'NASA CONTRACTOR
REPORT

NASA CR-1805

% ol

AL (DOGL)

@ https://ntrs.nasa.gov/search.jsp?R=19710022949 2020-03-11T20:16:47+00:00Z
KON WL

AR

WN ‘g4VM AHVHEIT HO3L

COAN COPY: RETURN 70

KIRTLAD AFB, N. M.

JOINT DETERMINATION OF ORBITS
OF SPACECRAFT AND MOONS OF MARS
BY OPTICAL SIGHTING OF THE MOONS

by Charles B. Grosch and Donald F. Nickel

Prepared by :

CONTROL DATA CORPORATION
Minneapolis, Minn. 55435

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION < WASHINGTON, D. C.

e JULY 1971



w
=

TECH LIBRARY KAFB, NM

LU T

, 0DBLOLY
1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-1805
4, Title and Subtitie 5. Report Date
JOINT DETERMINATION OF ORBITS OF SPACECRAFT AND MOONS OF MARS BY July 1971
OPTICAL SIGHTING OF THE MOONS 6. Performing Organization Code
7. Authorl(s) 8. Performing Organization Report No.
Charles B. Grosch and Donald F. Nickel RD 2013
. 10. Work Unit No.
9. Performing Organization Name and Address
Control Data Corporation 11. Contract or Grant No.
8100 34th Avenue So. NAS1-9617
Minneapolis, Minn. 55435
13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546
15. Supplementary Notes
16. Abstract
The feasibility of using a scanning optical system to provide the attitude and trajectory
of an unmanned spacecraft during an orbit about Mars is investigated. It is assumed that the
spacecraft is nearly attitude stabilized by a Sun-Canopus Tracking System. The scanning instru-
ment yields a more accurate determination of its attitude by use of stellar detections across
three slits. The same slits occasionally detect transits of the Martian moons, and these tran-
sits together with the stellar transits are sufficient to yield the trajectories of the moons
and spacecraft as well as the higher harmonic coefficients of the Martian gravitation potential.
In the investigation, the accuracy with which the attitude, trajectories, and potential
can be determined from the measurements 1§ studied. Also, an analysis of the perturbations of
the spacecraft's position due to the moon's force fields is given. Finally, the instrument
detection problems are discussed and instrument design parameters are derived.
17. Key Words {Suggested by Author(s}} 18. Distribution Statement
Onboard orbit determination
Martian gravitational potential
Martian moons Unclassified-Unlimited
Inertially stabilized scanning instrument
Orbit determination by sighting Martian moons
18. Security Classif. {of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price®
Unclassified Unclassified w2 $3.00

'For sale by the National Technical Information Service, Springfield, Virginia 22151






FOREWORD -

This report was prepared by Edina Space and Defense Systems, Division
of Control Data Corporation, for National Aeronautics and Space Administration,
Langley Research Center, under Contract NAS1-9617. Charles B. Grosch and
Donald F. Nickel served as principal investigators in performing the analytical
and instrumentation functions, respectively. Control Data Corporation desires
to particularly acknowledge the technical guidance of Harold A. Hamer and
Albert A. Schy of the Aeronautical and Space Mechanics Division, Flight
Mechanics Branch, National Aeronautics and Space Administration, Langley
Research Center, NASA Technical Representatives.

iii






TABLE OF CONTENTS

SUMMARY
INTRODUCTION

Spacecraft Trajectory and Attitude
The Moons, Phobos and Deimos

SYMBOLS
PERTURBATIONS OF SPACECRAFT'S TRAJECTORY DUE TO THE MOONS

Introduction

Equations of Motion

Approximation of the Equation of Motion
Numerical Results

DETECTABILITY OF THE MOONS

Introduction
Results

THE NAVIGATION PROBLEM

Introduction

Error Analysis

Results

Effect of Errors in Assumed Known Parameters

SPACECRAFT ATTITUDE

Introduction
Analysis

Direction to a Moon
Error Analysis

SENSOR DESIGN AND ANALYSTIS

Yntroduction

Instrument Parameters

Signal Detection

S1it Width

Scan Period

Aperture

Optical System

Photodetector Selection

Sensor Electronics

Estimated Sensor Power Requirement

11

11
13
14
19

31

31
31

37

37
39
41
44

53

53
53
60
61

65

65
65
65
74
75
76
78
80
81
83



TABLE OF CONTENTS -- Continued

SENSOR DESIGN AND ANALYSIS (Continued)

Mechanical Design and Sensor Configuration

Variance Calculation for Star Pulse Transit Time

Angle Encoder Resolution

Approximate Estimate of Geometric Errors for Moon Detections

Refined Analytical Model for Determining Moon Transit Correction
Factors

Sensor Bright Source Shield

CONCLUDING REMARKS

Perturbation of Spacecraft Due to Moons
Availability of the Moons

Navigational Problem

Attitude and Moon Direction Determination
Instrumentation

APPENDIX A: EXPLICIT FORMULAS FOR U(u, T) AND V(u, T)

83
85
92
93

99
114

121

121
122
122
122
123

125

APPENDIX B: DETERMINATION OF USABILITY OF P AS A POSITION OF OBSERVATION

IN THE PRESENCE OF A SUNLIT HEMISPHERE
APPENDIX C: DETERMINATION OF THE INSTRUMENT MAGNITUDE OF MOONS

REFERENCES

vi

129
135

137



{

JOINT DETERMINATION OF ORBITS OF SPACECRAFT
AND MOONS OF MARS BY OPTICAL SIGHTING OF THE MOONS

By Charles B. Grosch and Donald F. Nickel
SUMMARY

The principal purpose of this study is to investigate the feasibility of
using the moons of Mars as optical targets from which accurate navigational in-
formation may be derived during an unmanned Martian mission. The mission tra-
jectory is fixed to be highly eliptical and have an orbital period equal to the
rotational period of Mars.

Before considering the central problem, an investigation of position per-
turbations of the spacecraft due to the moons themselves is undertaken. An
analysis is given which yields an approximate solution without undue numerical
computation. Numerical results are then presented. It was found that the
position perturbations of the spacecraft are almost entirely due to Phobos and
are a quite complicated function of the particular spacecraft orbit chosen. A
simple physical explanation of the results is given which, to a certain extent,
enables one to predict the perturbations over any given spacecraft orbit.

The availability of moon sightings is first considered. Even though a moon
may be within the instrument's field of view, it may well be undetectable be-
cause of Mars-scatter sunlight. It was found that Deimos is generally detect-
able with sufficient frequency, but in order to detect Phobos a sufficient
number of times, a time interval of approximately eighty days is required.

Two spacecraft orbits are then studied in detail to determine the naviga-
tion accuracy which can be achieved by the moon sighting with the recommended
scanning instrument. Navigation, here, is used to mean the determination of
the trajectories of the spacecraft, the two moons, and the potential of Mars.

It was found that if the direction to each moon can be measured with an accuracy
of one arc minute, then the position accuracy of the spacecraft and Deimos is
about five km, but since Phobos is sighted less frequently, its position accu-
racy is about ten km. The accuracy of the coefficient of the lower harmonics is
about + 107°., The higher harmonics are more poorly determined because of the
relatively high altitudes of the three bodies. It is recommended that they not
be treated as unknowns.

To compute a moon direction in a preferred coordinate system from the
moon transits requires that the attitude of the spacecraft be known., This atti-
tude is determined from stellar transits and an assumed attitude motion model.
The need for a model arises hecause the scanning instrument does not determine
attitude at each transit; each transit provides only a constraint upon the atti-
tude, The accuracy of the attitude determination is thus dependent upon the
distribution of the observed stars, the accuracy of the model, and the accuracy
of the measured transits.



Two spacecraft attitude models were investigated. Both assumed that the
spacecraft is nearly inertially stabilized by a Sun-Canopus tracking system,
but the spacecraft roll, pitch, and yaw may vary linearly over the data gather-
ing interval. The first model assumed a five minute interval, the second a ten
minute interval,

Second magnitude and brighter stars must be detected to obtain sufficient
stellar transits. For either attitude model, the accuracy with which the moons
direction can be computed is somewhat less than the one minute assumed in com-
puting the navigational errors. If the five minute interval model can be used,
the resulting error is approximately five arc minutes, while it is approximately
three arc minutes if the ten minute interval model can be used., For any case,
the navigation errors must be scaled to include the effect of these instrument
direction determination errors. '

In completing the study, the instrument capable of achieving the accura-
cies outlined above is designed. In addition, two instrument related problems
are discussed. They are: (1) determining a signal detection and processing
system which can operate over the intensity range produced by the bright moons
and dim stars, and (2) a method of compensating for the moons not being point
targets. The recommended instrument weighs seven pounds, used 7.9 watts of
power and is 18.8 inches long (including the sunshield).



INTRODUCTION

In principle, if the directions to the moons were measured at several
points along the trajectory of a spacecraft orbiting Mars, these directions
would be sufficient to imply the trajectories of the spacecraft, the
trajectories of the moons, and also various unknowns associated with the force
field near Mars. The underlying analysis is given in reference 1 and actual
results using our moon during the ATS-III mission are given in reference 2.

In many ways, the moons are ideal navigational targets for use by a space-
craft orbiting Mars. They would be nearly point targets, quite bright, have no
atmospheres to refract the optical line of sight, and have sufficient spread in
their positions so that a relatively strong geometry can be obtained. However,
unless the mission is rigidly planned beforehand, the direction of the moons, as
viewed from the spacecrart, would be unknown and highly variable.

To provide mission flexibility, it was found necessary to consider a
scanning rather than a tracking detection and measuring system. If a tracking
system were considered, then a very difficult acquisition problem is presented
for the following reasons:

D) It is desirable to detect both moons., Moreover, it is desir-
able to detect them simultgneously even though they might be
separated by as much as 90,

(2) During an extended mission, the directions from the spacecraft
to each moon vary considerably. Moreover, Mars itself will
hinder moon detectability, either by direct obscuration or by
scattering sunlight. In any event, it will be necessary to
reacquire the moons periodically.

3 During some periods, favorable sightings of Phobos occur
during time intervals as short as fifteen minutes. Thus,
the acquisition problem must be solved fairly quickly.

(4) If additional moons, undetectable from Earth, are present, a
scanning sensor will have a good chance of seeing them. A
fixed or tracking sensor would not.

For these reasons, a scanning system whose instantaneous field of view is small,
but whose effective field is large by virtue of the scanning motion, was chosen.
A schematic of the scanning system chosen is shown in figure 1. As shown in the
figure, the opticdl system establishes three slits; detections of the moons and
brighter stars are then made by these slits which are caused to rotate with
respect to the spacecraft.

Spacecraft Trajectory and Attitude

Certain of the parameters associated with the spacecraft's trajectory and

3
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attitude were fixed during the study. These fixed parameters are as follows:

Periapsis altitude - 1000 km

Period - 24.6228 hr, (synchronous)
Orbital mission life - 90 days

Injection -- Oh 6 March 74 = 2,442,120.5 J.D,

The periapsis altitude and orbital period yield the unperturbed orbital
elements:

e = 0.78199
a = 20415.5 km

The time of injection is not an important parameter, i.e., results to be shown
are a weak function of this time. This time, however, does place Saturn in the
instrument's field of view over almost half of the twenty day mission. This
fact is used advantageously to obtain a target for the computation of the space-
craft attitude. All other targets used for attitude computation are stars whose
magnitudes are brighter than 2.2,

The attitude of the spacecraft is assumed to be nearly inertially stabil-
ized by a Sun-Canopus tracking system. More specifically, consider a coordinate
system S: such that k_ is the anti-sun direction and {: is in the Sun-Canopus
plane. It is then asSumed that a system fixed in the spacecraft has an orienta-
tion which varies linearly with respect to Sg (i.e., the three angles are linear
functions of time) over any time interval of length five minutes and ten minutes
(two cases). Stellar transits are then gathered by the instrument and these
transits are used to compute the attitude.

The assumption concerning attitude model is not justified within. Such a

justification could be made only if the attitude control system, the control

law, and the external torques were specified. In fact, the attitude model cannot
be chosen independent of these inputs. For example, if the external torques are
small, and the system uses reaction jets whose impulses are known at each firing,
then a better attitude model would be a polygonal line (each of the three
angles). The change in the derivative of the polygonal line is at the time of a
firing and specified by the impulse and the spacecraft moments of inertia.

The Moons, Phobos and Deimos

Mars has two small moons, Phobos and Deimos, which were discovered in 1877
the American astronomer Hall, The satirist, Jonathan Swift, however, spoke of
their existence and even gave a surprisingly accurate description of the char-
acteristics nearly two hundred years before in his Gulliver's Travels,

Earth-based observations of these moons are quite difficult, Optical
sightings require at least a twelve inch aperture, and quantitative measurements
can only be made near periods of mean opposition of Mars which occur roughly
every 780 days. At these times, the orbits of Phobos and Deimos subtend twenty-
five and sixty-two seconds of arc, respectively, Very recently, data from on-
board optical sightings of Phobos during the Mariner VII mission was analyzed,



Surprisingly, it was found that Phobos's albedo was only 0.067 which is less
than that given for any other celestial body. The albedo previously assumed
for Phobos was 0.1, which has caused astronomers to underestimate the size of
Phobos.

The observed perturbations of the orbits of the moons have been used by
astronomers to compute the mass of Mars and its dynamic flattening. However,
the most accurate data to date has been supplied by the Mariner-Mars £ly-by
mission. A serious discrepancy exists between the flattening of Mars as implied
by the orbits of its moons (dynamic flattening) and the flattening as obtained
by direct optical measurements. The dynamic flattening is about one-third the
optical flattening. No acceptable reason for this discrepancy has been found,
but if this discrepancy does exist, then the surface of Mars is far from being
an equipotential surface.

Since Phobos is quite close to Mars (2.7 planetary radii versus 6.9 for
Deimos), its orbit is significantly perturbed. Some investigators have reported
an acceleration of Phobos along its orbital path (.002°/year§), others have not.
I1f this acceleration exists, then two mechanisms are proposed: atmospheric drag,
or a tital couple acting between an elastic Mars and Phobos. The astronomer,
Shklovsky, proposed that drag does exist; in which case, Phobos would spiral in-
ward., He calculated its remaining lifetime to be three million years -- excep-
tionally short for an astronomic body.

At any given time, the accuracy with which the positions of the moons can
be determined from present measurements is somewhat difficult to estimate. The
order of magnitude of the position errors is 500 km in the radial direction
(with respect to the center of Mars), 500 km in the direction perpendicular to
the orbital plane, and 'several times" this value in the along-track direction.

A photographic search for other moons of Mars was made at the time of
oppositions during the years of 1954, 1956, and 1958, No new moons were detected
and it was concluded that none exist with a diameter greater than 1.4 kilometers.

