creates a new message with probability μ at every 

time step in the simulation. Once generated, messages are forwarded along the shortest 

path in the network to their target node.  

Messages are passed from one node to a neighboring node in a single time step. 

Each node is assumed to have complete knowledge of the current network topology, 

allowing nodes to determine the shortest path from themselves to another node in the 

network. Their study uses the Barabási-Albert (BA) preferential attachment model to 

generate the initial topology. Potential network disruptions are modeled as node removal 

events, where nodes are removed uniformly at or in a targeted manner (for example, 

intentional network attacks). Targeted node removal is based on node degree, where the 

most connected nodes are removed every time. Actions considered in this study anchor 

on network adaptation, where nodes affected by a disruption rewire any disconnected 

links. Two adaptation strategies are considered: random rewiring and preferential 

attachment. With random rewiring, nodes randomly decide whom to rewire disconnected 
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links. System performance, y(t), is the total number of messages received in a network at 

each time step in a simulation. 

As in other contributions from Tran et al., the model used to simulate disruptions 

by node removal is random, and the recovery actions are done by random rewiring or 

preferential attachment-based adaptation. Although the authors recognize a weakness 

regarding threat probabilities, they do not propose any options to simulate them, a 

solution that this study offers. 

2.7.6. Individual UAV Reliability  

"Reliability and maintenance analysis of unmanned aerial vehicles," a study by 

Petritoli, E., Leccese, F., & Ciani, L. (2018), discusses a new logistic approach to UAV 

reliability and its relationship with maintenance. It emphasizes the advantages of 

completing the reliability study a priori as it can produce design recommendations. It 

presents actual reliability parameters that may be used as starting point to calculate the 

initial reliability of UAVs: Mean Time Between Failures (MTBF), Failure in Time (FIT), 

and Intrinsic Reliability. The study establishes the Reliability Assessment Hierarchy for 

UAVs for 103 failures. It identifies six critical systems in common drones: Ground Control 

System (GCS), Mainframe, Power Plant, Navigation System, Electronic System, and 

Payload. The fraction of failures from 103 total system failures is given for each of the main 

systems; each is further divided into subsystems, giving their respective portion of failures 

out of the total 103 failures.   

Additionally, the study classifies the types of UAV failures (catastrophic, severe, 

moderate, and soft). It compares different maintenance philosophies for UAVs. It 
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discusses the concepts of preventive and corrective maintenance that consider the system 

subjected to partial performance degradation (soft failure) until a hard failure occurs. 

Finally, by evaluating UAV uncertainty through the confidence interval, Petritoli et al. 

(2018) determine new soft failure limits, considering the general knowledge of the 

systems and subsystems to guarantee the proper preventive maintenance interval. 

Petritoli et al.'s study provides critical insight into the reliability of individual 

drones. Although the figures of reliability given in the study are for commercial drones, 

their numbers may be helpful to obtain accurate MTBF in our model, which also does not 

consider maintenance other than battery replacement, given the limitation on costs (as 

the principle is the use of low-cost units). Soft failures are not considered in the proposed 

model as these are attributes of more expensive unit types.  

2.7.7. k-resiliency for Collaborative UAVs 

In "Formal analysis of k-resiliency for collaborative UAVs," Jakaria and Rahman 

(2018) propose a verification framework that automatically determines the resiliency of a 

UAV network and can find out unsafe or vulnerable UAVs in terms of control or 

connectivity requirements when several UAVs are unavailable (k) because of failures, 

accidents, or cyberattacks. The framework inputs necessary UAV parameters, such as 

current position, communication range, velocity, direction, fuel levels, encryption 

capabilities, etc. It formally models these parameters and the requirements and 

constraints to maintain secure communication. They solve the model using a Satisfiability 

Modulo Theory (SMT)-based formal verification engine. The results can determine 

whether the UAV network is resilient under the unavailability of several UAVs allowing a 

navigator UAV to navigate others safely.   
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The authors treat resilience differently from other related work and our proposal: 

Jakaria and Rahman define resilience as a condition where k units are unavailable. The 

remaining UAV units continue with the mission and create a safe network. They 

implement a model encoding the network configuration and the constraints into 

Satisfiability Modulo Theory (SMT) logic with a Z3 SMT solver (theorem prover). The 

solver checks the verification constraints and provides a satisfactory (SAT) result if all 

constraints are satisfied or (UNSAT) if the result is not satisfied. Their proposed 

verification framework is evaluated by running experiments with 10 – 50 UAV topologies. 

The authors do not consider recovery (adaptation). In contrast, the proposed study is 

interested in knowing the minimum number (n – k) of UAVs required to complete a 

mission. 

2.7.8. UAV Swarm Communication Limits and Resilience 

Bai, G., Li, Y., Fang, Y., Zhang, Y. A., & Tao, J.'s (2020) "Network approach for 

resilience evaluation of a UAV swarm by considering communication limits" features a 

similar scenario as in Tran, Domerçant, and Mavris (2015) described above. The case 

study is based on a multiagent simulation using Anylogic, where a UAV swarm executes 

a surveillance mission over a controlled area. The battlefield area is modeled as a 

rectangular grid of S = 500 × 600. The UAV swarm is fully self-organized and self-

adaptive; therefore, its awareness and actions are based on local interactions among 

UAVs. Initially, N units are released from an airplane in a safety zone. The units regroup 

following an improved model for the initial network generation that is unlikely to generate 

isolated clusters or nodes.  
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Each UAV moves in a snakelike search pattern within the battlefield. They receive 

and send information about the locations of detected opponents and other UAVs via 

multi-hop wireless communication. Their model includes the maximum range of 

communications. Since the network topology is highly dynamic, and the relative positions 

of each pair of UAVs change frequently, the model checks when two nodes exceed the 

maximum communication range. Suppose the distance between the units exceeds the 

maximum range. In that case, the node is removed and then rewired by the host node 

using the preferential attachment probability function. If there are no nodes within the 

range (the probability of linking with another node is 0), the node stays in active status 

until other nodes move within its range of communications. The authors apply a modified 

resilience metric with the communication range as a parameter. 
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SECTION 3 

A RESILIENCE MODEL FOR UAV TEAMS 

EXECUTING SURVEILLANCE MISSIONS 

 
This study relies on empirical strategies to develop and test a quantitative model 

for UAV team communication recovery from individual UAV failures to improve team 

resilience. It uses computational tools and fault tree methods for reliability calculation. It 

entails modeling and simulation-based research that applies the principles of reliability 

and resilience theories and UAV technology. The study comprises three phases, resilience 

model development, testing, and validation. The testing phase entails iterations to allow 

for the refinement of the tool. The model validity phase intends to verify whether the 

proposed model has met its purpose.  

3.1. Target Area Surveillance Algorithm   

Unlike Bai et al.'s study (2020), which considers the communication range 

between UAVs, the one proposed assumes that the maximum distance in the grid is lower 

than the maximum range of communication. In their study, the nodes are removed and 

then rewired by the host node using the preferential attachment probability function. We 

use the same approach as Koeneke, Babiceanu, & Seker (2019) to move the agents within 

the grid. The units affected by faults are disabled, and the flow of messages is affected due 

to the loss of a UAV, a communication node. The absence of this communication node 

disrupts the flow of messages in the network.   
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Individual MAV agents broadcast their positions to the rest of the swarm agents 

before moving to the next cell, which minimizes the probability of collision. Receiving 

position coordinates from other agents allows for evaluating the risk of advancing to a 

potentially overlapping and dangerous collision course. Consequently, each agent can 

update the total visit count for all cells in the grid. After selecting the next neighbor cell 

to move, the agent broadcasts the intended move. 

Each UAV agent in the swarm has, at any point in time, except when located on a 

border cell, eight degrees of freedom for the next visit. There are eight neighboring cells 

to any cells in the grid except for the border ones. 

At time T, the agent moves from c(it=T-1, jt=T-1) to c(it=T, jt=T), or given the 

representation in Figure 2, the agent can move from c(i, j) to either one of the following 

cells (Moore neighborhood): c(i-1, j-1), c(i-1, j), c(i-1, j+1), c(i+1, j+1), c(i+1, j), c(i+1, j-1), 

c(i, j-1), or c(i-1, j-1).  

Figure 2. Agent movement at time T. Adapted from Koeneke, Babiceanu & Seker (2019). 
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Initially, each UAV is randomly assigned to a starting position cell in the grid. To 

choose the next cell to be visited, 

1. Determine whether c(i, j) is a border cell by calculating the row and column 

indices and checking the condition of exceeding or not the row (N) and column (M) sizes. 

2. Sort-rank the table of grid cells such that their visit indices are updated in 

decreasing order. 

3. Select the cell to be visited as having a lower visit index or the minimum visited 

cell index out of the candidate neighboring cells. 

4. Choose randomly if more than one neighboring cell has the same visit index.  

5. Broadcast updates and repeat the procedure if the selected next cell was already 

visited, 

6. If contention exists among more than one UAV for the same cell, resolve the 

conflict by moving to another cell or remaining in the same one. 

UAVs interchange messages with the rest of the team to support the surveillance 

application. Each node randomly decides on every tick to send a destination message to 

one or more UAVs. The probability of sending messages per node varies depending on the 

number of active nodes available, so traffic within the network remains constant as nodes 

fail. 

