
~

NASA Contractor R e p C 1.78307

ICASE REPORT NO. 87-34

I C A S E
SOLVING THE CAUCHY-RIEMANN EQUATIONS

ON PARALLEL COMPUTERS

(LBSA-CB-1783G7) S O L Y I N G %E€ CAUCHY-BIEHAIM N87-241C7 E C U A T X G l i S CN FABALLEL CCBFLIEIS Eiaa l fleport
(h A S A) 38 p Avai l : h U S EC A 0 3 / E F A 0 1

CSCL 09B Onclas
G 3 / i b l 0077537

Raad A. Fatoohi

Chester E. Grosch

Contracts No. NAS1-17070, NAS1-18207
May 1987

INSTITUTE FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERING
NASA Langley Research Center, Hamptoa, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administrabon

Hampton, Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19870014674 2020-03-20T10:59:59+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42836437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SOLVING THE CAUCHY-RIEMANN EQUATIONS ON PARALLEL COMF'UTERS

Raad A. Fatoohi and Chester E. Grosch

Old Dominion University

Norfolk, VA 23508

and

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA 23665

In this paper we discuss the implementation of a single numerical algorithm on three

paralleUvector computers. The algorithm is a relaxation scheme for the solution of the Cauchy-

Riemann equations; a set of coupled first order partial differential equations. The computers were

chosen so as to encompass a variety of architectures. They are: the Mpp, an SIMD machine with

16K bit serial processors; FLEW32, an MIh4D machine with 20 processors; and CRAYL?, an

MIMD machine with four vector processors. The machine architectures are briefly described. The

implementation of the algorithm is discussed in relation to these mhitectures and measures of the

performance on each machine are given. Simple performance models are used to describe the per-

formance. These models highlight the bottlenecks and limiting factors for this algorithm on these

architectures. Finally conclusions are presented.

~ ~~ ~

This research was supported by the National Aeronautics and Space Administration under
NASA Contracts No. NAS1-17070 and NAS1-18107 while the authors were in residence at ICASE,
NASA Langley Research Center, Hampton, VA 23665.

i

1. Introduction.

It appears that single processor computers, whether scaler or vector, are nearing the ultimate

limit of their performance. Certainly, the circuit clock period will decrease and circuit density wil l

increase in the future, but it appears unlikely that major and rapid gains are in prospect. The latest

supercompum, CFUY/2, has a clock period of 4.1 nanoseconds. A reduction of the clock period

to one nanosecond seems possible within the next decade. This development, while increasing the

processing rate, will impose rather stringent constraints on the packaging density and architecture of

a single processor computer. An alternative way of achieving greater processing power is to use

computers consisting of multiple processors.

If the parallel computers can be used effectively, very large gains in overall processing power

are possible. The major difficulty in obtaining this increase in processing power lies not in

hardware development, but in Programming development. Concurrent processing is a relatively

new and largely unexplored research area. There have been a substantial number of theoretical stu-

dies of the performance of algorithms on parallel computers but far fewer actual experimental stu-

dies [lo], [13].

There are three conditions which must be met if an algorithm is to execute at high efficiency

on a concmnt processor: (1) it must have many operations which are executable in parallel, (2)

the amount of communication required between the processors must be small compared to the

amount of calculations which are required, and (3) each processor must have roughly the same

amount of work to do. High performance will actually be obtained from parallel architectures

when the algorithms executed map efficiently to the architecture. Efficient mapping must be based

on a thorough and detailed understanding of the resource requirements of the algorithms and the

ability of a given architecture to deliver these resources. Mappings of algorithms onto parallel

architectures is a problem of extensive dimensionality and great complexity. Understanding the

execution behavior of one class of algorithms is one of the main issues in this work.

2

The problem of measuring the performance of parallel computers is a difficult one and, as

yet, does not have a solid theoretical foundation [14]. Performance is highly dependent on the

architecture of the multiprocessor, the computational algorithm, and the programming language

used. One abstract approach would be to use a model of the concurrent processor and analyze the

execution of a particular algorithm or class of algorithms [SI, 181. The degree of abstraction of the

model and the depth to which the algorithm is analyzed might very well influence the results.