Tables I - III list the astronomic characteristicsof Mars and its moons as
used in this study. Comments are given in the text concerning the accuracy of
several of the numerical values.
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TABLE I
PHYSICAL CONSTANTS FOR MARS

Rotational Spin Axis
| Mass | Radii (km) | Flattening Potential Period Direction
(6.4192 Rc= 3388 + 26| (150 + SQfl Czo=—2.011x10m3 24.6228 hr.| r.a. = 317.01°
+-0002)l18 <k -R c..= 1078 dec. = 53.09°
26 = e P 30
x 10 c = 10-6
grams < 36 40 -6
C..= 10
50 -5
C,,= 2 x 10
21 -5
821=1 x 10
TABLE 11
ORBITAL PARAMETERS OF MARS
a = 1,5236915 A.,U,
e = 0.093381L
i= 1.8498387o (measured from the ecliptic plane)
Q = 49.3594543°
w = 335,5863554°
Time at perihelion = 2,441,890.5 J.D.
Time at aphelion = 2,442 ,230.5 J.D.
TABLE II1
CONSTANTS OF THE MARTIAN SATELLITES
-"”_Constant PhoBﬁs Deimos
Mass 3.46 x 1019 grams 4.32 x 1018 grams
Radii (km) R =9, R =11 4
a (km) 9400 23,500
e 0.017 0.0028
i (with respect to 0.95o 1.30
Martian Equator)
Period (hrs.) 7.6538 30.2986
Albedo 0.067 0.1
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SYMBOLS

orbital elements of spacecraft's unperturbed orbit

average num?er of stars per square degree within the brightness
range M + 5 to M -

unit vector in direction of instrument's optical axis

coefficients of spherical harmonics in the expansion of the
potential of Mars

unit vector from spacecraft to ith moon (1, 2) corresponds to
(Phobos, Deimos)

effective optical aperture diameter

signal obtained from the output of a detector as a target
(moon or star) cross a scanning slit

filter noise equivalent bandwidth
impulse response of filter

unit vector perpendicular to k

. and such that Canopus is in
the is, ﬁ5 plane

5

peak star signal current

unit vector in direction of instrument's spin axis

shot noise power

noise power due to scanning the stellar background of stars
dimmer than the threshold magnitude

total integrated starlight from stars of sixth magnitude and
dimmer which is expressed as equivalent tenth magnitude stars

per unit area on the celestial sphere

position vector of the spacecraft with respect to center of
mass of Mars

slit width in arc minutes

total slit area projected on the celestial sphere as seen by
the photocathode through the slit plane

photocathode sensitivity per unit area of optical aperture for
a zero magnitude star having a given spectral encrgy distribu-
tion
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cz(ts)

SYMBOLS - (Continued)

random time error in the leading edge threshold crossing
random time error in the trailing edge threshold crossing
transit time of a point star image to cross the slit
filter output of the signal f(t)

overall optical efficiency

square of the star intensity averaged with respect to star
density and star magnitude with the average taken only for
stars which are dimmer than the threshold magnitude M,
initial true anomaly of a moon

correlation coefficient for random noise amplitudes at

i d
times t1 an t2

filter frequency parameter

variance of the star pulse transit time

Coordinate systems:

a

€3> 93

In general:
AI

”~ -

uor u

su
o(su)

elevation and azimuth, respectively, of d -- these angles being
measured with respect to S3

celestial coordinate system
Mars coordinate system

Sun-Canopus system

is the transpose of a matrix A
implies O unit vector

is the error in u

is the standard deviation of du

10




PERTURBATIONS OF SPACECRAFT'S ‘TRAJECTORY DUE TO THE MOONS

Introduction

Perturbations of the spacecraft's trajectory due to the attractive forces
generated by the moons is an important consideration, not because of the in-
trinsic interest in obtaining precise numerical values, but because of the
desirability of knowing whether or not these perturbations are significant. If
so, a knowledge of the position of the moons (as a function of time) is required
as input information to a trajectory determination program. 1In addition, if
some known set of initial parameters for the spacecraft's trajectory yield sig-
nificant perturbations, then this information would be of value in defining the
mission. If, however, some known set of initial parameters yields insignificant
perturbation, then this information would be equally valuable. The analysis
described in this section was performed to ascertain the effect of the perturba-
tions.

To facilitate the analysis the following assumptions are made:

1) The orbits of the moons are circular in the equational
plane of Mars. These orbits will be unperturbed by the
force field of the spacecraft.

2) If the moons did not exist, the orbit of the spacecraft
would be a Kepler ellipse (i.e., the only perturbing
forces on the spacecraft are due to the moons).

(3) Phobos and Deimos are both spheres of radius 8 and 4 km,
respectively, and have mean densities equal to that of Mars,

“) The unperturbed elements a and e of the spacecraft are fixed
at a = 20415.5 km and e = 0.78199. The effect of different
sets of Q, w, and i, however, is studied.

Assumption (3) is used to compute the mass of each moon. Since the magni-
tude of the perturbations of interest is directly proportional to these masses,
an explanation of the validity of assumption (3) is presented below:

The value used for the mean densities of the moons is an estimation.
It is highly improbable, however, that the mean densities exceed that
of Mars, In fact, Redmond and Fish (reference 3) give the density of
chrondite as an upper bound on the density of Phobos.

11



Also, the radii of the moons are estimated from their observed bright-
ness and assumed albedo, both of which are poorly known(lﬁ. Since an
error of 0.1 in magnitude implies a 40% error in radius, the calculated
radii are highly sensitive to small errors in the observed brightness.

Table IV gives a comparison of values assumed here and those given by
Redmond and Fish. It can be noted that the assumed mass of Phobos is 4.55
times greater than the upper bound given in reference 3.

TABLE IV
SOME PHYSICAL CHARACTERISTICS OF THE MOONS OF MARS

Phobos Deimos

Present Study | Redmond and Fish | Present Study

Redmond & Fish

Radius (km) 8.0 6.4 to 7.8 4,0 not given
Density (g/Cm3) 4,02 2.8 to 3.76 4.02 "
Mass (g) 3.46 x 101° | 3.1 to 7.6x10'% | 4.32 x 108 "

(1) Phobos was photographed in 1969 by Mariner 7 (reference 4)., The albedo
was estimated to be 0.065, which is "lower than that known for any planet,
satellite, or asteroid in the solar system'. Its shape was determined to
be more nearly that of a prolate spheroid with an equatorial radius of
9 km and a polar radius of 11 km. These dimensions imply a volume 2.1
times greater than that used here. This information is recent and was
received too late to be used in the analysis. However, it does indicate
that the mass used in this study is probably a slight underestimate rather
than a large overestimate, as is predicted by Redmond and Fish.

12
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Equations of Motion

Reference is made to figure 2. Let

R position vector of the spacecraft with respect to the
center of the mass of Mars
BT position vector of the ith moon with respect to the
. same center (i = 1 denotes Phobos, i = 2 denotes
Deimos)
E; = R- E; vector from ith moon to the spacecraft
m, mass of ith moon Gnl = 3.46 x 1019 grams,
m, = 4,32 x lO18 grams) .
SPACECRAFT
R d;
C; _ —»D PHOBOS
MARS F:
Figure 2: The relative position of Mars, Phobos, and spacecraft

As shown in reference 5, the equation of motion of the spacecraft is

then
= 2 m, m,
= R i = i -
R+bE5 = -6, 23 4t T3
R i Py
where
G universal gravitational constant
26
% = GM, M being the mass of Mars = 6.4192 x 107" grams
3, 2
= 5.5629 x 10'" km®/hr’,

13

1)



Approximation of the Equation of Motion

Determination of the perturbation of a minor planet's position is a classi-
cal and central problem in celestial mechanics. The classical method of attack-
ing the problem is through the LaGrange equations which are the differential
equations which the oscillating orbital elements must satisfy in the presence
of a disturbing function. In the classical theory, advantage is taken of the
fact that the orbital eccentricity and inclination are small. In the case
under study, the eccentricity of the spacecraft is quite large (e = .8) and all
inclinations are of interest. Hence, it is difficult to apply the classical
methods to obtain an approximate analytic solution. However, the method used
in reference 6 can be applied to reduce the numerical computations.

R
2 3
R

Let

]l
I

2
[

Fl =l

where R, satisfies equation (1) with the right-hand side zero. Thus, the term-
inus of R, is on the reference Kepler orbit.

The differential equation satisfied by X can be written as

0

0

. _ 0
X=F (X) + AKX , t)

where A (X, t) is a small acceleration which arises because of the forces on
the spacecraft due to the presence of the moons. An approximate equation sat-
isfied by 6X =X - X, is

0
0
= dF 0
68X = = X + \7% (2
5% A(X,,t)
where

~— is a 6 x 6 matrix evaluated at io(t).

Let

52(0) = 0, then the solution to equation (2) is

14



-— t -1
Ky = 2 [ a7y | _ as @)
0 AX,, s)
where
3e) = & ey, 5(0) = 1.

An analytic solution for 3 (t) and é-l(t) is given by Kochi (reference 6).

If § is partioned so that

3 %
3 = , then reference 6 states that
8,8
3 %4
8," -3,'
3 ' = -§4' @% > where Al =AT .
3 71

Hence, the first three components of equation (3) yield

t
sR(t) = fo (éz.(t) §,"(s) - &,(0) @2'(3)) E(s) ds 4)

where

E(Gs) = AX, (s), s).

The integration in equation (4) may be simplified. From the analytic
form of ¢(t) it can be observed that each @i(t) can be written as

8, (E) = o (£) + €8, (6)

where
oy (t) and B, (r)

are periodic with a period equal to that of the reference Kepler orbit. Denote
this period as T. Also let t = nT + 1, 0L 7 < T. To take advantage of the
periodicity of the «'s and B's, the integral is written

sR(t) = IZT + J::+T.

15



With little loss of generality, one may choose the initial time as the
time at which the reference Kepler position is at its periapsis. Thus, the
spacecraft trajectory and its reference trajectory are chosen to be tangent at
this time. The force field of the moons will later separate the trajectories.
With this choice the form of «'s and B's is given in reference 6 as

fl
(o]
[y
(=]

o (€) 21 222

3y, 415 O
1
a,(t) = —fF——— a a 0
2 nt (L + e) 26 725
0 0 a36
b, 0 0
_ l+e %
Bj(&) = 33— n» | B, 0O 0
0 0 0
0 b, O
B (E) = — 0 b, O
2 1-e 2
0 0 0
where
* o) ( 2)
n =/ —= , p=a\l-e
3
P

a and e being elements of the reference orbit.
Thus,
rnT ~T _ _
[ 7= [ (vem E@+ve, nF @) a
0 0
where
1
T emp—— - ' -+ '
e, 1) = oy (o @ ) F ) o) W)

(equation continued)

16
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bl(T) cl(u) bl(T)' cz(u) 0

L30T+ 1) | bylr) e @) by(r) cy(w) 0

1 -e
0 0 0
bl(u) Cl(T) bz(u) CI(T) 0
3 .
Viu, 1) = - 1 - e bl(u) Cth) bz(u) Cz(T) 0
0 0 0
guw) = X E@T+u, n > 1
i=0
h(u) = ug @) + T = 1£f @G T+u),n>1
i=1
here
1 T %12 T %
2 T %2 T B4
Finally,

g

T
éﬁ(t) = Jo (U(u, T7) (W) + V(u, 1) T (u)) du

+ jT (U(U, ) + (u+nT)V (u, T)) T (T+u)du. (5)
0

Formulas for the a's, b's and c's are given in Appendix A.
3 (=4

The matrices U(u, 1) and V(u, 7) are also a function of a and e, but not
of the other orbital elements. Thus, this formulation is convenient here for
a and e have been given fixed numerical values. However, E(u) and h(u) are
functions of the other orbital elements.

To utilize equation (5) with Kochi's &(t), f(s) must be written with com-
ponents resolved in a coordinate system which moves with the Kepler orbit.
These components must be in the radial direction; in the direction perpendicu-
lar to the radial and orbital normal directions (positive in the direction of
orbital motion) and in the direction of the orbital normal.

17



where

here

t+h

< € D

<

_ m; m, _
£(s) = wyg 5G)tug £,06) (6)
"Rotes Py Py
3 2
45 Pi
p. P P
(U.) = p s gl _ 2i
d
i Pi
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v(s)
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2 2
\/R° tp; -2 RoPyy

inclination of reference Kepler orbit

longitude of ascending node

argument of periapsis
true anomaly of the ith moon

true anomaly of the spacecraft if it were on the reference
Kepler orbit
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It must be noted that equation (5) was derived by using a single refer-
ence Kepler trajectory to linearize the equation of motion (1). For most
purposes this is too inaccurate an approximation, but here the additive forces
are so small that the approximation is adequate. To indicate the adequacy
of the approximation, one case was run in which the numerical result from
equation (5) was compared with the direct numerical integration of equation (1).
The results were in agreement within 0.1 km after ten spacecraft orbits.

Numerical Results

Figure 3 plots the position perturbations of the spacecraft as a function
of @ (the argument of periapsis) at three positions along the 30th orbit of
the spacecraft. That is, dt t = 0, the perturbed and unperturbed position and
velocity of the spacecraft are chosen to be identical. The attractive forces
of the moons then are allowed to separate the two trajectories. At t = 0, the
spacecraft is at periapsis and both moons have zero true anomaly.

The salient features shown in figure 3 are as follows:

1. The perturbations of position are largest at periapsis
and smallest at apoapsis.

2. The perturbations are a strong function of w. Large
perturbations being present for y = 80° and 110°.

Figure 4 gives the perturbations at periapsis and apoapsis as a function
of the number of spacecraft orbits. Here w = 800, which is near a critical
argument of periapsis. Note that the position perturbations are approximately
a quadratic function of time.

Virtually all the perturbations shown in figures 3 and 4 are produced by
Phobos, the inner and more massive moon. Not shown in these figures is the
resolution of the position perturbations into three orthogonal components. At
periapsis and apoapsis the direction of the perturbation is chiefly in the
along-track direction. The perturbations of figure 4 are in the negative
direction (opposite to that of the orbital motion), while in figure 3 some of
the values of  yield positive along-track errors while others yield negative
errors. Between periapsis and apoapsis the radial component is significant,
but the cross-track is always small.

Figure 5 shows contours of equal along-track perturbations at the periap-
sis of the 30th orbit of the spacecraft. Here i = 40°. Again, note that
critical values of y exist near g = 80° and 100°. No critical values of (
exist. Also, there is a zero contour near @ = 90 and the along~track perturba-
tions have opposite signs on opposing sides of this contour.

Tigure 6 is a plot of the effect of variarions in g and time upon the
along-track perturbations of periapsis. The results shcwn in figures 3, 4, 35,
and 6 are summarized as follows:
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1. The perturbations due to Phobos can be as large as 200 km after
thirty spacecraft orbits. However, those due to Deimos are o
generally less than one km. An exception occurs near w = 40 ,
140° which yields perturbations as large as 22 km.

2, Throughout any one orbital period the perturbations are always
largest at periapsis and smallest at apoapsis.

3. The cross-track perturbations are always small. At periapsis
and apoapsis the perturbations are chiefly along-track. Be-
tween periapsis and apoapsis, the radial component can be sig-
nificant.

4, For any fixed true anomaly, and if g is near 80° or 100°, the pertur-
bations are approximately a quadzmati¢c function of the number
of orbital periods of the spacecraft. For w removed from the
critical values, the perturbations increase less rapidly.

5. The perturbations gre a geak function of {;, but a strong function
of w. Near w = 80, 100 the perturbations are quite large, but
near w = 90° (periapsis farthest from the Martian equator) they
are small, 1In addition, the along-track perturbations are of
opposite signs across a zero near w = 90°,

It is important that the numerical results be given a physical rationale,
for only then can results be predicted for cases other than those plotted. The
results 2 and 5 (of the above summary) require some further explanation.

The equation of motion of the spacecraft (1), does not allow a constant
energy of the spacecraft in that energy is transferred to the spacecraft via
the moons. The major effect of a change in energy upon the orbital element is
a change in the semi-major axis, a. Now, if a non-zero §a exists, and all other
Kepler elements remain unchanged, then at periapsis

ér, = &a (7)

g 1
+ e
ésp - 3mn 1 e

§a

while at apoapsis

8r = §a
a

. 3 fl-e
§s = > T (20 + 1) sa (8

a

where §r and §s are, respectively, the radial and along-track perturbations, and
n is the number of spacecraft orbital periods. Since e = .8, for fixed n,

6s. = 9 gs_ which is approximately satisfied by our numericalresults (figures 3
and 4), Equations (7) and (8) are not an accurate constraint followed by the
numerial results, but they do predict a larger perturbation at periapsis than

at apoapsis.,
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To aid in the explanation of result 5, consider figure 7. Shown here are
three spacecraft trajectories which differ only in their location of periapsis.
Trajectories for w = 0, 78.80, and 90° are shown. But, before considering the
effect of periapsis location, consider the effect of changes of Q. If Q is
changed slightly, then only the relative initial position of Phobos{(2) is
changed, but after thirty spacecraft orbits, approximately 10l revolutions of
Phobos occur. Thus, one would expect the perturbations to depend only weakly
on 3, at least for large n.

A change in g does more than change the relative initial position of the
bodies; for at a '"critical'" g the paths of the bodies will intersect, This is
illustrated in figure 7. First note that if such an intersection is to take
place, it must be along the line of nodes of the spacecraft's orbit. If @ = O,
then the intersection of the spacecraft's orbit with the ascending line of nodes
is interior to the orbit of Phobos, while the intersection with the descending
line of nodes is exterior. As y increases to 180, the intersection along the
descending node moves toward the center of Mars. At = 78.89 it is at the
orbital radius of Phobos. This is a "critical" value?3) of w. A second criti-
cal value of y exists at y = 111.20, but for this case the intersection of the
two paths occurs at the ascending node,

At and near a critical value of y, close encounters with Phobos can be
expected. These close encounters in turn imply relatively large perturbations.

Since the spacecraft has its maximum speed at periapsis, and since
w = 78.8° implies an intersection with Phobos along the descending node; it is
expected that the close encounters with Phobos would perturb the spacecraft in
the negative along-track direction. This is indeed the case as shown in
figure 5. The second critical value of @, i.e., w = 111.,2° can similarly be
expected to give rise to positive along-track perturbation. This is also the
case,

Thus far all results shown are for i = 40°, but results for other inclina-
tions cannot differ greatly except for the singular case i = 0°. Results for
this inclination are shown in figure 8 in the same format as figure 3. In addi-
tion to position perturbations at three points along the thirtieth spacecraft
orbit, the values of the spacecraft argument of periapsis, w, that yield a
collision with Phobos are shown. Such a collision occurs only if

R(t, 0) = 'il(t)

which implies that lﬁ(t, w),= 9350 km. Thus, (refer to figure 9)
v = 101.19° or 258.81°.