The model keeps track of each message sent regarding the route followed (UAVs 

in transit), the time taken to reach the destination, and whether the message was 
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delivered or failed. The course followed by each message corresponds to the least-cost 

route assigned using the Dijkstra algorithm. A matrix with the set of least-cost routes 

between a source node and its final destination node is kept in every node. 

Similarly, a fault routine is run at each tick for each UAV.  In the case of resulting 

unit failure, that unit is disabled. Once the rest of the UAVs realize the unit is unavailable, 

the failed unit is dismissed as an alternative. The model proceeds to reconfigure the 

connections with the rest of the UAVs. Considering the described model to quantify the 

number of messages the UAVs received as a performance measure, we can apply 

resilience metrics to evaluate the effect of failures on the number of messages received in 

the network and the network response to compensate for the disruption.  

3.2. Reliability Model 

One of the most critical aspects of the evaluation is to know whether the mission 

was successful. We should remember that the mission's main objective is to search or 

surveil terrain. A good metric for assessing whether the mission was successful is knowing 

the number of times a specific cell was searched. The reliability model keeps the count of 

the cells visited and the number of units disabled during each simulation time (tick). The 

model enables design trade-offs that may help in the design of missions by simulating 

scenarios with different numbers of UAVs, reliability, and allocation of time (number of 

ticks), as well as estimating the k-out-of-n figure to complete the missions.  

This model considers each UAV an autonomous agent and the searched terrain as 

a two-dimensional M × N grid. Individual MAV agent broadcasting of positions to the 

remaining swarm agents before moving to the next cell minimizes the probability of 



 

37 
 

collision. An agent's location in the surveilled area is known at any time by its 

computational unit, given its c(i, j) designation. Each agent maintains and continuously 

updates an internal database with the number of visits to each cell in the grid. All agents 

broadcast their location to the rest of the team every time they move from one visited cell 

to the next. The rest of the team population records each agent's broadcast. Consequently, 

each agent can update the total visit count for all cells in the grid. Having the exact data 

on the transit and occupation of all cells in real-time allows the UAV agents to estimate 

the best alternatives to move within the grid. 

The model uses Python-based Mesa as the agent-based simulation tool. One of the 

major advantages of using Agent-Based-Simulation is its bottom-up conceptualization of 

the scenarios. In a previous study, we used MATLAB to model an identical scenario. Using 

MESA for agent modeling in this current study enabled producing and simulating models 

significantly faster and easier than in our preceding study, which relied on MATLAB 

(Koeneke, Babiceanu, & Seker, 2019). 

3.2.1. Individual Units Reliability Model 

Each UAV is simulated as a hobbyist (low-cost), fixed-wing airplane like the Ultra 

Stick 120 used by Venkataraman et al. (2017). It is equipped with a generic controller and 

set of actuators, susceptible to failure. The assumption is that software faults are not 

present and only hardware, surfaces, and surface servo actuator failures would cause the 

dismissal of the unit. Figure 3 shows a block diagram of the hardware of a typical small 

autonomous UAV. 
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Figure 3. Block diagram of the hardware of a typical small UAV. 

A total of 15 points of failures (components) are considered. Table 1 lists the 

components prone to failure and the approximate probability of failure for each one. 

Several providers of aero modeler components and suppliers of parts for airplane models 

were contacted asking for information on the reliability indexes, specifically MTBF, of the 

hobbyist airplanes like those used in this study. Given the scant information gathered 

from these sources, the probabilities of failure given in the table are estimations, as actual 

parameters of MTBF were not available at the time. Compensating for this, the values 

chosen for the simulation are extremely high compared to the usual values. The purpose 

of this is to pronounce the rate of team failure and, thus, to arrive more quickly at the 

simulation results. 
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Table 1: Components susceptible to failure and their probability. 

 

 

 

 

 

 

 

 

 

 

The criteria for composing the fault tree is that any single or multiple components 

faults are catastrophic. In other words, all components are critical. This is illustrated in 

Figure 4. Using the given probabilities, a program designed in MATLAB simulates the 

failures of the components. The program randomly generates a set of variates. It uses the 

probability of failure as the threshold for failure/no failure. 

Figure 4. UAV fault tree. 

No. Component  Probability 
1 Aileron Servo 0.04000 
2 Aileron Coupling 0.03000 
3 Aileron Surface 0.00500 
4 Elevon Servo 0.02000 
5 Elevon Coupling 0.01000 
6 Elevon Surface 0.07000 
7 Rudder Servo 0.09000 
8 Rudder Coupling 0.04000 
9 Rudder Surface 0.00800 

10 IMU Failure 0.04000 
11 Sensor Failure 0.02100 
12 Motor Failure 0.01900 
13 Communica�on Failure 0.14500 
14 Power Supply 0.00400 
15 Controller  0.00900 



 

40 
 

Table 2. UAV failure simulation samples 

Table 2 shows a sample of 18 failure simulations for each UAV component. Each 

failure is depicted with "0" and not failure with "1." Figure 5 shows the total number of 

faults per component for 50,000 simulations. 

Figure 5. Number of faults per component after 50,000 simulations. 
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3.2.2. Modeling and Simulating UAV Team Failures 

One of the most important aspects of the evaluation is to know whether the mission 

was successful in attaining the mission's primary objective: to search or surveil terrain. A 

good metric for assessing whether the mission was successful is knowing the number of 

times a specific cell was searched. The reliability model keeps the count of the cells visited 

and the number of units disabled during each simulation time (tick). The model enables 

design trade-offs that may help in the design of missions by simulating scenarios with 

different numbers of UAVs, reliability, and allocation of time (number of ticks), as well as 

estimating the k-out-of-n figure to complete the missions. 

Recalling that the upper or team level is modeled and simulated as an agent-based 

system (ABS), the UAV teams in this work do not follow any formation or structure. 

Instead, each agent proceeds with its programmed behavior. There is available simulation 

software (Kopfstedt et al., 2008; Luo & Sycara, 2019; Macal & North, 2010; Aggarwal, 

Kumar, & Tanwar, 2021), as well as proprietary software to approach an agent-based 

simulation (Ordoukhanian & Madni, 2019). Several alternatives have been evaluated to 

select a suitable agent-based simulation (ABM) that could quickly produce satisfactory 

results while addressing costs, flexibility, power, and simplicity. Some of the ABM tools 

compared were: SIMIO, MESA, Repast, Repast Symphony, and Repast HPC. The option 

MESA is based on Python and has enough flexibility to program the initial scenarios of 

this work. It was used to simulate the Team of UAVs and has provided satisfactory results 

in a short time.  

The simulation scenario resembles the case of a surveillance mission covered in Klügl 

(2008), nonetheless in a non-adversarial territory. The UAV team will work 
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collaboratively, flying over friendly territory modeled as an N × M grid. As the UAV moves 

to the next position, a fault is simulated for each of the 15 unit components. If a fault is 

present, the unit is disabled, and the incident parameters (Unit ID, time, grid position, 

and fault code) are reported.   

The algorithm for the simulation is given in the pseudo-code below.  

Algorithm: Agent-Based Simulation UAV Team 

for k = 1 to MAX_NUM UAV       /-initialize position agent-/ 

  next (i, j) = (ik, jk) 

  perform other initialization steps 

end 

for t = t1 to tsim_max     /-Simulation ticks-/   

 for k = 1 to MAX_NUM UAV 

if k-th UAV is not disabled 

   calculate the best next cell for moving  /- least visited -/  

    if the next cell calculated is available 

      move to the next cell (inext, jnext) 

     broadcast new cell location 

     apply fault induction routine /-random fault generation-/ 

     if not fault; 

      else disable k UAV 

     broadcast report for ti 

     send messages to selected nodes 

      else repeat with a new cell 
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  else select the next UAV 

 end 

end 

On a per-tick base, the simulator first generates a failure routine for each one of 

the UAVs. Each UAV affected by a failure is disabled and eliminated from the pool of 

active units. Next, for the remaining active UAVs, the simulator estimates the grid 

movements and proceeds to move the UAVs to the new positions, where possible.  

After a complete movement cycle, the system generates the new topology. It 

produces a set of minimum distance trees using Dijkstra's algorithm for each node (UAV) 

in the grid. The new shortest-path trees will thus depict the rearrangement links as 

required after a node failure or if changes occur in the topology due to node movement. 

The model generates parameters such as the number and location of compromised nodes, 

efficiency before and after the failure, and the estimated time of restitution needed to 

model the team's resilience.  

The model takes a two-level bottom-up approach. A lower level, consisting of 

individual UAVs, is modeled as autonomous agents, i.e., where the agents' software has 

programmed behaviors that give them the ability to decide or act within the simulation 

context, depending on the situations in which the agents find themselves. Individual 

hardware failure is represented as a Boolean parameter Hi,j. The upper level is modeled 

as a team of individual UAVs using Agent Base Modeling (ABM). Fault trees expose the 

failure probabilities of the critical components of the chosen model's hardware. Figure 6 

shows a diagram of the two-level UAV Team Reliability Model. 
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Figure 6. UAV Team reliability model. 

 

Figure 7. UAV Team k-out-of-n top node. 