Another approach is to calculate an upper bound on performance by considering the time to per-

form a single arithmetic operation, together with the number of processors. Such a measure is

widely held to be unrealistic because it does not include any of the omnipresent overhead. A

different approach is to program in some language and run a specific algorithm or class of algo-

rithms on a particular multiprocessor computer. Despite the fact that this would be a very specific

experiment, this approach has some distinct advantages. Measurement of the performance gives an

objective measure of the cost of computation, although for a specific class of algorithms, expressed

in a specific language and executed on a specific architecture. This kind of experiment also can

yield subjective evidence as to how well the class of algorithms fits the architecture, how difficult it

was to program in the particular language, and so on. This approach has been considered by

Grosch [9] in adapting Navier-Stokes code to the ICL-DAP and it will be adapted in this work.

In this paper we describe the implementation of a single numerical method, a relaxation

scheme for the solution of the Cauchy-Riemann equations, on three different parallel architectures.

These architectures are: the MPP, an SIMD machine with 16K serial l-bit processors; the FLEW32,

an MIMD machine with 20 processors based on 32-bit NSC 32032 microprocessor; and CRAYI2,

an MIMD machine with four powerful vector processors. The algorithm, described in [61, 193, is

briefly described in section 2. The implementation on the three computers is described in sections

3 through 5; each section contains a brief description of the machine architecture, the programming

language, the implementation, the results, and a simple performance model to describe the execu-

tion behavior of the algorithm. Finally, section 6 contains a comparison of performance at the

problem solving level and some concluding remarks.

3

2. The Algorithm

consider the following differential equations, the Cauchy-Riemann equations:

u, + vr = 0,

v, - 4 = c.
(2.1)

(2.2)

lhese equations arise as part of Navier-Stokes equations for the two-dimensional, time depen-

dent flow of a viscws incompressible fluid, where St= (up) is the velocity and is the vorticity.

In many cases these equations are reduced to a single second order differential equation, a Poisson

equation, by the introduction of a stream function. There can be substantial difficulties with the

second order formulation. For example, if the grid is nonuniform a five point stencil is not second

order accurate. For this reason, and others, it may be desirable to treat the 6rst order system

directly. The numerical method used to approximate these equations is based on compact

differencing schemes developed by Rose [17] and Philip and Rose [151. Gatski, et al. [6] applied

these schemes to solve the Navier-Stokes equations in terms of the vorticity and velocity. Grosch

[9] adapted the Navier-Stokes code to the ICLDAP. The method is briefly described here for the

sake of completeness.

Consider approximating the solution of equations (2.1) and (2.2) in a rectangular domain on

whose boundary one component of the velocity is prescribed. Subdivide the domain into rectangu-

lar cells. This array of cells can be nonuniform. A typical cell and the location of the variables on

that cell are shown in Fig. 1. A variable associated with the side of a cell is to be interpreted as the

average of that variable over the side of the cell and one associated with the center of a cell is an

average over the cell. The centered difference and average operators are defined on a cell by:

Suppose that ki is prescribed. Then equations (2.1) to (2.2) are approximated by,

4

&Uij + $V, = 0,

&Vij - $U, = &
cL,uij - pJJiJ = 0,

LViij - CLyVij = 0.

(2.5)

(2.6)

(2.7)

(2.8)

The adaptation of this algorithm to different parallel architectures can be simplified by the

introduction of box variables to represent the velocity field. The center of a cell is at (ij). The box

variables, are defined at the cornels of the cells, points (i*1/2&1/2). They are related to the

velocity d by:

(2.10)

It is easy to see that equations (2.7) and (2.8) are satisfied identically far any set of box vari-

ables. For the cell (ij), equations (2.5) and (2.6) become,

AP=z

where

(2.1 1)

Equation (2.11) is solved by an iteration scheme which was originally proposed by Kacvnan

[ll] and was generalized by Tanabe [18]. If P(&) is the value after the k’th iteration, then the resi-

dual after the k’th iteration, R@), is given by:

5

The next iteration is

p (W = pcN - (uA'(MT)-'R(4, (2.13)

where o is an acceleration parameter. This relaxation scheme is equivalent to an SOR method.