(2) Deimos need not be considered since its effects are negligible,

. (¢] s es . -
(3) For i = 0, all values of y are "critical', otherwise the critical value of
w is independent of i.
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Figure 8: Position perturbations due to Phobos as a function of  at
three points on the 30th orbit of the spacecraft. i = 0°.
The number of complete revolutions of the spacecraft and
Phobos associated with each @ which yields collision is
shown as number pairs.
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An explanation of the results shown in figure 8 will now be given. By a
previous argument, values of g near those which yield collision at v = 101,19°
are expected to imply a negative along-track perturbation. The converse holds
(positive along-track perturbations) for all values of w near those which imply
collision at v = 258.81°,

Denote the values of w which yield collision at v = 101.19° as w_ (because
they tend to produce a negative along-track perturbation), and those ¥hich yield
collision at v = 258.81° as w_. Note from figure 8 that for ¢ = 21.9% = _ a
collision occurs after 1 + spacecraft orbits and 3 + Phobos orbits. Now, ?or
all values of w near 22° a large perturbation results., Consider now @ = 559,
Note that a small perturbation is present near this value of y. This might be
expected, for there exists a g = 54.8° and a @_ = 56.7°, Since these col-
lision yielding values cause pgrturbations in the opposite directions, a cancel-
lation of effects can be expected. In general, if _ and y_ are approximately
equal and occur after approximately the same number Bf spacgcraft orbits, then
it should be expected that small perturbations will result for values of w near
w_ and yy . On the other hand, if w_ (or w_) takes on a value which is relative-
19 distint from any w, (or wp), thén large perturbations can be expected.
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DETECTABILITY OF THE MOONS
Introduction

An initial concern is that the proposed scanning system may be unable to
detect the moons a sufficient number of times so as to yield an accurate solu-
tion to the navigation problem, This concern is present because the scan can
very well carry the field of view near or into the sunlit Martian hemisphere
and the reflected scattered sunlight may generate a sufficiently high noise
level in the sensor photodetector to obscure the signal generated by the moon.

Figure 10 shows the geometry for the case i = 0° and the sun in the plane
of the Martian equator. The spin direction of the instrument is the negative
sun direction, kc, and the optical axis, ¢, is inclined 45°, Additional as-
sumptions are as follows:

1. The instruments field of view is 200, with ﬁsas the center
of the field of view (figures 1 and 10).

2, The moons are not detectable if obscured by Mars or exterior
to the scanned field,

3. If there exists a ray from the spacecraft to a point on the
visible sunlight portion of Mars, such that the angle between
the instantaneous optical axis and the ray is less than 400,
then the moon is not detectable. The method of implementing
this assumption is considered as Appendix B.

4, The orbit of the spacecraft is a Kepler ellipse with a = 20415.5 km
and e = 0.78199.

The general problem of the viewing geometry relative to a spacecraft and
the moons is discussed by Harrison and Campbell (reference 7)., These authors
consider the distance of closest approach, approximate frequency of this ap-
proach, solar lighting of the moons, and direction to the moon for four particu-
lar spacecraft orbits, However, the viewability assumption (3) was not imposed
by these authors.

Results

Cases which have been examined are as follows:

i =0°% 30° 60°, 90°

w = 0° 60°, 120°, 180°, 240°, 300°
o =0° 60°, 120°, 180°, 240°, 300°
v(0) = 0°, 60°, 120°
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where

spacecraft inclination

73

w spacecraft argument of the periapsis
Q spacecraft longitude of ascending node
v(0) initial true anomaly of moon

These choices yield 342 distinct cases. Each case is examined over eleven
orbits of the spacecraft as follows: Each spacecraft orbit is divided into
one hundred positions such that the time interval between successive positions
is constant (approximately fifteen minutes). Each position is then examined
for moon availability. The number of positions of the spacecraft which yield
moon availability is then called the number of sightings for that orbit.

The minimum number of Phobos sightings over the initial true anomaly of
Phobos, v(0), is given in Table V. The data is presented as a function of i,
w, and Q. That is, for each triad of i, w, and Q the minimum number of sight-
ings over v(0) is given. Eleven spacecraft orbits were used,

From Table V it is noted that the availability of Phobos has a tendency to
decrease with increasing inclination, Table VI has been prepared in a manner
similar to Table V for the availability of Deimos.

Table VII gives the number of Phobos sightings over 88 spacecraft orbits
(= 90 days) for those cases which yield the fewer number of sightings from
Table V.

In obtaining these_ tables, it is assumed the spacecraft is at the periapsis
of the first orbit on 0" of 6 March 1974. The direction of the sun at this
time with respect to the Martian coordinate system is

A _ ? _ P ~

s = ,220 i, .731 s + 646 k3.
The direction of the sun then varies as time progresses., The sun is considered
a point source.

Other instrument fields of view and other minimum bright source shield
angles (the angle defined in assumption (3)) were run, but these cases give
either marginally acceptable Phobos detectability or, imply an instrument of
unacceptably large dimensions.

The general conclusion from Tables V, VI, and VII is that over a small
number of orbits (11) the number of Phobos sightings may well be too few to
determine its orbit., However, only three cases (3, 5, and 6 detections) yield
a marginal number of Phobos sightings over eighty-eight orbits of the spacecraft.
Except for eight cases (Table VI), the number of Deimos detections is adequate,

The range of instrument magnitude, distance, and subtended angle is given
in Table VIII. The method used to calculate the magnitude is given in Appendix C.
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TABLE V
MINIMUM NUMBER OF PHOBOS SIGHTINGS OVER v(0) AS A

FUNCTION OF SPACECRAFT ORBITAL ELEMENTS (11 ORBITS)

300°
10

240°

180°

120°

21

60°

Q+w

30°

]

300°

10

240°

180°

120°

60°

60°
120°

180°

240°

300°

60°

300°

240°
14

180°

120°

60°

60°
120°

180°

240°

300°

i = 90°

300°

240°

180°

120°

60°

60°
120°

180°

240°

300°
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TABLE VI

MINIMUM NUMBER OF DEIMOS SIGHTINGS OVER V(0) AS A
FUNCTION OF SPACECRAFT ORBITAL ELEMENTS (11 ORBITS)

=0
o+ o] ©o° 60° | 120° | 180° | 240° | 300°
57 81 79 85 45 40
i= 30
o] o 60° | 120° | 180° | 240° | 300°
0° 23 23 36 59 79 41
60° 29 28 19 20 38 76
120° 71 13 16 17 48 45
180° 27 21 16 36 57 119
240° 32 21 22 b4 109 55
300° 17 14 10 42 41 48
i= 60o
1))
Q 0° 60° 120° 180° | 240° 300°
0° 18 17 26 23 70 146
60° 16 17 14 25 117 46
120° 59 6 8 18 68 64
180° 21 21 15 35 51 56
240° 27 17 16 22 53 57
300° 12 8 4 28 59 70
i=90°
oy 0° 60° 120° 180° | 240° 300°
0° 40 16 19 21 43 50
60° 25 16 10 30 54 45
120° 60 4 7 19 59 58
180° 23 23 17 38 46 49
240° 29 15 19 19 49 63
300° 17 5 5 59 65 57
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TABLE VII

CASES OF MINIMUM PHOBOS SIGHTINGS
EXTENDED TO 88 SPACECRAFT ORBITS

Spacecraft Orbital Elements Number of Phobos Sightings
i w Q v (0) 11 Orbits 88 Orbits
30° 60° 300° 60° 1 26
120° 120° 120° 1 27
300° 300° 60° 1 17
60° 0° 240° 0° 1 11
180° 180° 0° 1 5
240° 120° 0° 0 11
300° 0° 60° 1 15
90° o® 240° 0° 0 14
60° 120° 0° 0 25
180° 60° 0° 0 13
240° 120° 0° 0 6
300° 300° 0° 0 3
TABLE VIII

RANGE OF MAGNITUDE, DISTANCE, AND SUBTENDED ANGLE
OVER ALL STUDIED CASES FOR DETECTABILITY OCCURRED

Phobos Deimos
Maximum Minimum Max imum Minimum
Magnitude - 6.81 -3.06 -3.29 0.77
Distance (km) 10,873 1,707 41,929 9,470
Subtended Angle | 32.4 4,7 2.9 0.7
(minutes of arc)
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THE NAVIGATION PROBLEM
Introduction

The problem is to obtain the time-path of the spacecraft and moons, and the
harmonic coefficients of the Martian potential by sightings of the moons from
the spacecraft. The measured quantity is thus the parallax of the moons as
viewed from the spacecraft. It is intuitively evident that this parallax is a
function of the trajectories of the spacecraft and the observed moons; these
trajectories are in turn functions of the potential. It is not obvious that
the problem can be inverted, i.,e., the trajectories determined from the meas-
ured parallax., It turns out that this is the case, at least if a sufficient
time interval is allowed for the moon sightings.

As before, let
R = position vector of the spacecraft

= position vector of the ith moon, (1, 2) corresponds to (Phobos,
Deimos)

e

the origin of these vectors being the center of mass of Mars, then

R, (6) - R(e)

d () =

— — (figure 11)
* IR, (£) - R(D)]

(9)

>

S/C TRAJECTORY

. th
- i"" MOON TRAJECTORY

Figure 1l: The measured direction ai(t).
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is the direction of the moon as viewed from the spacecraft.

1f 3_(t) were measured at any number of values of t, this information
alone is Insufficient to determine R(t) and i,(t). Each measurement simply
yields two independent equations in six unknowWns. Moreover, these unknowns
change at each measurement. More information, however, is available in that
the equations of motion must be satisfied by R(t) and §i(t). Thus,

R(t) = F ®(t)) (10)

Here, it will be assumed that the right-hand of equation (10) is derivable from
a potential. 1In order to simplify the expression for the potential, a coordin-
ate system with one axis parallel to the direction of the Martian North Pole

is chosen to resolve the position vectors.

Let S; be the "celestial" coordinate system with associated unit vectors
i1, jy, and kg, The direction 1y is from the sun’s center to the First Point
of Aries, and ky is normal to the earth's equatorial plane. Also, let Sj be
the "Martian" system whose orientation is defined with respect to S1 by two
angles, gl and §2' That is,

A

= k2

>

8 . _ 0 ~
1”1 rotation g1 + 90" about k

ﬁz - ﬁ3 rotation §2 about i, =i

1

where

gl the assumed right ascension of the Martian North Pole = 317.9°

£, the assumed co-declination of this point = 35.3°,

The origin of S5 is the center of mass of Mars. The equations of motion (10)
will be written with components in 83. The orientation of S1 with respect to
S., is given by

3
! i
R A
ky ky
vhere
- sin gl - cos 51 cos €2 cos gl sin §2
A = cos 51 - sin g, cos £, sin 3 sin g, (11)
0 sin §2 cos £,

The Martian potential, at any generic point, chosen here is written
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5 =n
Ve, 4, 8) = - B [14) ) (;E)n P ™ (cos ) (12)

n=2 m=0

x (Cnm cos (m 6 + i t) + Snm sin (m 9 + i t))]

where
b o= MG= 5.5629 x 107 K /mr?
r, equatorial radius of Mars = 3388 km
r distance of point from center of mass of Mars
é co-elevation of point with respect to S3
6 azimuth of point with respect to S3
i rate of rotation of Mars about ﬁ3
ij associated Legendre function of the first kind of degree k and

order j.
The right-hand side of (10) is thus F =-yV.

Methods of using the constraints provided by equation (9) to yield estimates
of the initial conditions and parameters C_ , S in equation (12) are well known
and will not be considered. However, the eFfect™of errors in measuring & upon the
outputs will be considered.

Error Analysis

Two spacecraft orbits defined in Table IX are chosen for study. These par-
ticular orbits were chosen because of their relatively poor yield of Phobos
sightings.

TABLE IX
ORBITS TO BE STUDIED
Spacecraft Phobos Deimos
Orbit No. w ‘i Q vo tl(hrs) tn(hrs) n Vo tlﬁms) tn(hrs) n
1 0° | 60° | 240° °l1034.0 |2117.1 |11 °1 101.67|2154.31 [146
2 300° | 30° | 300° 60°| 197.7 |2143.0 |13 60° | 245.0 |2092.0 154
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In the table, w, i, and Q are the initijal orbital elements (t = 0) and are
defined with respect to S3; Vo is the initial moon true anomaly; t, and t,
are, respectively, the times of the first and last moon sighting, and n is
‘the number of moon sightings.

To investigate the effect of random errors in the measurement of the direc-
tion to the mooms at each sighting, the following major assumptions were made:

(1) The only forces upon the spacecraft and the moons are deriv-
able from the potential shown in equation (12).

(2) No systematic error exists in the measured direction, However,
deterministic errors in some of the parameters of the potential
shown in equation (12) are allowed.

(3) The error distributions of each measured angle are independent
and identical and

\
o (5 e3) = cos e; O (6 a3> = 1 arc minute.

The errors in the measured elevation and azimuth of the direction
to the moon are § e, and § a,, respectively, these angles being
measured with respect to the Martian system, S3.

(4) The random input errors are so small that each output error is
a linear combination of the input errors.

The accuracy of the direction measurement is open to question, 1In fact,
for the proposed instrument, this accuracy is not constant, As will be shown,
it is a strong function of the particular stellar background against which the
moon is viewed and the moon's position within the instrument's field of view.

A different instrument (or the same basic instrument with a different slit
configuration and field of view) would possess a different direction accuracy.
To account approximately for this effect, the output error may then be scaled.
On the average, the designed instrument for this study has a direction accuracy
of five minutes of arc. Hence, the errors to be shown may be multiplied by
five to account more nearly for our particular instrument.

A problem containing twenty three unknowns was first examined. These un-
knowns are as follows: the initial position and velocity of the three bodies,
and the five harmonic coefficients (C2 > €305 C4p- G215 and 521). The initial
position and velocity for the three bogies are defined as follows: Let

t

1 time at which Phobos is first sighted

u

T time at which Deimos is first sighted.

1

Then, the initial positions are
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R(t,), —Rl(tl), 'liz(Tl) ift. <7

1 1

R(r)), R(e)), Ry(r)) Sf &) > 7, o

A corresponding definition is used for initial velocity.

Values assigned to the five harmonic coefficients so that a simulated
"measured direction" is computable are:

Cyp = - 2.011 x 1073
€30 = S0~ 107
Cpy = 2% 107>

89y = 107>

Only Cyp is given a numerical value in the literature. This value is obtained
by Earth-based observation of the moons. The values given for C and C are
simply a guess. Values of Co1 and S;q were computed by assuming Mars has an
axis of dynamic symmetry, but this axis is not parallel to kgq. We assume the
true right ascension and co-declination of the axis of symmetry differ from g;
and 52 by one minute of arc.

Results

Although not shown, the results of the problem containing twenty-three
unknowns were somewhat disappointing in that the errors incurred in the higher
harmonic coefficients, C3p and Gy are generally greater than the assigned
values, This occurs because of the relatively high altitude of the three
bodies. It is concluded then that C3g and Cup should not be treated as un-
knowns. It should be emphasized, however, that the inability to obtain these
quantities results not from a defect in the measurement, but from the choice of
spacecraft orbit. In all examples to be considered, Csp and 040 will be assumed
known. The two cases for which numerical results are shown contain twenty-one
unknowns.

Figures 12 and 13 are plots of the errors in initial position and speed of
the spacecraft, Deimos and Phobos as a function of the sighting time interval
during orbit number 1 (Table IX). Also shown in figure 12 are the number of
sightings of the two moons at various times. Position and speed errors are
defined, respectively, as follows:

o (x) + 0% (s) + o> (z) , w/ P () + oF () + 0% (%)

where
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Figure 12: Error in initial position of the three bodies as a

function of sighting time interval., Orbit No. 1.
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o (r) standard deviation of initial radial position error
g (s) standard deviation of initial along-track position error

o (z) standard deviation of initial cross-track position error.

In the figures, the errors are shown as continuous. This is an approxima-
tion for the errors change discontinuously as each new measurement is taken and
the error functions are descending staircase functions.

Initially, the position errors of Phobos are two orders of magnitude greater
than those of the spacecraft and Deimos. However, as more sightings of Phobos are
taken, the position errors of Phobos are reduced so that after 2100 hours (~ 85
spacecraft orbits) the errors are more comparable.