Figure 7 shows a fault tree approach to depict the team's reliability. The upper node 

of the tree is a k/n gate, which models a k-out-of-n structure that refers to a system if at 

least k out of the n UAVs are working, as Ross (2021) explained. The individual UAV 

reliability is modeled as all-or-nothing (series) in which all hardware modules of the UAV 

must work. Modeling faults in individual units follow this procedure: 



 

45 
 

Generate random reliability vectors 𝝍𝝍(X). 

o A series model (from the fault tree) with fifteen components is used in this case. 

o The method follows that suggested by Sheldon Ross (2006). 

o For each component, xi of 𝝍𝝍(X) generates a random Uniform Distributed 

number Ui in the interval (0,1) 

o If Ui > pi (probability of xi faulty) then xi = 1 (no fault) otherwise xi = 0 

(fault) 

o pi  extracted from factor data  

o Vectors 𝝍𝝍(X) of 15 components 

o Failures of each component are independent of other components. 

3.2.3. Reliability Trials 

We ran the model in batches of 100 simulations to estimate reliability. We collected 

information about failures for different configurations (components). Each UAV had 15 

components configured in a series structure. A series structure works only if all 

components function. For example, we simulated nine scenarios with the following 

variants: team sizes of 25, 35, and 40 UAVs, probability failure per UAV of 0.0249, 0.044, 

and 0.055. (The probability of failure per UAV is calculated as the sum of the individual 

component, as required in a series structure). 
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 The following pages illustrate that each simulation corresponds to a batch 

of 100 models (simulations) for 150 ticks. The result of each simulation, depicted in 

Figures 8-16 and Tables 3-11, reveals the following parameters: 

o Total number and percentage of UAVs disabled (failed) 

o Total number and percentage of cells searched (visited) 

o Averages of visits per cell 

o Accumulated failure average of each component  
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Figure 8. Trial 1: 100 simulations, N=25, 20x20 grid, 150 ticks, p1. 

Table 3. Trial 1 data. 

N_AGENTS 
 
PROBABILITY 

25 
 

0.055 

TICK 
N º 

% UAVS 
DISABLED 

N º UAVS 
DISABLED 

% CELLS 
VISITED 

N º OF 
CELLS 

VISITED 
grid_width 25 127 99.96 24.99 90.5425 362.17 
grid_height 20 128 99.96 24.99 90.5425 362.17 
n_ticks 150 129 100 25 90.5425 362.17 
n_models 100 130 100 25 90.5425 362.17 
part1_tolerance_level 100 
part2_tolerance_level 0.001 
part3_tolerance_level 0.0012 
part4_tolerance_level 0.0011 
part5_tolerance_level 0.0098 
part6_tolerance_level 0.006 
part7_tolerance_level 0.0067 
part8_tolerance_level 0.0013 
part9_tolerance_level 0.002 
part10_tolerance_level 0.0097 
part11_tolerance_level 0.0014 
part12_tolerance_level 0.0015 
part13_tolerance_level 0.001 
part14_tolerance_level 0.0012 
part15_tolerance_level 0.0098 
model_statistic_agg_method 0.0013 
time_in_seconds_per_model average 
time_in_seconds_for_all_runs 0.162896 

Trial 1:  

25 UAVs, grid 20x20 150 �cks  

Probability of failure per single unit=0,055. The 
average number of visits per cell is 1.207875, 
measured in �ck 149. 

This model corresponds to the worse scenario: 
lowest number of UAVs (25) and highest 
probability of failure per unit. 

 In this model for 100 simula�ons, 100% of the 25 
UAVs are disabled by the �ck 129. As we can see 
the probability of comple�ng the mission is very 
low. Observe that out of 100 simula�ons, none 
was 100% successful, leaving more than 9% of cells 
unsearched. 
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Figure 9. Trial 2: 100 simulations, N=25, 20x20 grid, 150 ticks, p2. 

Table 4. Trial 2 data. 

n_agents 
 
probability 

25 
 

0.044 

Tick 
N º 

% UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 20 146 99.92 24.98 95.0275 380.11 
grid_height 20 147 99.92 24.98 95.03 380.12 
n_ticks 150 148 99.92 24.98 95.0325 380.13 
n_models 100 149 99.92 24.98 95.035 380.14 
part1_tolerance_level 0.001 
part2_tolerance_level 0.001 
part3_tolerance_level 0.0011 
part4_tolerance_level 0.001 
part5_tolerance_level 0.006 
part6_tolerance_level 0.005 
part7_tolerance_level 0.001 
part8_tolerance_level 0.002 
part9_tolerance_level 0.0097 
part10_tolerance_level 0.0014 
part11_tolerance_level 0.0015 
part12_tolerance_level 0.001 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0098 
part15_tolerance_level 0.0013 
model_statistic_agg_method average 
time_in_seconds_per_model 0.164757 
time_in_seconds_for_all_runs 16.4757 

Trial 2:  

25 UAVs, 20x20 grid cells 

Probability of failure per single unit = 0,044. The 
average number of visits per cell is 1.424225, 
measured in �ck 149. 

Observe that in this case, 99.92 % of UAVs on 
disabled by the end of the 146-�ck count. 
Although the percentage of completed mission is 
very low, there is an improvement with respect of 
trial 1 as the percentage of cells le� unsearched is 
around 5 %, while in trial 1 is around 9.4%. In this 
case we are using the same number of UAVs, with 
an improved probability of failure per single unit 
of 0.044 (20% lower than in trial 1).  
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Figure 10. Trial 3: 100 simulations, N=25, 20x20 grid, 150 ticks, p3. 

Table 5. Trial 3 data. 

n_agents 
 
probability 

25 
 

0.0249 

Tick 
N º 

% UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 25 146 97.2 24.3 99.7925 399.17 
grid_height 20 147 97.32 24.33 99.7925 399.17 
n_ticks 150 148 97.4 24.35 99.7925 399.17 
n_models 100 149 97.4 24.35 99.795 399.18 
part1_tolerance_level 0.001 
part2_tolerance_level 0.0016 
part3_tolerance_level 0.0018 
part4_tolerance_level 0.003 
part5_tolerance_level 0.0013 
part6_tolerance_level 0.0023 
part7_tolerance_level 0.0017 
part8_tolerance_level 0.0013 
part9_tolerance_level 0.0025 
part10_tolerance_level 0.0022 
part11_tolerance_level 0.0012 
part12_tolerance_level 0.0012 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0012 
part15_tolerance_level 0.0011 
model_statistic_agg_method 0.0013 
time_in_seconds_per_model average 
time_in_seconds_for_all_runs 0.210709 

Trial 3:  

25 UAVs, 20x20 grid cells 

Probability of failure per single unit=0,0249. The 
average number of visits per cell is 2.486225, 
measured in �ck 149. 

This model corresponds to the one with higher 
reliability for a team of 25 UAVs with a 99.7929 % 
to complete the mission successfully (100% of cells 
visited) thanks to an improved probability of failure 
per  single unit of 0.0249 (20% lower than in trial 
2).  
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Figure 11. Trial 4: 100 simulations, N=35, 20x20 grid, 150 ticks, p1. 

Table 6. Trial 4 data. 

n_agents 
 
probability 

35 
 

0.055 

Tick 
N º 

%UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 20 136 99.94286 34.98 98.33 393.32 
grid_height 20 137 99.97143 34.99 98.33 393.32 
n_ticks 150 138 99.97143 34.99 98.33 393.32 
n_models 100 139 99.97143 34.99 98.33 393.32 
part1_tolerance_level 0.0016 
part2_tolerance_level 0.0018 
part3_tolerance_level 0.003 
part4_tolerance_level 0.0013 
part5_tolerance_level 0.0023 
part6_tolerance_level 0.0017 
part7_tolerance_level 0.0013 
part8_tolerance_level 0.0025 
part9_tolerance_level 0.0022 
part10_tolerance_level 0.0012 
part11_tolerance_level 0.0012 
part12_tolerance_level 0.0012 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0011 
part15_tolerance_level 0.0013 
model_statistic_agg_method average 
time_in_seconds_per_model 0.579457 
time_in_seconds_for_all_runs 57.94572 

Trial 4:  

35 UAVs, grid 20x20, 150 �cks  

Probability of failure per single unit = 0,055. The 
average number of visits per cell is 1.6608, 
measured in �ck 149. 

Trial 4: Comparing the outcomes of this trial with 
trial N º 1, in which we used 40 % less of UAVs with 
its same probability of failure, we may observe 
that the mission is 98.33% completed with 99.97% 
of UAVs disabled by �ck 137, while in trial 1 only 
90.54 % of the cells (362.17).  
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Figure 12. Trial 5: 100 simulations, N=35, 20x20 grid, 150 ticks, p2. 

Table 7. Trial 5 data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n_agents 
 
probability 

35 
 

0.044 

Tick 
N º 

%UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 20 139 99.8 34.93 99.54 398.16 
grid_height 20 140 99.82857 34.94 99.54 398.16 
n_ticks 150 141 99.82857 34.94 99.54 398.16 
n_models 100 142 99.82857 34.94 99.54 398.16 
part1_tolerance_level 0.001 
part2_tolerance_level 0.001 
part3_tolerance_level 0.0011 
part4_tolerance_level 0.001 
part5_tolerance_level 0.006 
part6_tolerance_level 0.005 
part7_tolerance_level 0.001 
part8_tolerance_level 0.002 
part9_tolerance_level 0.0097 
part10_tolerance_level 0.0014 
part11_tolerance_level 0.0015 
part12_tolerance_level 0.001 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0098 
part15_tolerance_level 0.0013 
model_statistic_agg_method average 
time_in_seconds_per_model 0.27036 
time_in_seconds_for_all_runs 27.03597 

Trial 5: 

35 UAVs, grid 20x20, 150 �cks 

Probability of failure per single unit = 0,044. The 
average number of visits per cell is 2.03845, 
measured in �ck 149. 