On a serial computer the array of computational cells is swept over, applying equation (2.13) to

each, until the maximum residual is reduced to the desired level.

The key to the adaptation of this relaxation scheme to parallel computers is the realization

that each P'is updated four times in a sequential sweep over the array of cells. This fact is utilized

on parallel computers by using the concept of reordering to achieve parallelism [l], [19]; operations

are mrdered in order to increase the percentage of the computation that can be done in parallel.

As shown in Fig. 2, the computational cells are divided into four sets of disjoint cells so that the

cells of each set can be processed in parallel. A particular p which lies on the comer of a cell (see

Fig. 2) is changed during the relaxation of set R first, then of set B, then of set 0, and finally set

G. In each of these cases, plies at a different comer of the cell being relaxed. It is therefore clear

that the cell iteration for the box variables is a four "color" scheme. Also, different linear combi-

nations of the residuals are used to update each p a n d all of the P's are updated in each step.

Thus the four steps are necessary far a complete relaxation sweep. This is due to the fact that this

is a multicolor cell relaxation scheme in contrast to multicolor point relaxation scheme in which

only a fraction of the values are updated at each stage.

In brief, the relaxation algorithm is implemented by computing the residuals, R@), using equa-

tion (2.12) for each set of cells, followed by updating the P's using equation (2.13). This sequence

must be completed four times in order to complete a sweep. Finally, the maximum residual is com-

puted and tested against the convergence tolerance. The whole process is repeated until the itera-

tion procedure converges. Fig. 3 shows the Fortran code used to compute the residuals, R(') = (rl,

d), and update! the P's. 'Ihe P, Q matrices are the first and the second components of the box vari-

ables, the Z matrix is defined by equation (2.11), the ZL matrix contains the values of bJ, and C is

a maaix of coefficients defined by:

6

A test problem, based on predefined values of and boundary values of u and v, is used to

study the behavior of the numerical method. Equations (2.12) and (2.13) are solved with given

and the value of one of the box variables on each side prescribed. In order to illustrate the

behavior of this relaxation scheme the variation of the spectral radius, a, with the acceleration

parameter is shown in Fig. 4. This shows measured values of a for three cases in which the

number of grid points in the computational domain was increased from 32x32 to 128x128.

7

3. Implementation on the MPP

3.1. The MPP architecture and MPP Pascal

The Massively Parallel Processor (MPP) is a large-scale SIMD processor developed by Goo-

dyear Aerospace Co. for NASA Goddard Space Flight Center [2], [71. The MPP is a back-end pro-

cessor for a VAX-1 ln80 host, which supports its program development and UO needs.

The block diagram of the hardware elements of the MPP is shown in Fig. 5. The Array Unit

(ARU) consists of a square array of 128x128 bit-serial Processing Elements (PE’s). Each PE has a

local 1024 bit random access memory and is connected to its four nearest neighbors with pro-

grammable edge connections. Arithmetic in each PE is performed in bit serial fashion using a

serial-by-bit adder. The PE also contains a shift register which is used in multiplication and divi-

sion. The ARU is controlled by the Array Control Unit (ACU). The ACU supervises the PE array

processing, performs scaler arithmetic, and shifts data across the PE array. Items of data are sent

to the ARU and taken from the ARU through the staging memory. The staging memory can buffer

arrays of data transmitted over this path and it can also reformat them. The MPP has a cycle time

of 100 nsec.

With 16,384 PE’s operating in parallel, the array has very high processing speed. Despite the

bit-slice nature of each PE, the floating-point speeds compare favorably with other high perfor-

mance machines. For example, the pmessing rate for the addition of two 32-bit 128x128 floating-

point numbers is 430 MFLOPS and for multiplication it is 216 MFLOPS.

Three programming languages are currently implemented on the MPP. They are MPP Pascal

and two assembly languages, Main Control Language (MCL) and PE Array Language (PEARL).