The initial speed errors of the three bodies are greatest for Phobos and
smallest for Deimos. This order is the same as the true initial speeds which

are as follows:

Phobos 7.570 x 10° km/hr
Spacecraft 5.101 x 103 km/hr
Deimos 4,857 x 103 km/hr.

Figure 14 is a plot of the normalized error in the three harmonics
coefficients which are treated as unknowns in the total problem. Here
normalized error of Cyg is defined as

E;o =0 (5 Czo>/lczo' .

~

Similar definitions are used for 821 and 021.

All three harmonics are quite well determined by the measurements. Figures
15, 16, and 17 are the same format as figures 12, 13, and 14, respectively,
except the latter figures are derived from orbit number 2. This orbit not only
yields more Phobos sightings (15 versus 10) and total moon sightings (167 versus
157), but also produces a better viewing geometry. As a result, all errors are
reduced from those produced by orbit number 1 by approximately a factor of two.

Effect of Errors in Assumed Known Parameters

In addition to random errors, errors will be present in the harmonic co-
efficient which are not treated as unknowns but are assumed known. These latter

errors are deterministic,

In reducing the measurements, it was assumed that the mass of Mars was
known, and all harmonic coefficients other than CZO’ 021, and 821 were zero.
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IN POTENTIAL PARAMETERS
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Figure 14: Normalized error in the harmonic coefficients as a function

of sighting interval. Orbit No. 1,
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Now suppose this were not true, but § M/M = § C30 =86 C4g =06 C3]_=6 831 = 10‘6

These input errors will then induce errors in the unknowns. Results are shown
in Tables X and XI. These tables are derived from orbit number 1, but orbit
number 2 yields results quite similar. Again, the units of position and speed
errors are km and km/hr, respectively.

Three salient results are obtained from these tables.

(1) The resulting errors are small. However, if the inputs
6 C 12 and § S,, were increased by a factor of ten, then
51°n1f1cant1y garoe errors in most outputs would result
and thus C37 and 831 should be chosen as unknowns and
solved for.

(2) 1In contrast to the effect of random input errors, the effect
of the deterministic errors is to sometimes increase and
sometimes decrease the errors of the unknowns as more sight-
ings are used.

(3) The error in the mass of Mars produces a negligible error in
all unknowns and these errors are almost independent of the
number of sightings used.

The result (3) has an analytic explanation., The equations of motion of the
three bodies are of the form
§ . .ouE L o
[ R |
where g (R) is small, Suppose a change of scale is made in length and mass so
that

r

]
>
=

m

]
>
=

where \ is a constant. Since no lengths are measured, A will not appear in the
constraint equations (9) if these equations are expressed in the new variables.
In terms of the new variables, the equations of motion become

I
n

--l‘;—‘f—% +E 0T .
r

Thus, for small g the total system is nearly independent of ). Let

5 M

SRR

]

then
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TABLE X

ERRORS IN UNKNOWNS PRODUCED BY DETERMINISTIC ERRORS IN
FIVE GIVEN PARAMETERS. ORBIT NO. 1, 100 MOON SIGHTINGS

Erroneous Deimos Phobos Spacecraft Harmonic Coefficient
Tnput Position Speed Position Speed Position Speed E&O ﬁél §&1
sM/M 7.8x1072 | 1.6x107 | 3.2x107> | 2.5x1073 | 6.9 x 107 | 1.7x107° | 3.3x1077 | 6.7x10"® | 3.4x107°
5 Cyy | 9.2x107° | 1.4x10 | 1.6 1.9 1.3x107% | 3.6x107° | 9.9x107® | 7.1x107% | 6.4x107>
5 Cyp 1.3x107> | 2.8x107* | 4.2x10°t | 4.8x1071 | 2.2x1073 5.1x107% | 1.2x107° | 6.8x1072 | 5.0x1072
6 Cy | L2107 1.7x107> | 18 20 1.8x10°Y | 4.3x107% | 2.9x10™* | 1.7x107% | 9.5x10"2
55y, | 8.4x107 | 1.3x107 | 13 15 1.1x10°Y | 3.3x107% | 2.4x10™* | 1.2x107% | 1.5x107*
z TABLE XTI
ERRORS TN UNKNOWNS PRODUCED BY DETERMINISTIC ERRORS IN
FIVE GIVEN PARAMETERS, ORBIT NO, 1, 157 MOON SIGHTINGS
Erroneous Deimos Phobos Spacecraft __ Harmonic Coefficient
Input Position Speed Position Speed Position Speed Cap Coq 891
sM/M Same as Table X
5 Cq 1.9x10°2 | 2.0x107 | 2.1x107% | 1.3x1072 | 2.8x107% | 4.7x107° | 1.3x107° | 1.1x1072 | 1.ox1073
5 Gy 8.0x107> | 1.3107° | 1.2x107% | 5.0x107° | 5.4x107° | 1.4x107° | 1.0x107 | 6.3x107% | 1.0x1072
8 Cqp 2.1x10° 0 | 2.4x107% | 2.8x107 | 1.5x1071 | 3.5x107F 4.5x107% | 3.0x107% | 1.ox107 | 5.1x1072
5 Sy 1ox10°t | 2.1x1072 | 2.0x107r | 1.ex107t | 2.8x10°F | a.ax107% | 1.8x107* | 1.9x1071 | 5.8x107

E
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& M/M

Wi

d M
+ M R

-+ 8§ M.
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, 6T =

r - R~z

Wik

10°% R

Thus, a small change in the mass of Mars can be expected to cause an error in
the computed position which is almost entirely in the radial direction., 1In
Table XII a comparison is given between results obtained from this analysis and

the previous error analysis.

TABLE XII

Again, the unit of length is km,

COMPARISON OF INITIAL POSITION ERRORS PREDICTED FROM STMPLIFIED
ANALYSIS AND ERRORS OBTAINED FROM NUMERICAL ERROR ANALYSIS

5 T = (6M/3M) R Error Analysis
Component
of Error Phobos Deimos s/c Phobos Deimos s/C
Radial 312107 | 8.0x107> | 7.3x107° | 3.2x107> | 7.8x107> | 6.9x107°
Along-track 0 0 0 4x1083x%x108-9x 108
Across-track 0 0 0 -3 x 10_8 3 x 10—8 4 x 10_8
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SPACECRAFT ATTITUDE

Introduction

In the previous section it was assumed that the direction to a moon was
measured. This cannot be done without first determining the attitude of the
spacecraft from transits of stellar targets. This latter problem is now con-
sidered.

Analysis

The general problem is to find the orientation of a coordinate system
fixed in the spacecraft with respect to a stationary coordinate system. The
basic input measurements which yield this orientation, or attitude, are the
readout of an angle encoder at the instant known stars cross each of three
slits.

Consider a transparent slit etched on an otherwise opaque focal plane of
an optical system as shown in figure 18, 1If the slit is a straight line seg-
ment and the optical system is free of distortion, then a portion of a plane
will be defined which contains the slit and the nodal point of the lens system.
Given a distant bright point source, this source will be sensed by a detector
behind the slit if, and only if, it lies on the plane defined by the slit and
optical system. If a point source crosses the plane, the source image transits
the slit. The encoder readout at the instant the point source lies in the
plane is called the transit angle.

For any transit of a star, the following equation may be written

n(, t)y «5=0 (13)

n unit vector normal to the slit plane at the instant of transit,

unit vector in the direction of star, and

o>

6 angle encoder reading at transit time t,

To specify the vehicle orientation at any specific instant requires three
independent angles while equation (13) yields onlyone condition. Additional
equations are obtained as the instrument motion causes the sensor to scan the
celestial sphere and other stars are encountered. This results in a set of conditions

n (8, t;) -5, =0. (14)

If no further inforwmation is introduced, this simply adds one equation and
three unknown angles at each isolated transit time. However, the physics which
governs the motion of the satellite may be invoked to develop a time-dependent
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Figure 18: The relationship between the slit plane and
the target star at the instant of transit.
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characterization of the attitude which involves just a few unknown parameters.
This "attitude model' may then be used to internally couple the condition in equation (14).

Observe that since the optical system has its position defined with respect

-to the satellite via the encoder, the components of n are most easily written

in a coordinate system fixed in the satellite. On the other hand, § is most
easily written in a celestial coordinate system (a system in which the star
directions are cataloged). 1In order that these vectors may be written in the
same coordinate system, parameters which specify the orientation of the coordin-
ate system fixed in the satellite with respect to the celestial system must be
introduced. However, these are precisely the unknown attitude model parameters
which are to be determined, Solution for these parameters yields a state vector
which, when inserted in the attitude model, results in a time history of the at-
titude over the interval spanned by the transit data.

Two additional observations may be made. First, each stellar target will
yield two spatially independent measurements -- e.g., azimuth and elevation --
if more than one slit is employed in the sensor. The set of basic constraint
equations then takes the form

Ry (8, £5) 8, =0 (15)

where j indexes the set of slits. The additional information per star which is
gained from a multi-slit system may be exploited to reduce the number of required
stellar targets or to increase the data sampling rate. Second, if the number of
independent conditions in equation (15) exceeds the dimensionality of thestate vector,
then this set of equations is redundant and may be solved in a least-squares
sense. The internal consistency of the resulting solution is a measure jointly
of the adequacy of the attitude model and the accuracy of the transit angles.

In order to write equation (15) in more detail, let several coordinate
systems, Si’ with associated unit vectors ii’ ji, ki be defined as follows:

S1 Celestial coordinate system; f. direction of the First Point of
Aries, ﬁl, in direction of the celestial North Pole.
S,  Sun-Canopus system; k_ in the anti-Sun direction, and {5 in the

Sun~-Canopus plane,

S7 Spacecraft fixed system; K, is the direction of the instrument's
spin axis, and i7 is the direction determined by the angle encoder
zero,

SS Instrument fixed system which rotates with respect to S7 about
kK, = k.

7 8

S10j System fixed in the jth slit; 3 0] is normal to the jth slit.
This system is also fixed in thé& fotating instrument.

The orientation of S5 with respect to S1 is known; 55 is introduced only to
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simplify the description of the spacecraft attitude. It is assumed that the
spacecraft has a Sun-Canopus tracking system so that the spacecraft fixed

system, S8’ is nearly aligned with SS'

Now,
i\5 {1
g | = B i, (16)
QS 121

where the matrix B is given as follows: The third row of B is composed of the
components of a unit vector from the sun to Mars., This vector being resolved

in Sl' The first and second rows are then given by

Kb11 = cos éc cos %:<1 - b31 b33)-— <b32 cos éc sin ac + b33 sin 6c) b33

Kbl2 = cos éc sin QE(l - b32 b33> - <b31 cos 5C cos ac —+ b33 sin 5c>l§3
. 2)( n o)
13 sin 5c (1 b33 b31 cos ac + b32 sin o, cos 5c b33
b =b

21 32 P13 7 P33 Pyp
22 = P33 Pyp 7 Py By

b

23 = P33 Pyp 7 Pyy by

Here o, 5c are respectively the right ascension and declination of Canopus.

=~
I

2
= 1—[<b31 cos o, + b32 sin ac) cos 6c + b33 sin 6c]
6.

1]

Let the orientation of 58 with respect to S
nl’ nz, and s so that

=]
1]

5 be defined by three angles

- ~

Jg ™ g rotation ﬂl about 1 = g

> - : . b 2 = K

1¢ 17 rotation ﬂz about J6 J7

[ £ . > = o

i, 18 rotation s about k7 k8
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Hence

18 15
jg | = pec | 3 (17)
k8 ﬁ5
where
cos s sin s 0
D= - sin s cos s 0
0 0 1
cos n2 sin ﬂl sin n2 - cos nl sin n2
C = 0 cos nl sin n

sin ﬂz - sin nl cos ﬂz cos ”1 cos nZ
the angles nl’ ﬂz, and s are, of course, unknown.

The remaining problem is to describe the orientation of the jth slit
system, S, ., with respect to S To this end,

10 8
ES - ﬁg rotation o about §8 = 59
{9 - {IOj rotation 05 about ﬁg = ﬁlO’ j=1,2,3
Here
pp e - T
Py = ¢

Py = € + 1 (see figure 19),.

Thus, the plane defined by the jth slit is the ({10j’ ﬁ10> plane, and

- sin pj cos O i, + cos P i

Ji05 © 8

8 + sin pj sin @ k8 . (18)

Now is normal to the jth slit plane. In obtaining equation (18), it was

> J10j
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Figure 19: The orientation of the slits as defined by e, I, 0.
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tacitly assumed that the three slitsare designed to intersect at a point so the
center slit bisects the angle formed by the outer two slits as shown in
figure 19.

The components of the slit plane normal in the coordinate system, Sl’ can
now be obtained by combining equations (16), (17), and (18). Hence
"1
3. . =1- si o, cos i i ) DC k) .
JIOJ ( in pj cos 0, co pj’ sin pj sin © B 31
k1
So, equation (13) becomes
0 = (- sin pj cos O, Cos Py sin P5 sin o) D(s) C (”1’ ﬂ2> B s (19)

where

§ denote the direction of the star which transits the jth slit, this direc-
tion being resolved in Sl.

If the spacecraft were truly stabilized by the Sun-Canopus tracking system,
then Ty and n, would be constant angles. Here it will be assumed that these
angles can be approximated by linear functions of time during the time interval
over which stellar transits are gathered (approximately five minutes). It is
thus assumed that

My 7Ty + My (€ - 6

My = Mg + My (& - )

s [

s, +8 (t -t ) +80
where

nlO’ ﬁl’ ”20’ nz s, , and S are constant

6 1is the angle encoder reading

P =€ " T
Py T €
p3=€+1"

Hence, each transit gives one equation in _eight unknowns: three initial atti-
tude angles (nlo, nZO’ s, ), three rates (ﬂl, n2’ and s), and two angles
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associated with the slit orientation (¢, o). It is assumed that the angle be-
tween the slits, I, is known.

In general, at least eight transits from two distinct stars are required.
At each transit the transit time, t, and the angle, 8, are measured. The
direction to the star s is determined by use of a star catalog.
Direction to a Moon
After the attitude is determined from the stellar transits, the direction
to the moon can be found from the moon transits, This direction must be re-

solved in the coordinate system, S3, (the Martian system).

At the instant the moon's center lies in the jth slit, one can write

COs €. cos a

5 5
= (- si . o A i . i . si ) D C cos e i
0 ( in pJ cos O, cos pJ, sin pJ, sin pJ sin © 5 sin ag
sin e
in eg
where
ecs a5 are the elevation and azimuth, respectively, of the
moon's direction with respect to S5
D, C are known matrices computed by use of the stellar

targets. C is a function of the time of moon transit,
and D is a function of this time and the angle encoder

o and p, are known angles also computed by use of the stellar
J targets,

Hence, the transit of the moon across all three slits yields three equations in
the two unknowns, e. and a_. After obtaining these angles, the direction of

the moon with respett to S3 may be found as simply

cos e

cos a cos e_ cOs e
3 3 5 5
cos e, sin a = A' B' cos e. sin e
3 3 5 5
sin e sin e
3 5

where
B' 1is the transpose of B
A is the matrix which transforms the S, components of a vector into

the S, components of that vector. This matrix is given in equation

an.t
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Error Analysis

The problem now to be considered is that of estimating the accuracy to
which the spacecraft attitude and moon direction may be determined from errone-
ous transits. The following assumptions are made:

(1) The true spacecraft attitude varies linearly with time in the
data gathering time interval, i.e., the angles 7, 7, and s,
are linear functions of time. Moreover, the time rates of
each of these angles is less than a minute of arc per minute.

(2) The eight unknowns associated with the attitude determination
problem are computed from data gathered over five minutes and
ten minutes of time (two cases) but the moon direction is ob-
tained from only three successive moon transits, The rotation
rate of the instrument is one RPM so the instrument completes,
respectively, five and ten rotations in gathering the stellar
transits,

(3) At each transit a random error is made in reading the angle
encoder and transit time. These errors are unbiased and inde-
pendent. Moreover, all encoder errors are independently dis-
tributed as well as all time errors. The standard deviation
of each angle error is one minute of arc, and that of the
transit time is .1 second of time.

(4) The criterion for stellar detectability is the same as for moon
detectability given earlier except an additional restriction
that detectable stars be brighter than magnitude 2.2 is imposed.
Saturn is included as a stellar target.

(5) A moon being in the field of view does not affect stellar de-
tectability.

The time error given in assumption (3) has almost no effect on the output
errors, This is because neither the attitude nor the moons' directions
change greatly in 0.1 seconds.

The attitude can be obtained at any time that two or more stars are de-
tected per scan of the instrument. However, here the attitude is used only to
compute the moon direction and, hence, has interest only near the times a moon
is in the field of view, Results will be shown only for these times.