Observe that the mission is 99.54% (398.16 cells) 
successful with 40% more of UAVs of the same 
type of 35 UAVs used in trail 2, I which case the 
mission was  completed with 95.035% of success.  
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Figure 13. Trial 6: 100 simulations, N=35, 20x20 grid, 150 ticks, p3. 

Table 8. Trial 6 data. 

n_agents 
 
probability 

35 
 

0.0249 

Tick 
N º 

%UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 20 82 87.17143 30.51 99.995 399.98 
grid_height 20 83 87.42857 30.6 99.995 399.98 
n_ticks 150 84 87.8 30.73 99.9975 399.99 
n_models 100 149 97.6 34.16 99.9975 399.99 
part1_tolerance_level 0.0016 
part2_tolerance_level 0.0018 
part3_tolerance_level 0.003 
part4_tolerance_level 0.0013 
part5_tolerance_level 0.0023 
part6_tolerance_level 0.0017 
part7_tolerance_level 0.0013 
part8_tolerance_level 0.0025 
part9_tolerance_level 0.0022 
part10_tolerance_level 0.0012 
part11_tolerance_level 0.0012 
part12_tolerance_level 0.0012 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0011 
part15_tolerance_level 0.0013 
model_statistic_agg_method average 
time_in_seconds_per_model 0.27036 
time_in_seconds_for_all_runs 27.03597 

Trial 6:  

35 UAVs, grid 20x20, 150 �cks  

Probability of failure per single unit = 0,0249. The 
average number of visits per cell is 3.47765, 
measured in �ck 149. 

This result corresponds to the lowest probability 
of failure (0.0249) for a team of 35 UAVs. Observe 
that the mission is 99.9975% completed with 
399.99 cell visited in average. 
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Figure 14. Trial 7: 100 simulations, N=40, 20x20 grid, 150 ticks, p1. 

Table 9. Trial 7 data. 

n_agents 
 
probability 

40 
 

0.055 

Tick 
N º 

%UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 20 146 99.975 39.99 99.1925 396.77 
grid_height 20 147 99.975 39.99 99.1925 396.77 
n_ticks 150 148 99.975 39.99 99.1925 396.77 
n_models 100 149 99.975 39.99 99.1925 396.77 
part1_tolerance_level 0.001 
part2_tolerance_level 0.0012 
part3_tolerance_level 0.0011 
part4_tolerance_level 0.0098 
part5_tolerance_level 0.006 
part6_tolerance_level 0.0067 
part7_tolerance_level 0.0013 
part8_tolerance_level 0.002 
part9_tolerance_level 0.0097 
part10_tolerance_level 0.0014 
part11_tolerance_level 0.0015 
part12_tolerance_level 0.001 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0098 
part15_tolerance_level 0.0013 
model_statistic_agg_method average 
time_in_seconds_per_model 0.364482 
time_in_seconds_for_all_runs 36.44822 

Trial 7:  

40 UAVs, grid 20x20, 150 �cks 

Probability of failure per single unit = 0,055. The 
average number of visits per cell is 1.8658, 
measured in �ck 149. 

Observing that the mission is 99.8675% (with 
399.47 cells searched) completed with 38.84  
disabled UAVs. 
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Figure 15. Trial 8: 100 simulations, N=40, 20x20 grid, 150 ticks, p2. 

Table 10. Trial 8 data. 

n_agents 
 
probability 

40 
 

0.044 

Tick 
N º 

%UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 20 146 98.8 39.92 98.82 399.28 
grid_height 20 147 98.8 39.92 98.82 399.28 
n_ticks 150 148 98.8 39.92 98.82 399.28 
n_models 100 149 98.85 39.94 98.82 399.28 
part1_tolerance_level 0.001 
part2_tolerance_level 0.001 
part3_tolerance_level 0.0011 
part4_tolerance_level 0.001 
part5_tolerance_level 0.006 
part6_tolerance_level 0.005 
part7_tolerance_level 0.001 
part8_tolerance_level 0.002 
part9_tolerance_level 0.0097 
part10_tolerance_level 0.0014 
part11_tolerance_level 0.0015 
part12_tolerance_level 0.001 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0098 
part15_tolerance_level 0.0013 
model_statistic_agg_method average 
time_in_seconds_per_model 0.391473 
time_in_seconds_for_all_runs 39.14733 
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100 simulations N= 40, 20x20 grid, 150 ticks, p2

% UAVs failed Total Nº UAVs failed % of grid cells visited

Trial 8:  

40 UAVs, grid 20x20, 150 �cks 

Probability of failure per single unit = 0,044. The 
average number of visits per cell is 2.3328, 
measured in �ck 149. 

In this trial the mission is 98.85% completed with 
399.28 cells visited. Ends the with 1.15% of UAVs 
ac�ve. 
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Figure 16. Trial 9: 100 simulations, N=40, 20x20 grid, 150 ticks, p3. 

Table 11. Trial 9 data. 

n_agents 
 
probability 

40 
 

0.0249 

Tick 
N º 

%UAVs 
disabled 

N º 
UAVs 

disabled 

% cells 
visited 

N º of 
cells 

visited 
grid_width 20 68 81.55 32.62 99.9975 399.99 
grid_height 20 69 81.85 32.74 100 400 
n_ticks 150 70 82.2 32.88 100 400 
n_models 100 71 82.6 33.04 100 400 
part1_tolerance_level 0.0016 
part2_tolerance_level 0.0018 
part3_tolerance_level 0.003 
part4_tolerance_level 0.0013 
part5_tolerance_level 0.0023 
part6_tolerance_level 0.0017 
part7_tolerance_level 0.0013 
part8_tolerance_level 0.0025 
part9_tolerance_level 0.0022 
part10_tolerance_level 0.0012 
part11_tolerance_level 0.0012 
part12_tolerance_level 0.0012 
part13_tolerance_level 0.0012 
part14_tolerance_level 0.0011 
part15_tolerance_level 0.0013 
model_statistic_agg_method average 
time_in_seconds_per_model 0.579457 
time_in_seconds_for_all_runs 57.94572 

 

Trial 9: 

40 UAVs, grid 20x20, 150 �cks 

Probability of failure=0,0249. The average 
number of visits per cell is 3.908125, measured 
in �ck 149. 

Observe that the mission is 100% completed 
with 7.26 UAVs s�ll ac�ve, or it required to have 
at least 33 ac�ve UAVs to complete the mission.  
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3.2.4. Estimation of k-out-of-n Figure 

As depicted in the runs above, the mission success can be measured upon 

completing 100% of cells searched (visited). The last run, which provides the most 

advantageous scenarios (more UAVs with the lowest probability of unit failure), is the 

only result that shows 100% of cells searched. This success is evident starting from tick 

69, in which 32.74 UAVs have been disabled. According to the definition of a k-out-of-n 

system, we may expect to complete a mission with 33 UAVs, or in terms of k-out-of-n, we 

have 33 agents out of 40. 

3.2.5. Veracity of Trial Results 

The reliability trials presented in this study are based on the premise that UAV 

failures happen following a constant probability independent of time. In reality, the 

occurrence of failures in physical components is associated with time. 

We are interested in predicting the probability of an entity surviving a certain time 

interval (tick time, mission time, life of the component, etc.) without failure. Time in this 

context is usually expressed as the mean time between failures (MTBF) or mean time to 

fail (MTTF) (Blanchard & Fabrycky, 2011). Ideally, component manufacturers would 

provide the MTBF or MTTF to the users. Nevertheless, this is not always the case, 

especially for low-cost components such as those used in this study’s UAVs. The low cost 

of these products does not incentivize manufacturers to seek certifications from testing 

labs. This was apparent in our case, as we reached out to manufacturers and retailers for 

this information. The scant and limited information provided by those consulted did not 

prove useful for our study. 
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Knowing any of these figures would allow us to calculate other reliability figures, 

such as the failure rate. We also can estimate the probability of failure for the time of the 

tick simulation and, therefore, use it to test for faults in the tick per component. Thus, we 

propose for future work to continue the search for factual MTBFs and MTTFs, which will 

allow reaching more accurate results. 

3.3. Resilience Model 

Having a model for the reliability of the UAV team, we use Tran's (2015) 

Capability-based Resilience Assessment Framework to estimate the resilience of the UAV 

team. Tran (2015) developed a "Capability-based Resilience Assessment Framework" 

framework that presents a structured process for assessing resilience. He applies his 

model in a similar scenario to our UAVs team. In his work, the UAVs cover missions in 

adversarial, hostile environments, and the units can be disabled by enemy attack. 

Although, in our case, the environment is non-adversarial, random failures have the same 

effect on trans scenarios, which is the disability of units. We find that using Tran's 

framework is suitable for evaluating the resilience of UAV teams comprising surveyance 

and surveillance of terrains. 