MPP Pascal [12] is a machine-dependent language which has evolved directly from the language

Parallel Pascal defined by Reeves [161. Parallel Pascal is an extended version of the conventional

serial Pascal programming language with a convenient syntax for specifying array operations.

MPP Pascal provides a new intrinsic type of data structure termed a parallel array. This type

directs the compiler to store the array in the array memory. The last two dimensions of a parallel

8

array must be 128x128. The extensions also provide a single parallel control statement, the

where-do-otherwise statement. It is similar to an if-then-else statement but with an array control

variable. MlT Pascal also includes two system-defined arrays, row-index and col-index, that give

each PE its location in the array. Their major use is in masking out a particular set of €E’s for a

given operation. Mpp Pascal programs can execute on the host, on the MPP, or on a combination

of both machines. Through the use of compiler switches, the programmer specifies, at the pro-

cedure level, the system on which the code will execute.

MlT Pascal’s UO system consists of several different modules that handle each of the UO

communication links on the MPPNAX system, There are two techniques for controlling data

transfer to and from the array memory through the staging memory. These are virtual channel UO

and bit-plane YO. In virtual channel UO, data exist in the stager in an “unknown” address; retriev-

ing data from the stager depends on knowing how it was stored. Virtual channel UO software

views the staging memory as a permuting channel through which data move and are reformated.

Bit-plane UO treats the stager as a memory not as a permuting channel. Bit-plane UO allows users

to access data in the stager by variable name, simply by specifying a bit plane address. For this

reason, the stager is configured to look like the array memory, Le., a 16K array of a 128x128 bit

planes (the staging memory size is 32 Mbytes).

3.2. Implementation

The computational cells, as described in section 2, are mapped onto the array so that the

comers of the cells correspond to the processors. The storage pattern used on the MPP is to store

& ~ ~ p m , hi, and llij in the memory of processor (ij). Thus with a 128x128 array of pmessors

there is an array of 127x127 cells.

The Elaxation scheme has been implemented on the MlT for problems which fit on the

array, 128x128 grid points, and for problems which are larger than the array, 128x255 grid points.

.

9

In detail, the MPP algorithm for a 128x128 problem is implemented as follows:

(1) All of the initialization is done on the VAX. This includes computing the Z, ZL, and C

matrices, calculating the boundary conditions, and initialization of the P and Q matrices by setting

all values to zero except those determined by the boundary values.

(2) The five matrices, computed in step (l), are moved to the staging memory, then to the array

using the bit-plane UO technique.

(3) The relaxation process is carried out entirely on the Mpp. A set of temporary matrices are gen-

erated to store the P's for each color. The residuals are computed and the P's of the same color are

updated by masking out the others. This is easily done using the where statement and boolean

masks. The boundary values are also masked. The relaxation sequence is implemented four times

to complete a sweep. This is followed by the computation of the maximum residual. This step is

repeated until the process converges; that is the maximum residual is reduced to the desired value.

(4) Finally, the box variables are moved back to the staging memory and then to the host using the

bit-plane UO method.

The relaxation procedure requires 22 arrays of floating point numbers, all but 5 of which are

temporary, and 19 arrays of boolean variables. Each floating point array uses 32 bits and each

boolean array uses 1 bit of the array memory. Together these arrays use 723 bits of the 1024 bit

PE memory. Most of the remaining bits hold system functions and primitives. If me solves prob-

lems which are larger than 128x128, and thus do not "fit" on the array unit, additional memory is

required A total of 5 floating point arrays of data must be stored for each 128x128 sheet. Thus

160 bits of additional memory are needed for each sheet. This additional memory is not available

in the PE memory so we must use the staging memory as a backup and move the data arrays in

and out of the amy memory when we deal with 128x255 and larger problems.

A 128x255 problem is implemented on the h4PP as follows:

(1) Initialization of the whole domain is performed on the VAX.

10

(2) The domain is decomposed into two regions, left and right. This means that the data is divided

into two sheets; each sheet contains five matrices, P, Q, Z, ZL, and C. The two sheets are moved

to the staging memory using bit-plane YO method.