Figure 20 is a plot of the error in direction (two angles) of the moon
and error in spececraft attitude at the first forty-four moon sightings of
orbit number 1 (defined earlier). For this plot a five minute data gathering
interval is used. Here we define attitude error as

/cz G Ty + S 6Ty + 5 65
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ATTITUDE AND MOON DIRECTION ERROR (minutes of arc)
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Figure 20: Attitude error and direction error as a function
of sighting number. Orbit number 1,
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Note that attitude error is almost constant over many sets of consecutive
sighting numbers. This condition occurs when consecutive sighting numbers have
corresponding times relatively close which, in turn, implies that the detected
stellar field changes very little. The azimuth and elevation errors, however,
change even though the attitude error may not; for, the moon direction does
change and the slit configuration does not allow for computation of equal
direction error independent of the moon's location in the field of view. Fig-
ure 20 may be incomplete in that it gives the attitude and direction errors at
only 44 out of the 157 moon sightings which were used. At some of the moon
sightings other than those shown in figure 20, the stellar background is poor
in that only one or two stars are available., At these sightings the errors can
become quite large.

A more complete indicator of the errors is given in figure 21 which
is a plot of the cumulative probability distribution of the two components
of the moon direction error. This plot was obtained from the direction
errors at each moon sighting over orbit number 1 for the five and ten
minute data gathering intervals. From figure 21 it is noted that if the
probability is set at .5, then each direction component has an error of
approximately five arc minutes if the five minute data gathering interval
can be used. (The corresponding attitude error is 3.2 arc minutes.)
However, if the ten minute data gathering interval can be used, then the
corresponding direction errors are approximately three arc minutes. Hence,
our assumption in the discussion of the navigation problem that each
component error of one arc minute 1s optimistic.
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SENSOR DESIGN AND ANALYSIS

Introduction

The sensor design is based on a realizable electronic implementation of
the signal detection process which allows operation over a wide range of signal
amplitudes without compromising the capability of the sensor to acquire meas-
urements with the required accuracy. The sensor accuracy is analyzed for both
star transit measurements and Mars moon transits. Correction factors for the
moon transit measurements are approximately determined as a function of moon-
sun phase angle and moon-spacecraft distance. A more refined analytical model
for estimating moon transit correction factors is also presented.

Instrument Parameters

A large number of interacting parameters must be selected in arriving at
a suitable instrument design for the studied application. Previously, ithasbeen
determined (pages 31-36) that in order to obtain a sutficient frequency detec-
tion for the moons of Mars and the stars brighter than second magnitude, the
field of view must be at least 20° when canted at an angle (') 45° with respect
to the vehicle spin axis. In this section a realizable detection method is
demonstrated zhat will detect celestial targets over a wide range of star in-
tensities (107) as will be encountered during the mission. In the process of
mathematically deriving the signal-to-RMS noise ratio at the output of the
design filters, preferred values of instrument parameters such as scan period,
aperture size, and slit width are determined.

A summary of the instrument parameters investigated throughout the total
study is found in Table XIII,.

TABLE XII1

SENSOR PARAMETERS
Slit Width - 3.77 arc minutes
Cant Angle - 450
Field of View - 20°
Scan Period - 60 seconds
Aperture - 0.5 inch
Limiting Magnitude Star = 2?2

Signal Detection

The brightest celestial target to be dctected is Phobos at -~ 8.3 magnitude
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and the dimmest star to be detected is about + 2.2 magnitude. This consti-
tutes a dynamic intensity range of about 10*, This wide range of target in-
tensities (factor of 107) requires special consideration for signal filtering
and signal detection. It is desirable to employ a pulse detection method
which automatically adjusts the threshold up and down with the intensity of
the target being detected., A realizable method for implementing an automatic
detection threshold is diagrammed in figure 22,

The method employs two low-pass filters, denoted by Fy and F,, with the
inputs of each drived by the unfiltered star signal, f(t). Filter F, has a
transfer function which approximates a linear phase versus frequency character-
istic which allows preservation of the symmetrical properties of the signal
pulse (reference 8, p. 131). Pulse symmetry is desirable for accurate transit
time determination since the transit time is chosen as the average of the lead-
ing and trailing edge threshold crossings. The time constants for filter F;
are adjusted so that the ratio of the peak output signal to the noise equival-
ent bandwidth is maximized. This results in a filter impulse response which is
very closely matched to the input star signal (reference 8, pp. 122-143), The
filter labeled Fy, shown in figure 22, is also a linear phase filter, although
the requirements for linear phase are less critical than for filter Fj.

Filter F2 will be utilized to filter the input star signal before the peak
value of the star signal is stored with a peak detector. The peak detector
output is then multiplied by an appropriate factor, such as 0.6, to serve as
the threshold for the transit level detector. Filter Fy, driving the peak
detector input, must exhibit less delay of its output with respect to the input
than the output-input delay of the '"matched" filter since the peak for the out-
put from Fp must occur slightly before the 50% output level of Fy occurs. The
output pulse from the transit level detector is used to gate the contents of
the binary clock into a storage register.

The primary level detector shown in figure 22 has a threshold which is
set sufficiently above the RMS noise level to meet a specified false detection
rate, This level detector triggers whenever the leading edge of a pulse from
the output of filter Fjy exceeds the pre-set threshold. The leading edge of the
primary level detector output triggers suitable digital delay pulses to strobe
the transit level detector output and to reset (discharge) the peak detector
circuit after the transit detection has occurred in preparation for storing
the peak of the next star signal.

Figure 23 shows a plot of the output signal (noise free) from filters ¥y
and Fp for a symmetrical noise-free input signal which represents a typical
star pulse (noise-free) at the photomultiplier output. The transfer function
for filter Fq was taken from reference 9 as

H(s) =

1
[2.62 (2 )2 va62 (2 )+ 1 fora (2 )2 + 0.9 (2 )4 1] o
(&) c c C

This transfer function approximates the linear phase-frequency characteristic
and at four frequencies it matches the lincar phase characteristic exactly.
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The impulse response for this transfer function was determined by partial
fraction expansion of equation (20) and from a table of Laplace transforms
and was found to be

-cht -Ry t
h(t) = (0.5630) (231 w.e cos (cht) + 2a2 w e sin (cht) (21)
- Vt -w Vt
+ 2c1mce cos (Uwct) + 2c2wce ¢ sin (Uwct))
where
a, = 1.48348 x 10"
Cl = - al
a, = 1.21
c, = 3.4765 x 107"
R = 0.5413
vV = 0.3338
8 = 0.3467
U = 1.1185

The output signal from filter F_ is given by the convolution integral

2

y(t) = f £¢t) * h(t-1) dr (22)

where the input signal is taken as (reference 8, pp. 122-143).

]

£(t)

2 t T,
sin <1.17 ES) for 0< t<n (ﬁ) (23)

=0 elsewhere.

The parameter T represents the transit time of a point image to cross the slit,
where (referencg 8 pp.122-143)

=

T, = " (24)
2.16 x 10

T = scan period in seconds

éa = slit width in arc-minutes
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The value of the filter parameter, (., was determined from the "matching"
procedure described in reference 8, pp. 152-143. For the four-pole linear
phase filter, the ratio of

y peak
‘V wc

is a maximum for the given input when

o = 224 @5)

The noise equivalent bandwidth, Af, of the filter implied by equation (20)
is given by (reference 8, pp. 122-143).

] w
Af =%ﬁ ‘f [ HGo) |[* dw= 0.809 -5 = 2:288 (26)

2mr T

]

The transfer function for filter F,, whose output is alsc shown in figure 23,
was also taken to be that given by equation (20). This filter is'matched" to
f(t) when

but since it is required that filter F2 have less delay than filter F the

value of w was selected as
c

5 £2.24)

T
s

l’

Figure 23 shows how the detection method can accommodate the wide range of
target intensities which the sensor must observe. The input signal is shown
clipped at the 50% level which corresponds to a bright target, causing the pre-
amplifier at the photomultiplier to limit (saturate). The corresponding output
signal from filter F; is shown and it should be noted that this signal is sym-
metrical and the employment of the peak detector variable threshold will provide
an accurate detection of the clipped signal., Accurate detection free of induced
systematic electronic errors will be realizable as long as the 'noise free"
signal from the photomultiplier is symmetrical. Signals from the photomulti-
plier which exhibit variable asymmetry will always introduce some systematic
errors in the detection process if correction factors are not determined,

It is of interest to compute the signal-to-noise ratio at the output of
filters F; and Fy. The total noise power at the output of a filter used in a
scanning optical sensor is derived in reference 10 (pp. I1I-67 to III-83). This
noise power consists of the summation of two compenents. One component, Ny, is
due to the random variation of the photon arrival rate from the radiant power
in the star image. This ncise component is ccmmonly termed shot noise. The
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second component, N, , arises because of the scanning of a non-uniform back-
ground which consis%s of a random spatial distribution of stars whose magni-
tudes are greater than the threshold magnitude.

The shot'noise power is given by (reference 10, p.'iII—68)

— )
N1 = e a2 I f hz(t) dt amperes 27)
[}

e = electron charge

=1.6 x 10'19 __coul
electron
a = factor due to the noise introduced by the dynode chain of the photo-
multiplier
I = average current generated at the photocathode by the average back-

ground radiant power and the star radiant flux.

[ea]
The integral j hz(t) dt is equal to
o]

o w

f H(jo) * H (jw) df =f [HGw) |2 af (28)

-0

by Parseval's theorem, hence from equation (26)

f h2(t) dt = 2 Af. (29)

The average current, I, in equation (27) consists of the average current
due to background radiation plus the current produced when the star image is
centered in the slit. The current produced by the star image is included
since the noise computed for the peak signal-to-noise must include the noise
generated by the signal itself,

The peak signal current for a star of magnitude M is given
by

I =e¢, -EDZ s. x 107+%M (30)

where

€o the overall optical efficiency
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D = the effective optical aperture diameter

SK = the photocathode sensitivity per unit area of optical aperture
for a zero magnitude star having a given spectral energy dis-
tribution

M = star magnitude

The above expression for I_ assumes that 100% of the radiant power concen-
trated in the star image is pasged by the slit. However, the slit may block a
small percentage of the radiant power in the star image so as a worst case it
is assumed that only 807% of the available radiant power of the star images
passes the slit (reference 8, pp. 128-129),

The average component ‘of I generated by the background radiation is given

by
m 2 ~4
= - D 10
IB € % SK NB SA 1)
where
NB = total integrated starlight from stars of sixth magnitude and
dimmer which is expressed as equivalent tenth magnitude stars
per unit area on the celestial sphere
SA = total slit area projected on the celestial sphere as seen by

the photocathode through the slit plane.

The total slit area is given by (reference 8, p. 149)

SA = NS é% cos (F - EgY> - cos <F + EgY)] 159 (degree)2 (32)
where

Ns = number of slits radial to the spin axis of the sensor

sw = rotational slit width expressed in arc-minutes

I’ = cant angle of the sensor optical system with respect to the

vehicle spin axis
FOV = field of view of the optical system,
Combining equations (30), (31), and (32) gives

I = 08I +1I,. (33)

In deriving equation (33),_it is assumed that the photomultiplier cathode dark
current is much less than I.
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The noise component due to scanning the non-uniform background is given
by (reference 10, p. III-70)

2 —
2 2 2 272
N, = e (’-E p°) Sg A8, J ZAM (34)

where

<« Sinz (____S_ '(U)O')Z )
— e [HGw)|® af

>
n

m'—]

LI

N

2~ = square of the star intensity averaged with respect to star
density and star magnitude with the average taken only for
stars which are dimmer than the threshold magnitude, M, .

The mean square intensity may be computed as follows:

z 0.4 (2)M
10
-2 M=M, +1 AM
AS = p (35)
M=M,_ +1 u

where

Ay

average number of stars per square degree within the
brightness range M + 1/2 to M - 1/2.

Figure 23 shows a plot of the noise-free output signal for both filters F1
and Fo. As can be seen, the noise-free unity input peak is attenuated by
filter F; to an output peak of 0.76 and is attenuated by filter F, to an output
peak of 0.9674. The peak of the noise-free input signal corresponds to an
assumed worst case of 80% of the total radiation concentrated in the star image
which passes the slit and strikes the photocathode. Hence, the input signal
peak to both filters corresponds to 0.8 I_. Therefore, the output peak signal
for filter Fl corresponds to s

2

-.4M p?, (36)

S1 = 0.8 x 0.76 x SK 10

Rl =

and the outpeak signal for filter F2 corresponds to
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2

JAM
A D. 37)

52 = 0.8 x 0.9674 x SK 10

By observing equations (27), (30), (31), (33), (35), and (36) it is appar-
ent that the square of the peak signal-to-RMS noise ratio may be written as
follows:

s, 2 5, 2 kg p*
R = (E‘) = 2 2 = 2 . & (38)
N, 7+ N, k; D+ k, D
where
- )
k, = (o.s x 0.76 x S, 10°° {-) for filter F,
-4M T2
= (o. .96 n i
ks (0 8 x 0.967 SK 10 A for filter F2
2 < -4M -4 ) 7
. = + I
k) e a 2 Af (0.8 ¢ SK 10 e Sy 10 Np S4) %
2 ——
_ 2 2 (_1_‘[ 2
ky Tee Sy 4.)- ASy Y

Equation (38) may be solved for the optical aperture diameter so that

i
k1 R :
D = TR K . (39)
s 2

Slit Width
Before the optical aperture diameter can be calculated, the slit width and
scan period must be determined. The required slit width can be derived by
identifying and considering the error sources of the scanning star semsor. The
following errors will be expected to dominate:

(1) angle encoder quantization error,

(2) wuncertainty in the detection threshold crossing due to noise
superimposed on the signal,

(3) bearing eccentricities,

(4) thermal deformation cf slit pattern location,
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(5) change of cant angle due to thermal deformation,
(6) optical aberrations, and
(7) sensor mounting errors,

The above seven sources of error should be expected to equally contribute to
the overall error for a well balanced design., Hence, if the overall RMS error
is ¢, then

i=7

2 2 2

e = Z Ay =74 (40)
i=1

For the scanning sensor, ¢ should be 60 arc seconds; hence A = 22.7 arc seconds.
Noise source number 2, listed above, is related to the slit width and the peak
signal-to-RMS noise ratio. The uncertainty in the threshold crossing expressed
in terms of the slit width is approximately equal to the slit width divided by
the signal-to-RMS noise ratio. For a reliable sensor design it is a practical
requirement that the peak signal-to-RMS noise ratio be at least ten to one.
Therefore, the slit width, Sy, required for an RMS detection error of A = 22.7
arc seconds is

-~ §> —‘1_- _ .
sw = A <N X 0 3.77 arc minutes, 1)

Scan Period

Some of the parameters that affect the scan period are field of view and
cant angle. Computer simulations of orbital sightings of Deimos, Phobos, and
the star field during the mission have defined the angle of the optical axis
with respect to the vehicle spin axis (cant angle) as 45 degrees. 1In '"Detect-
ability of the Moons'", other instrument fields of view and minimum bright source
shield angles (thus, a corresponding change in cant angle) were run, but these
cases gave either marginally acceptable Photos detectability or implied an in-
strument of unacceptably large dimensions.

The area scanned on the celestial sphere during one revolution of the spin
axis is (reference 11, pp. 23-26)
2

2
FOV . FOvVY] (1.8 10 2
AS = 2m [COS (F -5 ) - cos (F +~—E—>J Q———f?————) (degrees) 42)

2
2 [cos (350) - cos (550)3 Sligl— x 104

0.505 x 104 (degrees)z.
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From reference 12, the average number of stars per square degree of second
magnitude (photographic) or brighter is given as 9.12 x 1074, Hence, the aver-
age number of stars detected per scan period is 9.12 x 107% x 0.505 x 10% = 4.6.
In order to limit the accumulative attitude error resulting from an imperfect
mathematical model assumed for the vehicle motion, it is required that the time
between star transits be limited to fifty seconds, or less.

So, a scan period of

seconds transits
T = 50 ————Jlr— x 4.6 ———— 270.0 seconds or less
transit revolution

meets this requirement. As a result, equation (39) will be solved for the
optical aperture diameter for both T = 120 seconds and T = 60 seconds.

Aperture

The photocathode sensitivity for an EMR type-N cathode is (reference 11,
PP. 29-37)

-14 amp

S, = 8.25x 10 >
(cm)

K

for a zero magnitude class AOQ star, so for filter F

and M = 2, ks in equa-
tion (38) is

1

k, = 0.39x 10728 (43)

for T = 120 seconds and 5;-= 3.8 arc minutes, TS = 2,11 x 10"2 seconds from
which

A = —0.288 _ 13.6 Hertz for filter F,.