In the scenario described above, the resilience framework uses the individual units' 

reliability to model the failures. We modeled the scenario using agent-based modeling 

and simulation for reliability and resilience. Each UAV generates random messages to 

other randomly selected active units to model resilience. On every tick, each unit is subject 

to a failure injection test, in which each one of the UAVs' components is evaluated by 

comparing its probability of failure with a uniformly distributed random number between 

0 and 1, as described in 2.7.1. Ross (2006). 
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3.3.1. UAV Team Resilience Model 

For our team of UAVs, we are interested in knowing whether the team can respond 

to unexpected equipment malfunction. A resilient UAV team can improve mission success 

by adapting to changing environments and maintaining operational effectiveness in the 

face of unforeseen events.  

The success of any surveillance and surveying mission of our UAVs team relies on 

the capability of communication between the units. Each UAV in our scenario is a Flying 

Ad-hoc Network (FANET) communication node. Therefore, losing a UAV disrupts the 

communication structure. This work is interested in assessing the resilience of the UAV 

team and proposing mitigation measures to restore the team's communication and 

complete the mission. Our resilience model includes functionality to determine the 

system's resilience subject to failures simulated with the reliability model described 

above. The proposed model rests on the Capability-based Resilience Assessment 

Framework developed by Tran (2015). In our model, the capability studied is a 

performance measure, y(t), the total number of messages received in the network. Hence, 

a disruption in the network is envisioned as a diminishing amount of the total received in 

the network.  

We model and simulate the UAV team resilience model using MESA Agent-Based 

Simulation tool. We programmed the resilience model on top of the reliability model so 

that the failures induced in individual UAVs will turn off a communication node, 

disrupting the network. In this model, each UAV exchanges information with the 

remaining nodes in messages while executing searching and surveillance tasks. Each UAV 

performs communication tasks in a FANET type of network. All nodes begin the 
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simulation as active nodes. Every node has a probability µ of sending a message at every 

tick of the simulation. Messages generated are identified by Mi,j  where i identifies the 

source node and j the destination. The parameter µ is called the message generation rate. 

The message generation rate is adjusted in the simulation so that the flow of messages 

created in each tick is constant as nodes are disabled. The message generation rate at tick 

t is calculated with the expression,   

𝜇𝜇𝑡𝑡 =
𝜇𝜇0𝑁𝑁0
𝑁𝑁𝑡𝑡

 

where µ0 is the initial message flow rate, and N0 is the initial number of active nodes at 

tick t. Destination nodes are selected uniformly at random from the set of active nodes 

such that the probability of selecting a node j as destination P(j) is given by: 

     𝑃𝑃(𝑗𝑗) = 1
𝑁𝑁𝑡𝑡−1

  

All messages sent from the source node to the destination node are sent following 

the shortest distance. In each simulation tick, messages are forwarded from the current 

node to the next neighboring node following the shortest path from the current node 

position to the destination. It is assumed that each node knows the current status of the 

network topology and the different nodes so each node can determine the shortest path 

to all nodes at a given time. The message is lost if no path is available between the origin 

and destination nodes.  

The performance of a network, y(t), is given by the total number of messages 

received by the network at time t. The metric y(t) is given by: 
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 𝑦𝑦(𝑡𝑡) = �𝐵𝐵(𝑡𝑡)
𝑁𝑁𝑡𝑡

𝑖𝑖=1

 

where 𝐵𝐵𝑖𝑖(𝑡𝑡) corresponds to the number of messages received at time t by node i. 

Reconfiguration needs in the network topology. The position of failed 

nodes (UAVs) concerning the rest of their neighborhood is required to establish 

restitution of the network. Several options were considered before settling on a model 

based on NetworkX, a Python-based graph tool, which was configured, tested, and 

adopted to generate new topologies of the UAV network. 

Possible restitution schemes. A new topology can be established using 

NetworkX. Initially, a restitution scheme was applied immediately after the failure; 

however, the effects of immediate restitution opaqued the expected loss of performance 

experienced by the failure of a communication node. Consequently, it was not possible to 

expose the disruption.  

As an alternative, the simulator was modified to include extra tick delays before 

acknowledging the failed node's disability. This alternative is associated with realistic 

scenarios since the restitution of the network in real situations would take time to detect 

the failure, set up the remediation, and rewire the connections.  

 UAV teams’ communication performance. In our model, communication 

between UAVs depends on nodes' availability and mutual reachability while working. The 

proposed model includes a parameter for the maximum distance between nodes that 

allow communication. The network's topology relies on the Dijkstra theorem by taking 
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distances among UAVs and minimizing the paths. Multiple simulations were performed 

to verify the correct behavior of the model. 

Following Tran's work, we model the performance y(t) using the number of 

messages received in the network. The network's capability in terms of messages received 

will be affected by the disability of nodes. We randomly generate messages sent from each 

node to the rest of the available nodes in each tick. At the end of the simulation, we obtain 

a series of numbers with the total of messages received per tick. The resulting measured 

data is noisy, given the stochastic nature of the simulation process. To improve, we use a 

smoothing method, Savitzkey-Golay (S-G) filter, which uses least-squares polynomial 

with tunning parameters polynomial degree (n) and window half width (M). The 

resilience metric can be calculated directly from the graph. 

Total performance factors  δ, ζ, ρ, τ. As mentioned above, all performance 

parameters can be determined directly from model. The basic calculations represents the 

measurement for the total number of messages received per tick in raw and filtered data 

for a simulation run with 10 UAVs and a probability of sending a message for each selected 

node of 0.5. The resilience is calculated as follows: 

 

The value of R has a reference value of two for "normal operating scenarios." A 

normal operating scenario is a system with no loss over time; i.e., the performance y(t) 

remains constant for all τ. 
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The total performance factor σ relates to the entire performance maintained by the 

system during the period of interest. It has a value of one in normal operating scenarios. 

The absorption factor δ also has a value of one in normal operating conditions. 

  

To calculate the volatility factor ζ, we use the series of raw data and its difference 

with the filtered data as noise to calculate the signal-to-noise ratio (SNR). Plugging all 

referred numbers into the formulas, we obtained a value of R. As a reference, a value of  

R = 2 corresponds to a "normal operation scenario." This scenario corresponds to the case 

in which the values of yD and yR are equal. 

  

As we may observe, it is possible to use visual examination to gather the data. Using 

visual inspection may introduce errors, specifically when determining yR. In this case, the 

recovery capability should be estimated on steady-state conditions. Tran recommends 

using the Marginal Standard Error Rule method (MSER) to assess the steady-state 

measure of the recovery time. MSER is a heuristic method for estimating the warm-up 

period and steady state condition (Wang & Glynn, 2016).  
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 The capability-based resilience assessment framework proposed by Tran 

(2015) also considers resilience assessment in scenarios with multiple disruptions. In this 

case, the various scenarios are split into N epochs (Nepochs), each one containing a single 

disruption, and for each epoch, the resilience Ri is calculated using the same equations 

for R. The total resilience Rtotal is then calculated as: 

where   0 ≤ R ≤ ∞ and Wi are defined as the normalized coefficient of an exponential 

weighted moving average filter.  

The smoothing factor is α where 0 ≤ 𝛼𝛼 ≤ 1  and                                    . Figure 17  

below illustrates the effect of  multiple disruptions.  

 

 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝑤𝑤𝑖𝑖𝑅𝑅𝑖𝑖

𝑁𝑁𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 ℎ𝑠𝑠

𝑖𝑖=1
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3.3.2. Resilience Simulations 

The study presents a series of fourteen UAV resilience simulation trials, each with 

a different scenario, to yield R and Rtotal figures for each case. Scenarios vary in terms of 

total simulation time, number of agents (UAVs), and maximum distance between nodes 

to sustain a communications link. All scenarios results follow below. 

Scenario 1. Figure 18 below shows the result of a 100-tick simulation (one model) 

with 20 agents, a 20 × 20 grid, and a maximum coverage distance between nodes of 15 

units (each grid is 1 × 1 unit). The probability of unit failure is 0.00158. 

Figure 18. Simulation results graph for Scenario 1. 

The results above show the number of messages delivered raw in blue and filtered 

(with  Savitzky-Golay (S-G) filter) in red and MSER(d), showing the value of d that 

minimizes the MSER function in violet and the failure occurrence in orange. In this case, 
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we can observe that the value of d that minimize the MSER is 10. Therefore, we can 

truncate all simulation values with d ≤ 10. Note that three failures occurred in ticks 14, 

35, and 65.  We calculate the resilience of the UAV team in this example (Scenario 1) using 

Tran's framework, as shown in Table 12. 

Table 12. Resilience outcomes for Scenario 1. 

 

 

 

 

 

 

 

Scenario 2. Shown in Table 13  is another example (Scenario 2). Figure 19 below, 

for Scenario 2, shows two failures: in ticks 59 and 73. As in the previous scenario, the 

figure below shows the result of a 100-tick simulation (one model) with 20 agents,                  

a 20 × 20 grid, and a maximum coverage distance between nodes of 15 units (each grid is 

1 × 1 units). The resulting probability of unit failure is 0.00158. 
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Table 13. Resilience outcomes for Scenario 2. 