(3) The relaxation process is implemented on the MPP for each region separately. For each region,

the following steps are performed: (a) A sheet of data is moved from the staging memory to the

array, (b) the interface points of the box variables are updated from previous iteration of the other

region, (c) the relaxation sequence and computation of the maximum residual are implemented as

for the 128x128 problem, (d) the box variables are updated and boundary conditions are reset on all

sides of the region except the interface side, (e) the interface points are saved in temporary arrays

to be used for the next iteration of the other region, (f) the box variables are moved back to the

staging memory. These steps are repeated until convergence is achieved on both regions.

(4) After convergence the box variables of both regions are moved back to the host using bit-plane

uo method.

The host program as well as the MPP relaxation procedure are written in MPP Pascal. Bit-

plane YO procedures are MCL. routines, and are called from the Mpp. A Fortran subroutine is used

to initialize the buffer on the VAX for the parallel array transfers. These routines, declared as

external procedures, are compiled as separate units and linked with the main program unit for exe-

cution, since, unlike standard Pascal, MPP Pascal provides the capability of compiling routines

separately.

3.3. Results and Discusswns

The relaxation algorithm mapped well onto the MPP because it can be implemented almost

entirely with matrix operations. There are no vector operations and only two scaler operations per

iteration. The amount of time spent on data transfers is quite small because nearly all data

transfers are only between nearest neighbors. This type of aansfer is generally inexpensive in

machines like the MPP. The local nature of the data transfers is due to the fact that the

11

differencing scheme is a compact second order scheme.

Table I contains the execution time and the processing rate for one iteration for a 128x128

and a 128x255 problem. The amount of time spent in the host program is not measured, because

there is only a small amount of computation involved in it. The processing rate is determined by

taking the ratio of the number of effective arithmetic operations to the total execution time of the

relaxation routine. In counting the number of effective arithmetic operations, only pure arithmetic

operations, addition and multiplication, are counted. Data transfers as well as computing the abso-

lute and the maximum values are not counted as floating point operations.

If the addition and the multiplication operations are counted separately and the maximum

processing rates are considered, the maximum possible rate for this 128x128 problem will be 365

MFLOPS. The measured processing rate is, therefore, about 48% of the maximum possible rate.

The execution time for one iteration of rhe 128x128 problem, T, is computed as follows:

where

Tmw : Computation cost,

Tcm : Communication cost,

rc : Machine cycle time = 100 nanoseconds,

N, : Number of additions per iteration = 119,

N,,, : Number of multiplications per iteration = 26,

N,l : Number of one step shifts per iteration = 42,

N d : Number of two step shifts per iteration = 21,

C, : Number of cycles required to add two arrays of floating point numbers,

12

C, : Number of cycles required to multiply two arrays of floating point numbers,

C,, : Number of cycles required to shift a floating point array by one step,

C,z : Number of cycles required to shift a floating point array by two steps.

Table 11 contains the estimated values of C,,, C, CJ1, and C, for two sets of primitives, IBM

format and VAX format. The IEM format primitives are provided by the Goodyear Aerospace Co.

and used mainly in the assembly language programs. The peak performanCe rates of the arithmetic

operations are computed based on the IBM format primitives. The VAX format prhitives were

programmed at NASA Goddard and currently used in the MPP Pascal programs. The values

corresponding to the VAX format were obtained using a simple test problem; the execution time of

each operation was measured by using a loop of length 1O00. Note that the VAX format primitives

take considerably longer than the IBM format primitives to perform an operation. The ratio of exe-

cution times ranges from 1.15 for multiplication to 2.16 for addition.

The computation and communication costs of the relaxation algorithm are listed in Table 111

using both sets of primitives. We used the VAX format primitives in our implementation and their

usage in the model gives a reasonable measure of the performance of the algorithm on the MPP.

Based on the measured values of the VAX format primitives, the computation cost contributes

about 89% of the total cost and the communication cost contributes about 8% of the total cost.