0.211 x 10 1

The photomultipler gain noise factor is z (1.3)2 (reSerence]O, PP. V-42 to
V-50; reference 13, pp. 126-127) and S 2.66 (degree)“ for N, = 3, s = 3.8
arc minutes, " = 45°, and field of view = 20°. So, for a stellar background of
Ng = 320 tenth magnitude stars per (degree)2 (reference 10, p. III-60) and an
overall optical efficiency of ¢, = 0.5,

[

k) = '5.07 x 10732, (44)

The mean square intensity as determined by equation (35) may be computed
from data given by'C. W, Allen (reference 12, p. 135) with M, = 2. This data
and the computations are tabulated in Table XIV for M = 3 to M = 10. The result
is

G E:AM - 0.21 x 1074,
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TABLE XIV

COMPUTATION OF MEAN SQUARE INTENSITY FOR STELLAR BACKGROUND

¥ A, 10-8M a, 10"+ &

3 2.69 x 107> 2.51 x 10° 0.11 x 107%

& 8.31 x 107 1.58 x 10° 0.05 x 10°%

5 2.51 x 1072 10* 0.025 x 10~

6 7.95 x 1072 6.3 x 10° 0.013 x 10°%

7 2.14 x 107} 3.98 x 10° 0.0054 x 10~%

8 5.62 x 1071 2.51 x 10° 0.0022 x 10°%

9 1.55 1.58 x 10’ 0.00098 x 10’4

10 4,17 108 0.00042 x 1074

0.207 x 107% = Xz E:AM

The integral in equation (34) was rewritten as

1 . sin2 ax _xz X 2
mnad_ . o
ool
where
Ts  2.56 5
a=g5 =5 = 1.28. (46)
o s . 2.24 .
This integral was evaluated numerically for we T with the result
J = 0.41. Hence, s
k, = 2.41 x 1072,

2

For a peak signal-to-RMS noise ratio of ten to one, R = 102 in equation (39),
so

D=0.37 cm = 0.146 inch.

This aperture is quite small, so it is possible to reduce the scan period.
Repeating the computations for T = 60 seconds
D = 0,525 em = 0.206 inch.
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It is interesting to note for this case Ny = 2.82 x 10-32 and N, = 0.183 x

10732, The scanning noise power, N,, tends to be small if the limiting optical
aperfure diameter is below one centimeter because N; = ky D, whereas Ny, =

ko, D'. 1In general, small optical aperture diameterS result because of very
slow scan rates.

3(0.
For filter FZ = 0T288 = 0.82 x 102 for T = 60 seconds,
s
so
32

k; = 30.6 x 10 77,

-1 . .
Also, the integral %n equation (45) becomes J = 5.2 x 10 * when . is tripled,
so kg = 3.06 x 10732, Since ghe output pulse from F, peaks at 0.967 of the
input peak, ks = 0.628 x 10728, Therefore,

S 2 S
R = (ﬁ> = 55 or N 7.42 wvhen D = 0,206 inch,

The diameter of 0.21 inch is still physically small so the optical aperture
diameter can be increased to 0.5 inch without compromising size constraints.
For D = 0.5 inch = 1.25 cm and T = 60 seconds, the peak signal-to-RMS noise
ratio at the output of filter Fl becomes 21.1 and at the output of F2 becomes
16.9,

Optical System

Both reflective and refractive optical systems were considered for the ap-
plication. A 20° field of view causes serious central obscuration in any re-
fractive system even at the focal surface of the system. For the scanning
configuration, a 10 min image size could be obtained with the PMT directly in
contact with the focal surface. However, since it is advantageous to rotate
the optical system about an axis canted 45° from the optical axis, the presence
of a PMT in the rotating member would require rotating electrical contacts be-
tween the PMT, the PMT supply, and detection electronics. The focal surface
could be shifted outside the primary mirror ‘-housing either by a plane mirror, as
in a Newtonian configuration, or by a hyperbolic secondary as in a Cassegrain
configuration. In either case, however, the result of the image transfer would
be an increase in central obscuration. Decrease in relative aperture required
to compensate for the increased obscuration would increase the size of the blur
spot beyond the baseline requirement of 10 min. Thus, a reflective system was
not feasible for this application

The difficulties inherent in the wide field requirement for a reflective or
catadioptric system are not present in the proposed refractive system, shown in
figure 24, as a modified double gauss system of nine elements with three cement-
ed doublets, The prescription has been adjusted to give maximum efficiency of
light transfer when the star image formed by the lens is scanned by a radial
slit. The parameters controlling the major off-axis aberrations, coma and
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astigmatism, were selected to produce image shapes narrow in the direction of
the slit scan. The image surface is slightly concave to the lens with a radius
of 38 inches. The diametral dimensions of the optical system are chosen to
produce no vignetting of the image intensity for objects 10° off the optical
axis,

Transfer of light passing through the slits to the photosensitive surface
of the photomultiplier (PMT) occurs at the interface between the rotating image
surface and the stationary PMT. The PMT was chosen so that the most extreme
ray from the upper part of the slit falls within the photosensitive boundary
of the PMT cathode. Reflective surfaces on the housing surrounding the image
surface-PMT interface increase the efficiency of the transfer by redirecting
light into the PMT,

Photodetector Selection

In order to achieve adequate signal-to-noise ratios with a minimum aper-
ture optical system for the detection of star signals with the scanning star
sensor, it is required that the photodetector be a photomultiplier. Previous
investigations have shown that current solid state detectors are inadequate or,
at best, marginal for sensors rotating at relatively short scan periods. One
of the principal reasons for the superiority of photcmultipliers is the rela-
tive noise-free gain achieved by thie electron multiplication provided by the
secondary emmissions of the photomultiplier dynode chain (reference 13). The
dynode chain provides adequate gain to raise the signal levels well above the
level of the thermal Johnson noise of the photodetector load resistor.

Extensive investigation has been performed in the applicability of photo-
multiplier tubes., The results of these investigations have shown that Venetian
blind tubes are optimum for several reasons; in particular, the rugged tube
structure, the large photocathode area, and the high multiplier gain are some
of its outstanding characteristics. Venetian blind photomultipliers have been
utilized in two previous SCADS-type experimental systems. For a breadboard
design of SCADS system (NAS5-9661), a Venetian blind tube designated as the
EMR-543A (manufactured by Electro-Mechanical Research, Inc.) was employed.

For the ATS Self-Contained Navigation System Experiment, the Venetian blind
photomultiplier employed was an EMR-541E. ‘Both tubes were ruggedized and
capable of withstanding the environment of space vehicle launching. Since
both tube types supplied by EMR performed satisfactorily, this study will
primarily consider EMR photomultipliers.

The cathode type employed by the photomultiplier is particularly important
in scanning sensor applications. It is desirable that the cathode exhibit high
quantum efficiency and a low dark emission rate. EMR has given letter designa-
tions to indicate different cathode types. For example, the EMR-543A has a
cathode designated: as an "A" cathode, and its response conforms closely to an
S-4 response with a typical peak quantum efficiency of fourteen percent and a
cathode dark current of .274 x 107 ampere per square centimeter of cathode
area at +20°C. Similarly, the EMR-541E has an "E" cathode which conforms
closely to an S-20 response with a typical peak quantum efficiency of
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twenty-five percent and a cathode dark current of .407 x 1016 ampere per square
centimeter at +20°C. The "E" cathode has a broad range of spectral response,
plus its peak sensitivity corresponds closely with the spectral energy distri-
bution of blue stars. The EMR "N" type cathode has a higher quantum efficiency
than the "A" type but is somewhat less efficient than the "E" type. The "N"
cathode response conforms closely to the S-11 response. Typical peak quantum
efficiency of 'N' cathode is 21.5 percent; however, its dark current is

.51 x 107V ampere per square centimeter at +20°C. Hence, its dark current
characteristic is much superior to either the "A" or "E" cathodes. In addition,
the "N" cathode can withstand a much higher temperature (+150°C) than either
the "A" (+75°C) or "E" (+85°C) cathodes. The high temperature characteristic
is particularly attractive since some cathode heating is likely to occur if
ever the sensor sees either direct sun radiation or Earth-reflected sun radia-
tion.

Because of its desirable characteristics of relatively high quantum effi-
ciency, low dark current and tolerance to high temperatures, the EMR type "N"
cathode is recommended for the present scanning sensor. The type "N'" cathode
is currently available in the EMR-541N photomultiplier. The active cathode
diameter of the EMR-541IN is 25 millimeters which is sufficiently large to
collect the energy from the canted optical system.

Sensor Electronics

Figure 25 provides an electronic block diagram for the celestial scanning
sensor. The primary functions of the electronics are summarized below:

(1) Converts radian star energy passing through the rotating slit
mask into electrical signals using a photomultiplier detector.

(2) Amplifies analog signals from the photomultiplier to levels
convenient for signal detection and data encoding.

(3) Filters analog signals to maximize the signal-to-noise ratio
and to also. preserve the pulse shape in order to achieve the
best possible system accuracy.

(4) Detects filtered analog signals by threshold detection where
the threshold is automatically set to trigger at 507 of the
signal peak through use of a peak detector circuit, delay
filter, and level detector.

(5) Encodes with an incremental angle encoder (14 bits/revolution),
the angular rotations of the sensor optics and reticle plane
driven by a low power, brushless DC motor.

(6) Counts the number of pulses from the incremental angle encoder

with a one bit counter which continuously cycles once per
revolution of the optics and slit reticle.
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(7) Gates the contents of the 14 bit counter into temporary data
storage at the instant of leading edge threshold crossing and
also at the trailing edge threshold crossing of the signal
pulse threshold detection, produced each time an image of a
stellar body transits any one of the three slits in the reti-
cle mask.

(8) Detects overload conditions of the photomultiplier and reverse
biases the cathode-first dynode to prevent cathode degradation
caused by Mars reflected sunlight entering the optics or by
inadvertent scanning of the sun.

Estimated Sensor Power Requirement

The estimated power required for the scanner is 7.9 watts distributed to
the various parts of the instrument as follows:

Photomultiplier High Voltage Power Supply 0.5 watts
Angle Encoder 2.5 watts
Motor 3.0 watts
Electronics 1.4 watts
Low Voltage Power Supply 0.5 watts

Total 7.9 watts

Mechanical Design and Sensor Gonfiguration

The design concept for the celestial scanner is shown in Figure 26
(CDC Dwg. No. 55003800). The light shield and optics are mounted at the top of
a tube which surrounds the photomultiplier tube and rotates in two azimuth
bearings. These bearings are mounted in the instrument housing separated by
two bearing spacer sleeves used to control bearing preload. The photomulti-
plier tube is mounted in the base cover plate of the housing which is station-

ary.

The drive motor and speed reducer assembly is mounted on the base cover
plate with the driving pinion extending through the plate to engage an internal
gear mounted on the end of the rotating tube which supports the optics. The.
angle encoder is mounted near the top of the tube with the photoheads attached

to the housing,

The drive motor would be a brushless DC motor similar in design to a unit
made by the Marine Systems Division of Sperry Rand Corporation. Their brush-
less DC motors are qualified for space application and can be operated unsealed
with service life in excess of the 90-day operating period for the Viking
mission. With a motor which can be operated unsealed, the harmonic drive can
be eliminated with a savings in weight and power consumption.

The bearings of smaller cross section are of the torque tube type similar
to Fafnir AMVNS546K but with separator and lubrication for operation in the hard
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vacuum of space. Since these bearings rotate at the low optical_scanning rate
of one revolution per minute, giving a total of approximately 10° revolutions

(for the 90-day operating period) under essentially no load, adequate bearing

life is assured.

The estimated weight of the sensor design is 7.0 pounds., Table XV shows
a summary of the estimated weights of component parts.

TABLE XV
CELESTIAL SCANNER WEIGHT SUMMARY
Light Shield 41
Optics Assembly .50
Photomultiplier with High-Voltage Power Supply 1.00
Angle Encoder .19
Motor, Speed Reducer and Motor Controls .67
Bearings, Spacers and Ring Nuts .78
Housing 1.65
Electronics Assembly 1,80
7.00 1bs

The space required by the scanner will be the volume of the stationary
housing and drive motor, plus the swept volume of the light shield and optics.
A sketch of the space envelope of the scanner is shown in figure 27. The over-
all height of the required space envelope is 18.81 inches, The maximum diam-
eter of the housing is 5.0 inches. The motor extends 6.75 inches below the
flange. The maximum diameter swept by the rotating light shield is 18.88
inches at a height of 7.38 inches above the flange.

Variance Calculation for Star Pulse Transit Time

Star pulse transit time may be accurately measured by averaging the lead-
ing and trailing edge threshold crossing times. It is possible to derive an
analytic expression for the transit time variance from a few simple, valid
assumptions. The noise amplitude is assumed to have a stationary Gaussian
density function and the slope of the noise-free signal is assumed to be con-
stant in the vicinity of the threshold crossings. The RMS noise level is
assumed to be relatively small with respect to the noise-free signal which
must be true to achieve reliable signal detection., The transit time variance
may be calculated given the slope of the noise-free signal at both the leading
and trailing edge threshold crossings, the correlation coefficient of the noise
amplitudes in the vicinity of the trailing edge threshold crossing time with
respect to the amplitudes at the leading edge crossing time, and the variance
of the noise amplitude.
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Figure 28 illustrates the threshold crossings of the noise-free star
signal and the star signal with superimposed noise. The leading edge threshold
crossing of the noise-free signal occurs at time T_ and its trailing edge
crossing occurs at Ty Superimposing random noise on the noise-free signal
causes a random time error, t;, in the leading edge threshold crossing. The
leading edge threshold crossing of the noisy star pulse then becomes a random
variable

Similarly, random noise causes a random time errxor, t,, in the trailing edge
threshold crossing time, so the trailing edge thresho%d crossing of the noisy
star pulse becomes a random variable

T, = t, + T 47)

Since the average of the threshold crossing times defines the star pulse
transit time, tS = %(T1 + TZ)’ the variance of the transit time is given by

2
T. + T T + T
E [ 1 , 2 a ; b] (48)

l

oz(ts)

7
ty tEt

-t2 Lt t
+Et) by .

"
N
»e

From figure 28 the slope of the noise-free signal in the vicinity of T, is
given by + kl, and the slope of the noise-free signal in the vicinity of Ty is
given by - kg. At the leading edge threshold crossing of the noisy star pulse,
the noise amplitude is given by random variable I;, so the random time error in
the leading edge threshold crossing time is given by

Then, the variance of the leading edge crossing time is given by

2 .21 2
o} (t1> = tl = —k——z Il . (49)
1

Similarly, at the trailing edge threshold crossing the noise amplitude is
given by random variable 12, so tve random time error in the trailing edge
threshold crossing is given by
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2 2 2
[¢) (tZ) = t2 = T3 . (50)

)

Also, the covariance of the threshold crossing times is given by

1 52 k. k. 112 51)

2 2
I I I, I
2 1 2 1 72
o (t)) = 5 + 7 T TR (52)
4k 4k 172
1 2
From the definition of the correlation coefficient for random noise amplitudes
I, and I_,
1 2
_ I1 I2
P12 ~
E £2
5" Vi,
so
2 1’ I’ I12 "
o (t ) = + - PaoT ST — . (53)
s 4k12 4k22 12 Zkl k2

If the statistics of the noise amplitudes at time Tb are the same as the
noise amplitudes at Ta’ then

112 = 122 = 12 and equation (53) becomes
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T 1 1 P1
2 2 t 2 Tk 1?2 (54)
2k 2k, 1 %2

CJ'2 (ts) =

In addition, if the star pulse is symmetrical, then the magnitude of the
slope for the noise-free signal at the trailing edge equals the slope at the

leading edge. Thus, kl = k2 = k and equation (54) becomes
P
(t) = Q- py5) - (55)
s 2k2 12

This result is given without proof by Mityashev in reference 14,

For the above analysis, the slope of the noise-free pulse is assumed con-
stant in the neighborhood of the threshold crossings, whereas, the slope of the
noisy pulse is not necessarily constant in those regions. The former assump-
tion is valid since the noise-free filter input signal is a well behaved deter-
ministic function of time. Although the slope of the noisy pulse may be chang-
ing in the regicn of the threshold crossings. it is assumed that the noisy
signal is monotone increasing in the neighborhood of the leading edge thresh-
old crossing and monotone decreasing in the neighborhood of the trailing edge
threshold crossing. This restriction is realized for signals having relatively
high peak signal-to-RMS noise ratios. Peak signal-to-RMS noise ratios of five
to one or greater are necessary in order to set a threshold which yields an
acceptable false alarm rate and a high detection probability given that the
star signal is present (Pd'S > .9). This also insures that the constant slope
assumption of the noise-free signal is valid for all noise amplitudes except for
the very infrequent large amplitudes,

Equation (55) tends to become more and more invalid as the threshold
setting closely approaches the peak of the star pulse. Right at the pulse peak,
equation (55) becomes indeterminant since Pig = 1 and k = 0.