R1 2.162095   R2 2.141294 
     
YR 112.8177   YR 117.1249 
σ 1.097872   σ 1.09094 
δ 0.904643   δ 0.963515 
ρ 0.997872   ρ 0.99094 
τ 0.1   τ 0.1 
ζ 0.875716   ζ 0.956032 
S(n) 140627.8   S(n) 151221.6 
N(n) 736.344   N(n) 280.4653 
SNR 22.8099   SNR 27.31735 
     
     
w1= 0.94   Rtotal = 2.151373 
w2= 1       

 

Figure 19. Simulation results graph for Scenario 2. 
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In both scenarios, we use the Marginal Standard Error Rule method (MSER) where 

gn(k) corresponds to the MSER and d corresponds to the minimum valuation of MSER 

that allows us to obtain k. A module to evaluate MSER has been programmed as part of 

the simulator. The minimum d(n), shown as a vertical dashed line, is used as the 

truncation point in the graphs. In both scenarios, the disruptions analyzed occurred after 

the truncation index, which makes the results more reliable. 

Figure 20 shows the result of one hundred simulations using a grid size 20x20, 100 

ticks, and a max distance of 15. Unit failure probability 0.00157. The average number of 

messages sent is close to 120 (for raw and filtered data). The average truncation index 

d(n) is 15. The average failure rate is very low and distributed uniformly.   

Figure 20. Simulation results graph:  Average for 100 messages. 
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Scenario 3.  Simulation results for Scenario 3 are seen in Table 14 and Figure 21. 

The parameters considered in this scenario are shown in Table 15, and the resulting 

probabilities of component and unit failure can be read from Table 16. 

Table 14. Simulation results for Scenario 3. 

 

 Table 15. Results for Scenario 3: Parameter values. 

 

Note that at least 17 ticks separate the failures; therefore, the formula for 

determining Rtotal can be applied.  

 

 

failure# drone_id  �ck failure_type failure_posi�on R Rtotal 
1 19  53 part7_failure (9, 5) 1.635198  
2 7  71 part3_failure (8, 14) 1.505867  
3 4  88 part8_failure (17, 19) 1.730154  
       1.625772 

Parameter Value
number_of_agents 20
grid_width 20
grid_height 20
number_of_ticks 100
number_of_models 10
probability_drone_sends_message 1
adjust_probability_mu_sub_t TRUE
node_edge_limit 15
max_messages_per_drone_per_tick 8
offline_nodes_message_ack_delay 5
msg_graph_moving_average_ticks 11
alpha_constant 0.06
savgol_filter_order 3
savgol_filter_framelen 11
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Table 16. Results for Scenario 3: Probability of component and unit failure. 

 

 

 

 

 

 

 

 

 

 

Figure 21. Simulation results graph for Scenario 3. 

 

Probability of component failure
part1  0.0001
part2 0.0001
part3 0.00011
part4 0.00012
part5 0.00016
part6 0.00017
part7 0.00013
part8 0.00012
part9 0.000097
part10 0.00014
part11 0.00015
part12 0.00001
part13 0.000012
part14 0.00018
part15 0.00013
Probability of unit failure 0.001729
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Scenario 4. Another scenario uses the same parameters as Scenario 3, with the 

following results, expressed in Table 17 and Figure 22. 

Table 17. Simulation results for Scenario 4. 

 

 

 

 

 

 

 

 

 
 

Figure 22. Simulation results graph for Scenario 4. 

Observe that in this scenario, failures 4 and 5 (ticks 72 and 75, respectively) occur 

within a period of restitution expected of 5 ticks (given by the following metric: 

drone_id tick failure_type failure_pos R Rtotal 10 AVE Rt
8 14 part5_failure (4, 5) 2.881766 2.289687805

17 29 part5_failure (11, 5) 1.690433 1.735979861
10 52 part10_failure (12, 7) 1.596578 1.583529963
12 71 part10_failure (6, 16) 1.680679 1.676253373

7 75 part1_failure (11, 13) 2.942936 1.961427417
14 98 part4_failure (15, 2) NAN 1.959010808

2.161812 1.643431476
1.769308647
2.161812158
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ofline_node_message_ak_delay), resulting in an overlapping two-time series of interest. 

Therefore, results for R for failures 4 and 5 and the Rtotal value should be disregarded. 

Scenario 5. In this scenario, we extend the simulation time up to 1500 ticks. We 

use a 40 UAVs team, grid of 20 × 20, probability of unit failure of 0.001729, node edge 

limit (maximum distance between nodes) of 15, a maximum number of messages per UAV 

per tick of 20, initial probability of sending messages of 0.01 and induced restitution time 

of 5 ticks per failure. See the results in Figure 23 and Table 18. 

Figure 23. Simulation results graph for Scenario 5. 
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Table 18. Simulation results for Scenario 5. 

 

Scenario 6. In this scenario, we simulate 20 UAVs in a 20 × 20 grid with an 

adaptation (node rewiring) time of five ticks apart after a disruption. The probability of 

sending per tick equals 1 for 1000 ticks; that of unit failure is 0.001729. Observe that the 

minimum time between two consecutive fails is seven; therefore, the R and Rtotal can be 

applied without a problem. Also, observe that the initial probability of sending messages 

starts at 1. This corresponds to the highest possible transmission rate; therefore, there is 

no possibility of adjustment in the rate after each failure. Figure 24 and Table 19 reflect 

the results for this scenario. 
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Figure 24. Simulation results graph for Scenario 6. 

 

Table 19. Simulation results for Scenario 6. 

 

 

 

 

 

 

 

 

 



 

74 
 

Scenario 7. In this scenario, we use an initial probability of sending of 0.25. 

Notice that the generation of messages remains steady (in average) from the first tick up 

to beyond around tick 550, in which the factored probability reaches the maximum of 1. 

This fact shows the approach to keep the generation of messages constant up to this point. 

Observe that there is a total of 17 failures.  

There is a minimum separation between disruptions of 8 ticks except for tick 201, 

in which two losses overlap. Though the failures occur in the same interval, the 

overlapping cannot be treated as a unique failure, as two different nodes are involved, and 

two differing restitution schemes are applied. The calculated Rtotal is not a reliable figure. 

The results corresponding to this scenario are shown in Figure 25 and Table 20. 

Table 20. Simulation results for Scenario 7. 
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Figure 25. Simulation results graph for Scenario 7. 

Scenario 8. This scenario corresponds to multiple simulations (10) with the same 

parameters as in Scenario 7.  

Figure 26. Simulation results graph for Scenario 8. 
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In Figure 26, we can observe with more clarity that the performance average is up 

to tick 600. 

Scenario 9. This scenario presents a simulation with 40 UAVs in a 20 × 20 grid, 

1500 ticks, node edge limit 15, and 100 delay restoration. The corresponding simulation 

results are shown in Table 21 and Figure 27.  

Table 21. Simulation results for Scenario 9. 
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Figure 27. Simulation results graph for Scenario 9. 

Scenario 10. The following graph (Figure 28) shows a scenario without 

adaptation with a 1000-tick simulation time. 

Figure 28. Simulation results graph for Scenario 10. 
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The simulation is performed on a 20 × 20 grid using 20 UAVs, with the initial 

probability of sending messages equal to one. The inserted restitution period is set to 999 

ticksso that the absence of adaptation is accounted in the simulation. The results of this 

simulation are seen in Table 22. 

Table 22. Simulation results for Scenario 10. 

 

 

 

 

 

 

 

 

 

 

Figure 29 below is a chart showing the values of y(t) through each one of the failure 

points, up to Scenario 10. The blue line represents performance of y(t) without noise 

produced by raw data in the simulation. 
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Figure 29. Value of y(t) at each failure point up to Scenario 10. 

Scenario 11. As shown in Figure 30, in this scenario, we present 40 agents on a 

20 × 20 grid with no adaptation and an initial probability of sending messages of 0.1. The 

probability of unit failure of 0.001729. The total simulation time is 1000 ticks. 

 

 

 

 

 

 

Figure 30. Simulation results graph for Scenario 11. 
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Scenario 12. In this scenario, we use the same parameters as in scenario 11, 

extended to 2000 ticks. The total dismissal of the team is reached with 40 failed units in 

tick 1361, which can be seen in Figure 31; the y(t) behavior is also illustrated in Figure 31, 

again with the blue line representing y(t) without raw data noise. 

 

 

 

 

 

 

 

 

 

Figure 31. Simulation results graph for Scenario 12. 

Figure 32. The y(d) behavior for Scenario 12.  
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Scenario 13. In this scenario, we present 40 agents on a 20x20 grid, with no 

adaptation, with an initial probability of sending messages of 0.1 and a probability of unit 

failure of 0.001729. The total simulation time is 1000 ticks. The table corresponds to the 

results of the last simulation of the group. Observe that the occurrence of failures is within 

five ticks and hence is valid to calculate Rtotal. These results are illustrated in Figure 33 

and Table 23. 

Table 23. Simulation results for Scenario 13. 

 

 

 
 

 

 

 

 

 

failure �ck R 
1 22 2.007378 
2 83 0.707544 
3 88 1.840578 
4 142 1.100243 
5 164 0.513178 
6 216 1.815182 
7 292 1.220888 
8 344 1.39791 
9 503 0.704828 

10 535 1.081279 
11 741 0.565056 
12 757 0.171957 
13 808 0.926044 
14 822 0.270616 
15 849 2.899545 
16 906 0.437155 

Rtotal 1.064587 
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Figure 33. Simulation results graph for Scenario 13. 