The costs of computing the absolute and the maximum values as well as performing the two scaler

operations are not included in this model. However, it is estimated that these costs represent less

than 3% of the total cost and these operations may overlap with the array operations. Note that

this algorithm achieves only about 50% of the peak performance rate of the MPP because of the

relative inefficiency of the VAX format primitives.

For the 128x255 p b l e m there is an overhead for transferring the data to and from the stag-

ing memory. A total of seven data swaps between the stager and the array are required for each

sheet. This swapping adds 11.7 msec to the time for each iteration; yielding an VO overhead of

86%. This reduces the efficiency of the MPP for oversize problems.

13

The code can be easily expanded to larger problems using the same n d a l algorithm. It

is expected that the execution times will be multiples of that for tfre 128x255 problem

14

4. Implementation on the Fled32

4.1. The Fled32 architecture and Concurrent Fortran

The Fled32 is an MIMD shared memory multiprocessor based on 32 bit National Semicon-

ductor 32032 processor [3]. The Fled32 cabinet can hold up to 20 of any combination of proces-

sor and memory cards. The results presented here were obtained using the 20 processor machine

that is now installed at NASA Langley Research Center.

As shown in Fig. 6, there are ten local buses; each connects two processors. These local

buses are connected together and to the common memory by a common bus. The 2.25 Mbytes of

the common memory is accessible to all processors. Each of processors 1, 2, and 3 contains 4

Mbytes of local memory. All other processors contain 1 Mbyte each. Each processor has a cycle

time of 100 nsec.

The UNIX operating system is resident in processors 1 and 2. These processors are also used

for software development and for loading and booting the other processors. Processors 3 through

20 run the Multicomputing Multitasking Operating System (UMOS) and are available for parallel

processing. Among the MMOS processors only processor 3 has a terminal attached to it.

The Fled32 software provides two methods of synchronizing communications between

processes on separate processors. The first method is via the common memory; 8192 loch are pro-

vided to lock variables in the common memory. The second method is a message sending tech-

nique; processes can communicate by sending and receiving messages.

The Fled32 system software has special concurrent versions of C and Fortran 77. Con-

current C and Concurrent Fortran are extensions to C and Fortran 77 programming languages with

all the standard definitions and features of the languages preserved. Both introduce new constructs

for implementing parallel programs. Among these constructs are:

lock a shared variable can be locked if it is not locked by any other process. The locking

process will then be able to access that variable while other processes attempting to

lock it will wait until the lock is released.

15

process &fine and start the execution of a process on a specilied processor.

shared variables &lined as shared are common data items located in the common memory,

and are used by several processes and/or processors.

unlock release a locked variable.

4.2. Implementation

The four color cell relaxation scheme, as described in section 2, was implemented on the

Flex132 using 64x64 cells (65x65 grid points) and 128x128 cells (129x129 grid points). The main

program as well as the relaxation subroutine are written in Concurrent Fortran.

One obvious way to pdt ion the relaxation routine is by color using four processors; each

processor handles one color. Although the method is implemented easily, it has a slow conver-

gence rate and no gain is achieved. This is because all of the processors are operating an the same

initial data every iteration yielding a relaxation method which is equivalent to the Jacobi method

This method has a slow convergence rate compared to the SOR method.

In order to implement the algatithm in parallel, the domain is decomposed into 1,2,4,8, or

16 strips; each strip contains 64x64, 64x32, 64x16, 64x8, or 64x4 cells for the 65x65 problem.

Each strip is given to a process. At the beginning the main program, which is process ‘main’ run-

ning on processor 3, creates and starts (spawns) the execution of the processes on specified pmes-

sors with each process assigned to a separate processor. Processors 4 to 19 are used for parallel

processing.

Data is distributed between the common and local memories, with the intention of doing

most of the work locally. The box variables, the P and Q matrices, the vorticity, the Z matrix, and

the matrices of coefficients, ZL and C, for each strip are stored in the local memory. These

matrices are initialized in parallel by al l processes. The values of the boundary points, interface

points, and error flags are stored in the common memory. The boundary points are computed for

the whole domain in ‘main’, and used by all processes.