A typical (noise-free) star signal from the output of the filter used for
the celestial sensor analysis is plotted in figure 23. 1In order to evaluate
equation (55) for the output of filter F;, determination of the correlation
coefficient, p,,, of the noise for the interval between the leading and trail-
: %2 . . . . .
ing edge threshdld crossings is required. This can be done by applying
Campbell's theorem (reference 15). So

o(r) = j; h(t) h(t + 7) dt (56)

f: h2 (t) dt

For a threshold set at 607% of the peak of Y1 (t), r = 15.5 x 10—3 seconds.
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Evaluating equation (56) by numerical integration for the four-pole linear

phase transfer function of filter Fl’

Py, = 0.079.

The slope of the output from F. is given by

1

afn®] - [t 38 [nee - o lor.

Numerical integration of equation (57) gives at 60% of the peak

@] = 615 =k

(57)

(58)

Since the slope of the output signal yl(t) is proportional to the peak value of

the signal,

k I

P - __B
k 0.76 °
So
61.5 _
kp = 0.76 Ip = 81 Ip
and
2 IN2
o) = 5 (1 - 0.08)
s 2(81I.)
P
So
0.836 x 1072
o(t) = — X
s (S/ 5
N
where
12 2
2 - ()
2 N *

The calculated signal-to-noise ratio at the output of filter F

(page 78) is
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(61)

(62)

(63)

for a 0.5
inch aperture and a 2nd magnitude star when the scan period is 60 seéconds



S, = 21.1. (64)

So,

o(ts) = 3.96 x 10-4 seconds.
Since T = 10.55 x ]_0-3 seconds for a 3.8 arc minute slit width and a 60 second
scan period,

3
JA

Ts _ 10.55 x 10

o(t,) 3.96 x 10~

= 26.5.

Angle Encoder Resolution

A star transit is equally likely to occur at any angular position, x,
between angle encoder marker pulses. If the angular spacing between adjacent
angle encoder marker pulses is L, then the probability density for a star trans-
it occurring within the angular interval

N

< x < <+

N

is given by

=

pG) = T -

The mean square value of the random variable x with zero mean is

- /
x2 = f 2 x2 p(x) dx
- L
/2
+ L
12
L 3 |_ L/
2
_1 1
T3 4
2
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But from equation (40) the RMS value of the angle encoder quantization error is
required to be

A = 22,7 arc seconds

for a well balanced distribution of allowable errors. So

L = 412 (22.7)

= 82,9 arc seconds

= 1.38 arc minutes
14

~

Z 360 degrees x 2~

Consequently, fourteen bits of angle encoder resolution aresufficient.

Approximate Estimate of Geometric Errors for Moon Detections

The center of the scanned field of view is directly opposite the sun,
Therefore, the terminator of the moon of Mars will always be symmetrical with
respect to a line drawn from the anti-solar point to the center of the moon as
in figure 29.

If the detection scheme utilizes the average of the leading and trailing
edge threshold crossings, then there is no geometric error for the center since
the signal is symmetrical; but asymmetric pulses are expected from the two side
slits. Therefore, a transit time error due to purely geometric causes will
result. A rough approximation of this error will be derived in the following
discussion.

Figure 30 shows an outline of the image of the moon as seen in the focal
plane of the sensor optics. The moon is illuminated by the sun at some arbi-
trary phase angle, %, between the sensor-moon vector and the moon-sun vector.
The top half of the meoon image outline is a circle, whereas, the bottom half
of the moon image outline is an ellipse because of the phase angle, ©Now, a
slit tilted at an angle 9 with respect to the vertical which moves horizontally
to the left in the figure will intersect a circle on the leading edge of the
moon image and will intercept an ellipse on the trailing edge of the moon
image. In between these two extremes, the radiant power passing through the
slit will be proportional to the length of the slit intercepted by the image
if the illumination within the image is uniform. The slit output versus slit
position is qualitatively plotted in figure 30. Passing a thresheld through
the slit output characteristic and averaging the threshold crossing permit
qualitative determination of the geometric moon detection error versus hori-
zontal slit position as shown in figure 30. The detection error characteristic
shows that the error is smallest when the threshold setting is the lowest. The
thresheld crossing for small (compvared to the signal peak) threshold levels may
be determined by considering the geometry in figure. 30.
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If
R the moon radius
D the distance from spacecraft to moon,

then the angle subtended by the moon radius from the spacecraft is

R
= = 6
4 =5 (65)
Now, if
r = radius of the semi-circle defining the top part of the moon

image in figure 30
F = focal length of the optics,

then

r
F é . (66)

Therefore, the distance L3 in figure 30 is

%T = cos 9 (67)
3
or
L, = L = $F sec © (68)
3 cos 9 :

In order to determine L,, it is necessary to determine the lengths of the
major and minor axes of the ellipse. If

a = the ellipse major axis length

b = the ellipse minor axis length
then,

a = r. = §F.

The minor axis length is given by

R cos 3

b
F D

where R cos 3 is a projection of the moon terminus onto a plane normal to the
sensor -moon vector and
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R cos 3
D

is the angle subtended from the sensor by this projection.
The equation for the ellipse is

2,
= + L = 1. (69)
a b

The slope of the tangent to the ellipse at point (Xl’y1> is given by

& . b 1
™x - F 7z > (70
a Xy
a
But from figure 30, this slope must equal
L
- tan (g -0) = ¥ (71)
= - cot ©
=1
~ tan 6 °
Equating equations (70) and (71) yields
2
2 b k 2
Xl (7) = k - ""-2- Xl (72)
a a
L
2
-~ (73)
e AN
2 2
a a

N
o

Y1

From figure 30
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L, = x% +y, tan 0. (75)

But from equations (71), (73), and (74)

a
- (76)

"
=
I
N

b %
/k -
v = b | a7
a +b/
k
2 tan ©

[Ny

b
[az + b2 tan2 GJ

So since

]

b cos &
p s (78)
a2 -+ b2 tan2 8

2 - -
Laz + b2 tan2 GJ

|
i}
[N

L
2
a [1 + cos2 & tan2 Q] .

The angle error for low thresholds is

€q ~ 2F : 79

So, combining equations (68) and (80) gives the angle error as

' 2 y
{é F sec & - ¢F [1 + cos ¢ tan2 9]’} (80)

- L
€a 2F
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%
e = g {sec g - [1 + C:OS2 -] tan2 e] } :

b

a 2
a0 o 1 o
The phase angle § can range from 35  to 55  and ¢ < 5 degree., For & = 35
and
1°
¢='2' s

equation (80) becomes

leal = 18.6 arc seconds,

[o] (o} 10

For § = 55, 6 = 20 and ¢ = 3
,eal = 38.3 arc seconds.

In general, a difficulty exists in this approximation for if the distance
to the moon is not known, then the angle subtended, #, is not known. However,
a procedure may be used which initially neglects the geometric errors in com-
puting the approximate orbits., These approximate orbits are then used to com-
pute the distance to the moon from the spacecraft. Then, the geometric correc-
tions may be included to calculate new orbits which should yield a suitably
accurate solution.

Refined Analytical Model for Determining
Moon Transit Correction Factors

In order to compute the trajectories of the moons of Mars from data pro-
vided by a scanning celestial sensor, it is required that transit data be ob-
tained for those moons as the scanning slits intercept the images of the mocns
formed by the sensor optics. The accuracy of the trajectory computations
depends on the accuracy of the slit transit measurements provided by the sensor.
But since the slit transit measurements are determined by threshold detection
of the signal generated by the photodetector as the slit scans over the image
of the moon, the accuracy of the signal in turn depends upon the phase angle
between the moon-sun vector and the moon-spacecraft vector, the relative dimen-
sions of the moon diameter, distance of the spacecraft from the moon and the
width of the slit gap. The signal shape also depends upon the sensor orienta-
tion on the spacecraft and the slit orientation in the sensor. Because the
primary function of the celestial sensor instrumentation is toaccurately locaté
the moons of Mars, it is worthwhile to calculate the signal generatea by the
radiant power passing through a slit scanning a moon body from which estimates
can be made in the uncertainties of the moon transit data. Also, it should be
possible to determine correction factors which can be applied to the moon
transit data. Because of the complexity of the problem, the solution will have
to be obtained numerically, Only the method of computation is outlined.
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The method of solution will be an extension of the analysis described in
reference 16. The problem will be formulated by projecting the slit gap on the
surface of the moon and then summing (numerically integrating) the radiant power
reflected from each elemental area of the moon's surface which is not blocked by
the projected slit mask. The geometry illustrating the vector relationships be~
tween sun, spacecraft, and elemental area within the slit that is projected on
the moon surface is illustrated in figure 31. The projection of the slit on
the surface of the moon can be determined by the intersection of the moon sur-
face with a plane containing the slit and a point which represents the optical
system center. 1In figure3l, it is assumed that axis k, is normal to the plane
containingﬁthe slit, The unit vector from the moon center to the sun is repre-
sented by S and_the vector from the moon center to the spacecraft position is
represented by C. The radius vector from the moon center to the elemental area
on the moon surface is represented by R. If L is the solar constant at the mean
solar distance of the moon, then the radiant power incident on a unit elemental
area of the moon's surface is given by

R + S5 watts (81)

Note that the incident radiant power is zero if R * § < 0.

The elemental area shown on the surface of the moon in figure 31 is given

by

da = ds1 . ds2 (82)
where

ds1 = R cos vdé

dsz = Rd\)

R = | R|.

The elemental angle, dv, is determined by the angle subtended by the slit
gap, sp. Figure 32 shows the geometry when viewed in the plane of vectors R
and Cwhen ¢ = . The distance at the surface of the moon subtended by the angu~
lar slit width is given by

W - @3] (83)

The vector G is the vector from the spacecraft to the elemental area on the
moon surface and given by ¢ = R - T. (84)

The distance w when projected normal to R is given by

w
cos &

(85)
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Figure 31: Sun and spacecraft vectors in coordinate system of moon.
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Figure 32: Angles subtended by elemental angles on moon's Surface.
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where

cos @ = - g_. 9_ .

[’l Igl
So,
—~ =2
av 5. el (86)
[R] R*GC
The moon albedo is defined as
a = total reflected energy (87)

total incident energy
which is assumed to be wavelength invariant.

The radiant power reflected per steradian in the direction specified by
angle 6 is given by reference 17 (p. 185) where

P reflected watts
Jo = 7 ©°° © steradian (88)
where
P = total power radiated into the hemisphere

6 = angle measured from normal to surface area.

Therefore, the radiant power reflected in the direction of the spacecraft is
given by

R * § incident watts (89)

lil (cm)2

cos ©

- dA (cm)2 s a - (steradia\n)-1

Since an area, A., located at the spacecraft, which is a distance |al from the
elemental area on the moon surface, intercepts

A
c

[

steradians, the radiant power reflected from the elemental area on the moon's
surface which illuminates an area Ac at the spacecraft is given by

— — A
dH = L R * S . dA - a SOS ] c (90)
| T el
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an. 2L, K-8
R[]

sy cos vdg watts .

The total radiant power reflected by the moon through the sensor slit is given

by

==}
fle

Eoa ) i?—_—s—) sw cos b . (91)
O<é<2m

In general, the angle subtended by the slit gap for scanning star sensors
will always be small, i.e.,

—

sw < 1 degree.

So, the small angle approximation for w in equation (83) is valid. However,
when ,E' becomes sufficiently larger than {ﬁl, dv in equation (86) may become
sufficiently large so the error due to small angle approximation is not negligi-
ble. Figure 33 illustrates a technique for providing a better approximation for
equation (91). The distance w is subdivided into an integral number of incre-
ments Aw, such that the corresponding increments AV are sufficiently small to
yield a good small angle approximation. The radius vector R is at a nominal
angle, v, with respect to the T - ? plane, so

&y cos @ ? (92)
but
Axq
= —=, 93
avy = (93)
Now, let
vl = v+ Avl (94)
and let il be the radius vector at the new position determined by Vy. Then
—Av
£xg cos @ ©3)
1
R G
cos @1 = — (96)
% [l6l
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Figure 33:

Improved approximation for large angles of du,
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A,

Av3 = | (47)

vi o= vyt aAv, (98)
etc,

Similarly, in the negative Vv direction

= Av

Axy = Cos © (99)

AV, éfg (100)

2 R

v, = V- Ay, (101)
A

Ax4 = cosw@2 (102)
AX4

v, =V - AY, (104)
etc,

Incorporating equations (92) through (104), etc.,, into equation (90)
vields a double summation given by

_LT“ \ .
H c m ZJZJ l3 cos vy Av:i. aé (105)
v é

The Ri used in determining cos @i may be computed from R and BVy »

Since
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R = I'I—{l & cos V + sin v —12) (106)

- R . - 1

X = —‘—,_ﬁl ~ sin v k cos v’ (107)
but

ii = !i] {X cos (v + Avi) + sin (v + Avi) E} (108)

so the new vector R, is determined by substitution of equation (107) into
equation (108).

For evaluation of equations (91) or (105), it will be assumed the phase
angle between the sun vector and the moon-spacecraft vector is known or has
been previously determined. Also assumed known is the distance from the moon-
center to the spacecraft, the optical system field of view, the optical system
focal length, the cant angle of the optical axis with respect to the spin axis,
the pointing direction of the spin axis and the orientation of the slit gap in
the focal plane. Since equations (91) and (105) were derived with the k, axis
normal to the plane containing the slit, it will be necessary to orient the sun,
spacecraft and optical axis so all the known parameter conditions are satisfied
when the k, axis is normal to the plane containing the slit. The proper orien-
tation can be derived by a suitable series of coordinate transformations.

Figure 34 shows the sun vector coincident with the negative 31 axis and
the moon-spacecraft vector lying in the 11 - Jl plane at a phase angle & with

respect to the sun vector. If the distance between the moon-center and the
spacecraft is D, the moon-spacecraft vector is

C = (sin 21 - cos § 31) D, (109)

Figure 34 shows the spacecraft coordinate axes, (39 - 32 - ﬁz), at the tip
of the moon-spacecraft vector C. The spacecraft coordlnate system is assumed to
have the same orientation as the 11 - Jl - k] system, hence

(110)

-
The vehicle spin axis is chosen coincident with the jp vector, which is
equivalent to the negative sun vector,

A third coordinate system is defined by a votation about the JZ axis
(vehicle cspin awis)., Hhence, for a clockwisc rotation about the 32 axis, the
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33 - 33 - ES coordinate system orientation becomes
i3 cos 0 sin o i,
33 0 1 0 3, (111)
§3 -sin o 0 cos ﬁz

Figure 35 shows the optical axis lying in the Iq - 33 plane canted at an
angle T" with respect to spin axis j3 {(j;). Now, let F represent a vector from

the 13 - j3 origin to the optical system focal plane,

F = F (- sinT ‘1'3 - cos T 3’3) (112)
where

F = focal length of the optical system.

Next, let the vector d lie in the 1 plane and intersect with the focal
plane such that the vector extends from ghe edge of the field of view to the
center of the focal plane.

d = d (cos T i3 - sin T 33) = d1 ig + d2 ij (113)
where
d = F tan 459!).
2/

The vector d is coincident with the slit which is radial to the spin axis,

In order to specify the direction of the slits which are non-radial to the
Xehicle spin axis, it is necessary to generate another set of coordinate axes,

i, -3, - ka. From figure 35, let
M = F-4d (114)
-
= ?3,F [- sin " -~ tan (Eg!> cos F] + j3 F [- cos T + tan (E%¥> sin r]

Now, define the cross product of vectors M and d as
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3 33 %3
- 1
i, =—— S m, m, 0 (115)
4 [d| 4| sin cos v@ - m o2
=1 1= d, d.2 0
[d] M| 1 2
and let
i3
- d ! . !
ldl i i -
3
So,
k4 = i, b4 34.
Figure 36 shows the 34— 34 plane or focal plane of the sensor optics.