Scenario 14. This scenario shows a 1000-tick run with the same characteristics 

as Scenario 13. No overlapping (assuming 5 ticks delay) is observed, therefore results for 

R and Rtotal are valid. See Figure 34 and Table 24 for results. 

 

 

 

 

 

 

 

Figure 34. Simulation results graph for Scenario 14. 
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Table 24. Simulation results for Scenario 14. 

 

 

 

 

 

 

 

 

 

 
 

3.3.3. Impact of Failures on Team Communication 

The Resilience Model includes a networking module based on NetworkX, which is 

the foundation for modeling and simulating communications within the module. This 

module keeps track of the optimum connectivity of all network nodes using the Dijkstra 

theorem. It determines the best path available from each node to the rest of the active 

nodes for a given maximum distance or scope of the links. The simulator keeps track of 

all node positions within the grid. The location of the operational units is updated every 

tick according to the Target Area Surveillance Algorithm. Similarly, the topology and 

connections of the network are updated in every tick of the simulation.  

However, the fact that the topology updates every tick of the simulation creates an 

undesirable state in the model. The reason is that the rewiring is performed in every tick, 

failure tick  R 
1 20  1.807693 
2 38  1.414756 
3 105  1.231202 
4 190  0.920793 
5 248  1.067532 
6 294  0.987102 
7 301  1.169683 
8 347  1.908125 
9 437  0.923228 

10 517  0.732973 
11 537  0.542694 
12 638  0.584244 
13 719  1.905055 
14 799  1.424675 
15 878  0.700175 
16 923  0.25076 

Rtotal  1.041927 
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so the disruption does not show up. As a consequence, we cannot use the framework 

under these conditions. Every time a disruption occurs, a latency variable is introduced 

to complete the rewiring in a selected number of ticks, thus overcoming this 

inconsistency. In real cases, node loss requires some time to reestablish the connections. 

Given that the rewiring will require reestablishing connections at various levels of 

the network, each one with a particular protocol demanding time, the model follows a 

realistic approach. The simulator can select the latency for several ticks to delay the 

rewiring. During this latency, the nodes connected with the failed node will keep sending 

messages to the failed node. The other nodes will update the topology that excludes the 

failed node. 

Tran (2015)  runs into a similar situation, he uses a delay tadapt, essentially a 

rewiring time, such that the restitution time is the sum of the disruption time plus 

rewiring time.  The figures that follow, Figures 35 through 40, show the distribution of 

UAVs under varying conditions. 

Figure 35. Initial distribution of the UAVs (tick 0) with a maximum distance 

between nodes in 15 (Euclidian distance). 
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Figure 36. Topology with a maximum distance of 10. 

 

 

 

 

 

Figure 37.  Network status on tick 14. 

 

 

 

 

 

 
Figure 38.  Tick 15 after the failure of unit 15. 



 

86 
 

 

 

 

 

 

 

 

Figure 39. Network status on tick 64. 

 

 

 

 

 

 

Figure 40. Tick 65 after the failure of unit 4. 

 

These results show that the topology changes at every tick of the simulation. At any 

point in time, each UAV knows the complete topology of the network in terms of the 

location and distances of each other node. This allows for generating the minimum 

distance concerning the destination of messages. Figures also show the rewiring results 

after disruptions. 
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SECTION 4 

PERFORMANCE EVALUATION OF THE PROPOSED 

UAV TEAM RESILIENCE MODEL 

4.1. Validation Strategy  

Validation is the process of determining whether a simulation model accurately 

represents the original. There is agreement in the discipline that agent-based simulations 

are difficult to validate; however, it is also acknowledged that validation is a basic 

prerequisite for ABS models and their reasonable use, particularly for multi-agent 

systems (Klügl, 2008). When considering such paradigms, she suggests several validation 

options, ideally performed in combination. 

A primary validation strategy is the expert consensus strategy, which aims to 

demonstrate the validity of the proposed model through qualitative evaluation by subject 

matter experts (SMEs). This is a type of Delphi method defined by Skulmoski et al. (2007, 

p.2) as “an iterative process used to collect and distill the judgments of experts using a 

series of questionnaires interspersed with feedback... The process stops when the 

research question is answered… [for example] when sufficient information has been 

exchanged.” Other strategies include additional types of face validation as well as 

sensitivity analyses, statistical model validation, and transitivity demonstration.  

The research plan for this study listed face validation by SMEs as the validation 

strategy for the proposed UAV team resilience model, a sensitivity analysis, and a 

comparison of results with other published work (reviewed in Section 2). Twenty-one 

national and international researchers working on Agent-based Modeling were contacted 
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and invited to participate in a survey as the first step in carrying out the validation. 

Researchers were asked to state their agreement or disagreement with 12 questions and 

encouraged to add comments to their responses. The list of survey questions is provided 

in Appendix A; they cover vital issues on the performance of different parts of the 

proposed model. Out of the 21 researchers contacted, only one agreed to participate, a 

response rate that does not meet the method’s criteria. Further, despite the agreement, 

the researcher did not provide a response. 

Limited time and resources prevented the complete validation of our model by 

engaging Subject Matter Experts (SMEs) in face validation, as initially intended and 

declared in Research Goal 3. To mitigate this issue, this study attempted transitive 

validation for the complete UAV team resilience model (Section 4.3) described by Klügl 

(2008).  

4.2. Reliability Trials Analysis 

A preliminary test of the model was inspired by Klügl’s (2008) notion of sensitivity 

analysis. The strategy entails the realization of an experimental plan in which parameter 

values are changed according to a systematic plan to identify the variables to which the 

model is sensitive. For every one of these parameter value combinations, one or more 

simulation runs are executed and evaluated. Klügl recommends more simulations if the 

model contains stochastic elements. Our study followed a modified method to test the 

reliability model.  

We used nine trials or simulations changing the number of UAVs, i.e., 25, 35, and 

40 units, and the probability of failure (0.055, 0.044, and 0.0249) for a total of 9 
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simulations, each running for 150 ticks. Mission success is regarded as reaching 100% of 

all cells searched; thus, the user of this model may play with different numbers of UAVs 

and reliability of units to design the mission for success and its costs. 

The trials presented in Section 3 intend to reveal a relationship between two model 

variables, the number of UAVs and probability of failures, and the total number of cells 

searched at the end of the simulation. A clear trend was exposed when incrementing the 

number of UAVs (25, 35, and 40), maintaining the same probability, the number of visited 

cells increased. Similarly, keeping the number of UAVs fixed and selecting different 

failure probabilities, the number of visited cells changed accordingly. Although the results 

align with the expected behavior (e.g., using more UAVs leads to a greater area coverage), 

they did not meet the thoroughness required for a Sensitivity Analysis. 

These assessments do not validate the model presented in this study. Instead, they 

indicate the need to complete its validation following stricter protocols. 

4.3. Transitive Validation 

Klügl (2008) mentions transitive validation as another method for approving a 

simulation model, as it has been accepted as a verification technique in social science 

simulation. She argues that it can be considered as a tool for validation on the idea that 

validity is a transitive relation: “If a model A is validly reproducing a reference system O 

and a model B replicates the results of A with sufficient detail, then B is also valid for 

reproducing O.” This is the case with the UAV Team model offered in this study and, thus, 

the argument for its validity. 
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Tran (2015) applies his capability-based resilience assessment framework to 

quantify the ability of IE (Information Exchange) networks to maintain and recover lost 

capabilities. He defines different scenarios based on three extents: Initial network 

topology, adaptation method (rewiring the remaining nodes after the disruption), and 

type of threats. Initial network topologies include scale-free and random network 

topologies (ER). Adaptation methods include recalculated degree adaptation, preferential 

adaptation, and aleatory wiring. He considers two types of threats: targeted node removal 

(recalculated node degree-RD) and random removal.  The scenario is adversarial; the 

nodes are disabled by threats, attacks, and unplanned node failures (random removal). 

The threats occur on a regular time basis. 

In this study, we are interested in comparing the results of our research with the 

most suitable scenarios. Since the initial topology in our research is generated in an 

aleatory manner, we should compare it with the results of random networks (ER model). 

In regard to the threats, random failures would make the scenario similar to random node 

removal (R). Since upon a failure, rewiring is required with the remaining nodes, in our 

model, nodes are rewired using the most convenient connection according to the 

topology. The best choice is to compare it with random rewiring. 

Figure 41 shows Tran’s results of the mean of Rtotal for two scenarios of a simulation 

with no adaptation, both using random network initial configuration (ER): One of them 

using random detachment removal (RD) and the other random removal (R). The median 

is 0.25 for ER-RD and 1 for ER-R. In our simulations of scenarios 14 and 15, Rtotal values 

are 1.064587 and 1.041927, respectively. 
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Figure 41. Mean Rtotal for two simulation scenarios with no adaptation. Adapted 

from Tran (2015). 