16

The relaxation process for each strip is performed locally by: fetching the variables from the

local memory, computing the residuals, then updating the variables, and finally storing them back

in the local memory. After doing these steps for four times, the maximum residual is computed

and tested against the convergence tolerance. If the iteration has converged the convergence flag of

that process is set to unity. After relaxing each set of cells (each color), each process exchanges

the values of the interface points with its two neighbors through the common memory. A set of

flags are used here to ensure that the updated values of the interface points are used for the next

color,

Synchronization is accomplished by setting a variable, ‘countr’, in the common memory and

assigning a lock to it. At the beginning of each iteration, ‘countr’ is set to zero by process 1. This

is a signal to the processes to proceed. When each process completes a sweep it signals back to

process 1 by incrementing ‘countr’. Finally process 1 tests for global convergence and resets

‘countr’ if the iteration has not converged.

4.3. Results and Discussion.

The performance of the parallel algorithm on the Fled32 is evaluated by using the speedup

and efficiency measures. The speedup is defined as the ratio of the time to solve the problem using

one processor to the time to solve the same problem using p processors. Knowing the speedup, the

efficiency is determined by taking the ratio of the speedup using p processors to p. Thus in the

ideal situation the speedup is p and the efficiency is unity. The speedups and efficiencies as func-

tions of the number of processors of both problems using two types of locks, MMOS and Local, are

shown in Tables IV and V. The execution time for one iteration and the processing rate for both

problems using 16 processors and local locks are listed in Table VI.

The results shown in Table IV were obtained using the MMOS locks and the results shown in

Table V were obtained using the Local locks. The MMOS locks, used to lock and unlock variables

in the common memory, are provided by Flexible Computer Co. while the Local locks were pro-

grammed at NASA LAC. The Local locks are based on the SBlTI instruction of the NSC 32032

17

microprocessor while the MMOS locks are based on some expensive MMOS system calls. As

shown in Tables IV and V, the Local locks are very efficient compared to the MMOS locks. For

the 65x65 problem using 16 processors, for example, the speedup is 10.977 using the MMOS locks

while it is 15.294 when using the Local locks. This is an increase of about 39%, and shows the

impact of the design of parallel processing primitives on the performance of the parallel machines.

It was found that when the MMOS locks were used the synchronization cost of the algorithm

represents more than 70% of the overhead cost for large number of processors.

The total cost of implementing the relaxation algorithm on p processors using the Local locks

is the sum of the computation cost and the overhead cost. Since the load is distributed evenly

between h e processors with no extra computations, the computation cost can be computed by

dividing the execution time using a single processor by the number of processors.

The overhead cost is

T&, is the total spawning cost,

Tc, is the total common memory access cost per iteration,

Tqn is the total synchronization cost per iteration.

These costs can be estimated as follows:

Tqn = p tqtu

Tcmo = a(P) N K t c w

Tly. = P tqm

where

P is the number of processors,

N is the number of interface points (N is 65 for first problem and 129 for second problem),

18

K is the number of times the interface points are referenced for each iteration (K = 8),

t,,,,, is the Sime to spawn one process; a reasonable value is 13 milliseconds,

rcmo is the time to access a location in common memory; a reasonable value is 6 microSeconds,

tq,, is the time to synchronize me process within p processes for each iteration,

a(P) is the common memory contention factor; it is a function of P.

The overhead cost represents at most 4% of the total cost of the algorithm. The spawning

cost has a minor impact because the processes are spawned only once at the beginning of the pro-

gram. The synchnization cost was insignificant because the routines that provide the locking

mechanism are very efficient and overlap with the memory access. It was found that the contention

factor ranged from 2.6 to 13.4. The memory access cost dominates the overhead cost.

As the number of processors in use is increased from 2 to 16 the computation cost per pro-

cessor is decreased while the overhead cost is increased. This causes a degradation in the efficiency

of the algorithm. Increasing the number of cells causes an increase by the same ratio in the com-

putation cost; an increase by a smaller ratio in the memory access cost; and no change in the

spawning and synchronization costs. This resulted in a slight improvement on the performance of

the algorithm for the 129x129 problem using large number of processors.