Now, let the unit vector Vs coincide with the slit being considered

S

The slit which
the non-radial

The plane
slit starts to
plane when the
containing the

! !
V. = sin7 1 + cos n 34 = (- sin 7 ; cos ) : 0) i, (117)
| |

is radial to the vehicle spin axis is designated by 7| = 0 and
slits are designated by 71 # 0.

containing the slit is defined by the vectors 7., and ﬁ., so the
intersect the image of the moon in the optical gystem focal
plane containing the slit is tangent to the moon., The plane
slit is completely defined by the normal, H, to that plane given

by the cross product of VS and M,

B3 35 Ky
EY 1 v v v
2 = — 1 "2 73 (118)
]Vsl lﬁ, sin cos-l V%;M m, my 0
B
where
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3 I3 %3
- sin 1) 4
vV = - — m, m O + cos | —— (119)
s - 1 @ - M) 12 F
|d} || sin {cos © ———m d. 4. 0
[4] M| 1 %2

The plane containing the slit is tangent to the moon when the vector normal
to the plane containing the slit, M, is coincident with the moon radius vector,
R, and the radius vector is directed at the point of tangency. The vector R is
shown in figure 34 and is given by

E:1
-— : H b d
R = R (cos § cos ¢ ; cos § sin ¢ 1 sin §) 3 (120)
ky
Vectors R and n are coincident when
-E - b d
= = 4. (121)

There are three unknowns in equation (121), namely, #, &, w, so at least two
additional equations are required before the point of tangency is known. Since
the vector M lies in the plane containing the slit, M is orthogonal to R when
the tangency condition exists, so

M*R = 0 (122)

Also, since V_ lies in the plane containing the slit
s

R = 0 (123)

<l

s

An additional relationship is available because vector G lies in the plane con-
taining the slit, so

CG*R = ®R-C)*R= 0. (124)

Two solutions should result for w because of equation (121), one solution,
wy, should correspond to the moon entering the slit and the second solution, wg,
s%ould correspond to the moon leaving the slit. For wy <wX w, 5 the moon in-
tersects the slit.
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Let us define an incremental value of @ such that

by = —S=—2 (125)

where r is some integer which will provide encugh data points for a sufficiently
accurate plot of H versus gw. As @ is incremented from wy to

the moon image will pass into the slit gap and the plane containing the slit
will slice the volume of the moon body. However, the normal_to the plane con-
taining the slit may not necessarily be coincident with the k axis as required
by equations_(91) or (105); therefore, a coordinate transformation is required.
Let the new k axis designated by k be coincident with n.

kK, = 1. (127)

-
Now, define the new i axis as

i, = nx kl (128)
SO
3= K x4, . (129)

After the transformation to the YQ - 30 - i; coordinate system, it is
necessary to determine the new value for Vv in equations (91) and (105). Fig-
ure 37 shows the geometry when the moon radius vector R lies in the same plane

s ko PLANE CONTAINING
SLIT VECTOR
////

ol

-

£=1Clsin A

b ot o o - — -

Figure 37: Geometry for determination of V.

112



as the moon-spacecraft vector C. Since the G vector must lie in the plane con-
taining the slit when the elemental area on thg moon surface is subtended by
the slit gap, then the distance 4 between the i, - j° plane and the plane con-
taining the slit is

Lt = |¢ sina (130)
but
A = 3 -V and (131)
v o= cos-1 §_£_9 (132)
i
SO
v o= sin'l—f— . (133)
|R|

=
Now, with all vectors defined in the Yo ~ 30 - k, coordinate system, numer-
ical computation of H may be performed for y = w

For the next increment of w with
®w = wp + 2 AW

a new transformation to the T - ? - ﬁ coordinate system as given by equations
(127), (128), and (129) must be determined in order to have k axis normal to
the plane containing the slit, This transformation must be repeated after each
increment in p. Also, for each ¢ increment, a new value of V must be computed
from equations (130) through (133).

The image of the moon center at the optical system focal plane is centered
in the slit gap when v = 0, This is the moon position in the slit gap which is
ideally required for computing the trajectories for the moons of Mars.

After the plot of H versus y has been obtained, this characteristic should
be used as an input to the electronic filter used in the sensor in order to get

a true picture of the signals obtained by scanning a moon body. Therefore, if
h(t) is the filter impulse response, the filter output is given by

yt) = J H(3T1‘ T> h(t - 1) dr (134)

where

nZ ¢ )

is determined from the H versus w data points and the angular rotation rate of
the vehicle about its spin axis.
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After y(t) has been numerically determined, it is possible to accurately
evaluate errors in detecting the condition where v = 0 by threshold detection
of the moon signal. Thus, it should be possible to determine accurate cor-
rection factors for moon detections if the sun phase angle and distance between
moon and spacecraft are known.

Sensor Bright Source Shield

The sensor shield is illustrated in figure 38, This shield design pro-
vides the following characteristics:

(1) No directly illuminated element is visible from the aperture of
width a to the lens.

(2) ©No secondarily illuminated surface is visible from the aper-
ture to the lens.

(3) At least three bounces occur prior to entering the lens aperture.
The dimensions for the shield are determined based on the minimum volume which
maintains the above characteristics. The volume for the shield may be derived

from the geometry shown in figure 38.

The angle y of triangle 1-2-3 equals

-

~
i

p a (136)

Therefore,

h1 = P cos 5 (137)

I

0

o]

[44]

N

A K
S|

From right triangle 2-6-3,
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Figure 38: Bright object shield geometry showing shield c¢ross-section and principal angles.



- in 2
§ = Pp sin 2

. B
cos ¢ sin 3

T i (@-9)
sin \@ - 5
Using the Law of Sines for triangle 3-4-5,

a+23%
sin (B - @)

[4;]
[EN
=)
[SlE=RTS
¥
™
N

which may be written as

[ < ( e) .9
sin o - )4+ 2 cos @ sin %
cos B 2 2
Z = a— <
sin (B - @) . < _ 5
L sin \& 2)
. 6
~ cos B sin Qy +-E
sin (3 - @) sin <a _i?)
L 2
From right triangle 3-7-5,
h - hl = Z cos w
in o+ 7)
sin (o + E
= acos g ¢cOSP —
sin (B - ) sin (Q/-‘§'>
so
. 9 )
a cos o [cos B sin (& +-§ + cos 3 sin (8 - q)]

sin (B -~ @) sin ( -

sin <B + g)
sin (B - @) sin <a + g)

a cos o

From right triangle 1-8-5,

+
h

Nl
ol

= tan «o.
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Therefore, the sunshield may be enclosed in a volume, V

2

v=7d"h (144)
hn 2
=2 (2 htanao - a)" h
_n az fin—?_q ﬁin <B + %) - sin <a - %) §in B - w 2
4 sin (a - %) sin (B ~ o)
3 0\ [cos o sin (@ + B) sin (a + %)JZ
v=24" sin (B + = ~
4 2/ . ) i ( _o_>3
L31n B - @) sin (¢ - > J
Now, the normalized volume function defined as
F (o By 0) =% (145)
a

may be plotted as a function of o for fixed © and B. A typical curve is shown
in figure 39 which shows the normalized volume is minimized for some
within the range

2]
3 < o < B.

The normalized minimum volume was obtained for 8 = 20° and s = 40°.
The shield dimensions for a clear optical aperture of a = 0.5 inches are
shown in figure 40.
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CONCLUDING REMARKS

Perturbation of Spacecraft Due to Moons

A method of computing the perturbations by use of a linearization
about a single reference Kepler orbit was first developed. The resultant
formula is given by equation (5). Here an integration of an explicit
function is required.

Numerical results are given for the following values of the
unperturbed elements of the spacecraft's orbit:

i=0", 40
a = 20415.5 km
e = 078199

Tp= 0 hr

0 <w < 180°

0 <0< 360°

Since asymmetry exists, all values of , and () were studied.

Results for the case i = 40° are summarized on page 24. A physical
rationale is then given for these results. It is expected that these
results may be generalized for all inclinations other than those near or
equal to zero.

For inclinations at or near zero, a collision of the spacecraft
and Phobos is possible under certain initial conditions. If initial
conditions near these are chosen, long-track perturbations result which
are positive or negative. A canceling effect is thus possible and does
occur if the positive and negative yielding initial conditions occur
relatively near each other.

The results given can be generalized to other cases except those near
resonance. That is, cases in which the ratio of the spacecraft's period
to a moon's period is a rational fraction whose numerator and denominator
are relatively small. For these cases, the perturbations grow large, and
equation (5) may not be valid,
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Availability of the Moons

The strongest single factor which hinders the detectability of the
moons is the scattering of Mars reflected sunlight into the instrument
field of view. This problem is not too serious in case of Deimos, but
is more serious for Phobos because of its relatively low orbital
altitude.

A clear picture of the availability of Phobos as a function of
spacecraft orbital parameters does not emerge. In four percent of the
cases examined eleven spacecraft orbits yielded no Phobos detections.
1f, however, a large number of spacecraft orbits are allowed (- 80),

a sufficient number of Phobos detections will occur.

Navigational Problem

The orbits of the spacecraft, moons, and the potential of Mars
can be determined by observing the parallax of the moons as viewed from
the spacecraft. If the direction is measured with an accuracy of one
minute of arc, then after eighty spacecraft orbits (a = 20,415.5 km)
the position errors of the spacecraft and Deimos are about 4 km.
Because few sightings of Phobos (v 10) occur, its computed position has
approximately twice this error.

The lower harmonics, i.e., the coefficients of the Legendre
functions of degree two, are quite well determined by the measurements,
but the higher harmonics are not. This occurs not because of a defect
in the measurement, but because of the relatively high altitude of the
three bodies and the relatively small values assumed for the higher
coefficients.

Not only are the higher harmonics poorly determined by the
measurements, but if these harmonics are assumed known and the assumed
values are slightly in error, then only small degradation is transmitted
to the solved for unknowns. Also, the effect of an error in the mass
of Mars does not increase as a longer data gathering interval is used.

Attitude and Moon Direction Determination

Both the accuracy of attitude determination and the direction to
a moon are functions of the detcctable stellar background. Moreover,
the accuracy of ihe moon direction is a function of its position in
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the field of view. 1In general, the proposed instrument can determine the
attitude to an accuracy of approximately three minutesof arc and that of
the direction to a moon to approximately five minutes of arc. These
error estimates can be reduced for the same instrument if a less compli-
cated attitude motion model were allowed. That is, if it were allowed

to assume the attitude were constant, or varied linearly for a time
interval longer than five minutes.

Instrumentation

A feasible sensor design was derived which has the dynamie range
capability to detect the moons of Mars as well as stars as dim as
2.2 magnitude. Primary components for the sensor consist of a
sunshield, refractive optics, slit reticle, photomultiplier, angle
encoder, and brushless D. C. motor. The sunshield, optics, and
slit reticle form an assembly which is rotated with a sixty second
period. The overall power requirement is 7.9 watts and the entire
instrument weight was determined as seven pounds. Analysis showed that
instrumentation errors could be kept within the limits imposed for the
calculation accuracies required for calculation of spacecraft and moon
orbits as well as the Mars potential.
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APPENDIX A

EXPLICIT FORMUIAS FOR U(u, 7) and V(u, T)

In the analysis concerning the "Perturbations of the Spacecraft Due
to the Moons", two matrices, U(u, 7) and V(u, t) were introduced. The
final equation (7) for these perturbations was a function of these matrices.
As given in the text,

UGu, 7 = Cay () @y (@ + () ' (@) /(1 + @)

bl(T) cl(U) bl("l‘) cz(U) 0
3(nT +
Iy 1) ey b, (1) ¢, (W) 0
0 0 0
bl(u) Cl(T) bz(u) Cl(T) 0
3
V(u, 7) = - 7 by (u) ¢, (1) b, (u) ¢, (1) 0
0 0 0
where
211 232 0
%y Tl %21 oY) 0
0 0 a33
214 215 0
¥y “idgy 425 0
0 0 a36
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c, = a - a

12 14

Cg T 899 7 84

The equations for cxl, a2, bl’ b2, cl, and c2 are as follows:

_ 2
- 1 2r(+te p _ _ 2 :]
all(t) ) 2[_ - r-l-l (1+e ~-e") cos v
- e
alz(t) = sin v
_ 1+ e r
a21(t) = 1-eSln\)<1+p>
a_ . (t) = -£+<£+l\cosv
22 P /
a,,(t) = £(1+e) cos
33 P v
a,, () = 1 sin v
14 1+ e
_ 1 2+e 2r 1 ( PY?
ays () T [ 1+ecos\)+p(1+e)+1+e l'r)J
a,, (t) = 1 -[<£+1>cosv- 2 -E+e~E-!'
24 1 -eL\p l+er p -
- 2 . r
aZS(t) = 1__esm\;<1+p>
a36(t) = %sin\;
bl(t) = «e sin y

126



= 2P
bz(t) -
cl(t) =7 i e sin v

- 1 2 »p_zx._
c2(t) 1-ell+er ©p (p

where r and v are functions of t.
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APPENDIX B

DETERMINATION OF USABILITY OF P AS A POSITION
OF
OBSERVATION IN THE PRESENCE OF A SUNLIT HEMISPHERE

We are given: (figure 41)

S

P

0>

direction to sun

position of observer

direction of optical axis

radius of sphere centered at (0, 0, 0)

minimum acceptable angle to sunlit sphere, B > 0

A
s

Figure 41l: Geometry of the sunlit hemisphere,
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Consider the set of all points on the sunlit hemisphere and denote
this set as H. Let $ be the angle from the optic axis, &, to a line joining
the terminus of P with a point of H, Finally, let 4§ be the minimum value
of § over the set H, and let A be the vector from the observer to that point
of H which gives rise to 4 . Now we define P as usable if fn > B. Otherwise,
it is not usable(4) The prgblem is to develop a criterion as to , whether or
not P is uable.

Two major cases must be considered as to whether or not the positively
extended optical axis intersects the shpere. Suppose

E-_P<oandD2=(E-"P)Z-P2+r2>o,P=|F[.

For this case, the positively extended optical axis intersects the sphere.
The distance to the sphere in the direction of € is

and the vector from the origin to the point at which the extended optical
axis first intersects the sphere is

B=)\&+ P

Now,

B - s >0 -+ P is not usable.

IfB - s < 0, additional tests are required to determine the state of
P, but if any point of H {s visible from the terminus of P, then A lies on

the boundary of H, i.e., s - Am = 0.

Define

ﬁl such that Py *s =0 and Py =Ry S + Ho P, By 2 0.

(4) The problem of direct obscuration of a moon by Mars is not considered here,
but is an additional test which is imposed later. For the additional test
the moon's position must also be given.

130



Hence,

~ _P-P -5
Pl—__ — A"
P-P-: s s

Also define 52 =5 x 51; Now, if r > P - ﬁ , then no point of H is
visible from the terminus of P; hence, P is usable.

Suppose r < P - 51. Then let

cos 9. = — <1l, 0 <@, <1
1 -5 = 1=
P
Define
W = cos 0 Py + sin © Pys - 91 <8< 91.
A@) =t - P

Now, A(Q) is a vector from the observer to that portion of the boundary of H
which is visible to the observer. So, Am is a member of the set A(O).

_If A -0 < |(A(Q))| cos B, for - 8, < 8 <« B.; then P is usable. Other-

. . 1="="1
wise P is not usable.
We now must consider the second major case, i.e., the p051t1ve1y extended
optical axis does not intersect the sphere. Hence, c¢ . > 0 or DZ < 0.

Con51der all p01nts on the sphere, i.e., the set r T for all unit

vectors . Let A = r - P. Define A1 such that
Kl . ¢ = max. over all T.

Then,
Xl=(—§-1)¥+-‘é P2 - 2?2 g
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where

s Pi-@E-BHTF
PZE—(E'P)P|
Let
2
- _ - S _X . 2 2 A
Q1 A1 + P = 5 P+ = P -1 q
P
_ _Now, suppose Q. - §.2 0, then the terminus of 61 lies in H. Hence,
A1 = Am and P is usa%le if

Zl . E < |le cos B.

Otherwise P is not usable.

1f 6 -8 < 0, then Km lies on that part of the bourdary of H that is
visible to the observer. The problem is thus reduced to a previous case.

A flow diagram is given in figure 42.
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Figure 42: Flow chart to determine the usability of P,
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APPENDIX C

DETERMINATION OF THE INSTRUMENT MAGNITUDE OF MOONS

Assume the moons are spherical diffuse reflectors. Then,

8 al (g)Z sin d + (1 - 4) cos ¢
27 r ™

where (figure 43)

H = flux (watts/mz) at the position of the observer due to sun
reflected light from a moon of Mars

= moon albedo (assumed 0.1)

2
= flux from sun in the vicinity of Earth (watts/m")
radius of moon

= distance of observer from moon's center

S " O =
I

= phase angle (radians)

If we assume a detector at the observer whose response is uniform for
.38 < A < .6 microns, then

L= 418.1 watts/m2 (reference 18)

The magnitude of the moon as seen by the observer is then

m= -2.5 log 3 , where
o

Ho = flux from a m = 0 source received at a detector behind a lens
system with 80% optical efficiency
= 8.36 x 10-9 watts/m2 (reference 10, p. V-3)
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Figure 43: The phase angle, 4.
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