Random topology (ER) with arbitrary removal and adaptation with time sensitivity 

(Tran, 2015) compares with our results: 

Scenario 1: Rtotal = 2.151373 

Scenario 2: Rtotal = 2.181982 

Scenario 3: Rtotal = 1.625772 

Scenario 6: Rtotal = 1.305734 

Rtotal (average) = 1.81672 

These results evidence the alignment of this study’s results with those of Tran 

(2015) and suggest the validity of this model for the sample scenarios. 
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Figure 42 shows the mean Rtotal for four different scenarios using random initial 

topology with varying adaptation methods. These are specified as none, recalculated 

degree adaptation (RDA), preferential adaptation (PA), and random rewiring adaptation 

(Rand.).  

The new topology is recalculated or updated following any change to the network 

topology, in our case, arbitrary removal similar to our scenario in which the failure of 

UAVs is random. We observed that the absence of adaptation contributes to a decline in 

resilience R. Regarding the Rtotal on the random removal option, the mean is around one. 

Figure 42. Mean Rtotal for four different scenarios using random initial topology 

with different threats. Adapted from Tran (2015). 

Figure 43 shows the Rtotal for scenarios considering time sensitivity with Δ = 1 (no 

time sensitivity), random topology, and random threats (failures). The random initial 

topology (ER) with random removal and adaptation with time sensitivity helps compare 
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with our sample scenarios’ results. The median corresponding to random removal and 

random rewiring is shown in red, as are our values of interest, which are those associated 

with random threats, similar to our random unit failures (the yellow bar). 

Figure 43. Comparison of Tran’s (2015) results (in red) to this study’s results               

(the yellow bar). 

These study results point to alignment with those of Tran (2015) and suggest the 

validity of the UAV reliability component of the model for the sample scenarios. 
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SECTION 5 

DISCUSSION AND CONCLUSIONS 

5.1. Summary 

In this study, we present a framework for assessing the resilience of a UAV team 

accounting for unit reliability. This framework incorporates individual UAV reliability in 

a team model under a FANET (Flying Ad-hoc) structure, with unit failures modeled using 

a reliability model based on realistic figures. We use this model to evaluate the impact of 

unit losses on their team performance, assess the team's resilience, and allow identifying 

mitigation measures to restore the team's communication and complete the mission. 

Such a model is more realistic and behaves more accurately than known models for UAV 

swarm resilience evaluation, as the probabilities of failures are obtained from component 

specifications.    

We implemented a model of UAV teams subject to failures to simulate the impact 

of the individual UAV failures on the team communication performance, identify 

measures to mitigate the disruption and continue with the mission. This framework 

addresses the current lack of a model that assesses the resilience of UAV teams subject to 

individual UAV failures. The implemented model: 

a) Constitutes a valuable tool for designers of UAV missions. It provides a means 

for assessing UAV system resilience based on the reliability of its constituent 

units. Additionally, it yields the following contributions to the community of 

UAV technologists: 
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b) Can simulate a UAV team's performance on a search or surveillance mission 

and calculate its resilience. When done in the early stages of the operation 

design, it allows implementing of any necessary changes to the system and its 

components to increase team resilience and thus approach the mission with 

greater confidence. 

c) Offers a framework for modeling and simulating UAV teams' behavior under 

multiple conditions, including faults. Such a framework allows UAV team 

designers to discover the underlying collective behavior of the system and 

therefore design proactively. 

d) Allows for assessing the financial implications of a UAV team configuration. By 

simulating a proposed team's performance and ability for fault recovery 

(resilience), decision-makers can explore cost-effective options to complete the 

intended mission within a budget. 

More specifically, the study contributes to the state-of-the-art knowledge of UAV 

system resilience. The collective behavior of the UAV team is challenging to describe and 

model using analytical tools. It is generally a complex system with multiple parts 

interacting and influencing each other. In some cases, it is tough, if not impossible, to 

produce a model that analytically describes all interactions of their components. On the 

other hand, agent-based modeling and simulations such as those used in this study take 

a bottom-up approach. They allow describing the behavior of a complex system, such as 

a team of autonomous UAVs, by modeling each agent engaged in the collective behavior.  



 

98 
 

Additionally, the proposed agent-based modeling framework for UAV teams 

provides a means to estimate the effect of eventual changes on team performance. Such a 

framework would apply when the behavior of individual units is subject to changes due 

to hardware and software modifications, potential improvements, or failure of any 

component. It allows evaluation of the effect of changes and alterations to the network 

topology and hence, its requirements for changes in routing algorithm parameters used 

in the mobile network. Therefore, it allows for assessing the consequences of losing units 

on the team's performance.  

The study set out to develop a model for mitigating system failure by considering 

the reliability of individual units and their impact on mission success. For this, it 

identified three main research goals: 

Research Goal 1. To identify appropriate tools for modeling UAV 

scenarios. Reliability and resilience theory principles underlie this model, having 

applied existing tools for reliability calculation, fault trees, UAV technology, and agent-

based modeling and simulation. Analysis of several options led to choosing MESA ABS 

for model implementation. 

Research Goal 2. To develop a model for assessing UAVs team 

resilience that overcomes the limitations of previous studies. Previous studies 

approach the resilience of the model using random detachment of nodes. Our model 

presents a  more realistic model as data is available for modeling the removal of the nodes 

from the team by the incidence of failures in individual UAVs. Our MESA-based 

simulation model allows modeling the reliability and resilience of UAV teams in 

surveyance missions. 
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Research Goal 3. Validate the model through expert consensus. The 

model was tested by sensitivity analysis and transitive validation, which suggested its 

validity. We recommend a thorough face validation following an iterative Delphi process 

as the next step for this inquiry. 

5.2. Further Research 

The study presents a framework to model the reliability and resilience of a team of 

unmanned autonomous vehicles, UAVs. The value of such a model to the eventual 

designer of UAV-based surveillance missions is evident as a planning tool. The simulation 

tool is conceived flexibly to adapt to improvements and modifications. We followed the 

same approach as the Capability-based Resilience Assessment Framework proposed by 

Tran (2015). We modeled and simulated multiple scenarios using such a framework, 

obtaining comparable results to Tran's work. He models the scenarios using random node 

removal and random rewiring. In contrast, in our model, the removal of the nodes is given 

by the probability of failure.  

However, Tran’s model has limitations, specifically in calculating Rtotal. Their 

model assumes that multiple disruptions occur in discriminated time intervals so that 

each disruption can be analyzed and calculated as R. We argue that disruptions may 

overlap each other in their time interval, in which case it is not possible to identify the 

correct values of parameters to calculate R and Rtotal. 

For a more realistic model, we suggest using actual values of failure probabilities 

(MTBF) for the particular components. The model and the simulator can be improved to 

include more functionality, such as application to heterogeneous UAVs. We recommend 
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continuing the quest to make this model a helpful planning tool for the users of UAV 

teams searching and surveying terrains. 

Regarding the model validation, we acknowledge that the assessments reported 

here do not fully validate the model presented in this study. Instead, they indicate the 

need to complete its validation following strict protocols. Klügl (2008) proposes a 

validation framework consisting of four steps: Face Validation, Sensitivity Analysis, 

Calibration, and Statistical Validation. This process, applied holistically, is suggested as 

the next step in future research.  

Additional strategies for model validation may also include empirical research, 

such as using real-life UAVs and running experiments in real-life environments. Such 

testing would provide clarity as to the validity of the model as well as its actual 

performance strengths and limitations. This approach would require the financial and 

logistical support that this study lacked. 
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APPENDIX A 

VALIDATION SURVEY QUESTIONS 

 

1. The target area surveillance (search) algorithm employed in this study provides a 

suitable scenario to simulate potential threats or disruptions on a team of UAVs 

executing surveillance missions. 

Please comment on your answer. 

2. The tests conducted with multiple pilot simulations indicate that the proposed 

reliability model of individual UAV help obtain the number of faults per 

component. 

Please comment on your answer. 

3. The proposed UAV unit failure model helps find suitable values of the reliability of 

UAV components. 

Please comment on your answer. 

4. The proposed UAV team failure model uses an appropriate ABS tool to run UAV 

team simulations. 

Please comment on your answer. 

5. The proposed resilience model helps find out k-out-of-n of disabled UAVs that 

guarantees completion of mission. 

Please comment on your answer. 
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6. The proposed reliability model helps the user to plan surveillance missions using 

teams UAVs. 

Please comment on your answer. 

7. The proposed UAV team failure model is easy to use, relies on adequate 

programming language, and has adequate graphic capabilities. 

Please comment on your answer. 

8. The proposed UAV team failure model helps identify reconfiguration needs in the 

network’s communications structure. 

Please comment on your answer. 

9. The proposed UAV team failure model’s use of NetworkX graph tool is useful in 

establishing possible communication restitution. 

Please comment on your answer. 

10. The proposed UAV team failure model’s communication restitution scheme 

reveals unit (UAV) positions per tick and the minimum distance (Dijkstra) 

between UAVs appropriate to carry out the rewiring of nodes after random  

disruptions. 

Please comment on your answer. 
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11. The proposed UAV team failure model helps obtain the total performance factor, 

σ; absorption factor, δ; recovery factor, ρ; volatility factor, ζ; and recovery time 

factor, τ, to determine the resilience R and Rtotal of the UAV team. 

Please comment on your answer. 

12. The proposed resilience model helps Identify the threshold of the parameters for 

failure of UAV missions. 

Please comment on your answer. 
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