,

19

5. Implementation on the Crayl2.

5.1. The Crayl2 architecture and CFTl2 compiler.

The Cray/2 is an MIMD supercomputer with four Central Processing Units (CPU), a fore-

ground processor which controls YO, and a central memory. The central memory has 256 million

64 bit words organized in four quadrants of 32 banks each. Each CPU has access to one quadrant

during each clock cycle. Each CPU has an internal structure very similar to Cray/l, see [lo], with

the addition of 16K words of local memory available for storage of vector and scaler data Within

each CPU there are eight vector registers (64 words each), eight scaler registers, special purpose

registers (vector length and vector mask) and nine pipelined functional units, four of which support

vector processing. The clock cycle is 4.1 nanoseconds.

The Crayl2 runs the UNICOS operating system which is based on UNIX system V. The four

processors can o p e r a independently on separate jobs, multiprogramming, or concurrently on a sin-

gle job, multitasking.

The Crayl2 Fortran compiler (CFTn) [41 attempts to vectorize the innermost DO loops. This

is the only place where vectorization is attempted. This process is automatic, but certain loops can

not be vectorized and programmer intervention is frequently required. Among the conditions

preventing vectorization are YO, CALL, IF, and GOT0 statements; dependency involving an array;

and ambiguous subscripts in the innermost Do loop. By default, the compiler generates ‘safe’

code; it assumes the wont about ambiguous situations. Some of these situations can be resolved by

inserting compiler directives, using system libraries, or rewritting a program segment.

A vector operation in Cray12 is performed by loading a group of up to 64 elements into a

vector register and moving it, one element per clock period, to the functional unit performing the

operation. Once it is loaded in the vector register, none of the elements can be changed; all the

elements are treated the same.

All Cray’s interleave words in memory so that consecutive elements of an array are stored in

consecutive banks in memory. The bank cycle for the Crayl2 is 57 clock periods, Le., accessing

20

any bank in memry creates a ‘bank busy’ condition for that bank for 57 cycles. This problem is

called ’memory bank conflict’. In addition to the bank conflict, array accesses with even-numbered

strides will suffer quadrant delays, which are a consequence of the four B U ’ s of the Cray/2 taking

turns accessing the four quadrants of memory. Even-numbered strides that are not divisible by four

will result in more than 50% slowdown in data transfer rate and strides that are divisible by four

will result in m a than 75% slowdown.

5.2. Implementation.

The relaxation algorithm, described in section 2, was implemented on the CrayL! for compu-

tational domains of sizes ranging from 64x64 to 1024x1024 grid points. The code, in each case, is

executed as a single job by one of the processors; multitasking was not attempted.

The algorithm is mapped onto the architecture so that columns of each color of the computa-

tional cells are processed separately. This mapping removes any recursion since each of these

columns contains a disjoint set of cells. The implementation was quite simple. The serial version

of the algorithm, using the reordered form of the algorithm and written in standard Fortran, was

transferred and run through CFT/2 compiler. Not all inner loops were vectorized, but some meas-

ure of vector performance was obtained. Two steps were taken to ensure vectorization of all inner

loops of the code. First, cFT/;! was told to ignore apparent vector dependencies by using the com-

piler directive, IVDEP. Second, a segment of the code that computes the maximum value of an

array was rewritten in order to be used with an optimized library routine, ISMAX.

The use of the main memoly can be reduced by using scaler temporaries, instead of array

temporaries, within inner DO loops. This causes cE;T/2 to store these variables in the local

memory. The residuals, see Fig. 3, are stored in scaler temporaries.

5.3. Results and Discussion.

The measured scaler rate of the 64x64 problem is 30 MFLOPS. This rate is obtained when

the serial version of the algorithm is used. This result shows that existing codes, written for serial

21

machines, produce modest performance when they are transferred to Crayl2.

Table VI1 contains the execution time and the processing rate for one iteration using the vec-

torized code when the domain size is varied from 64x64 through 1024x1024 grid points. Only one

processor of the Cray/2 is used There is up to 20% offset on the results depending on the memory

traffic and the number of the active processes on the system. The processing rate is computed by

counting the additions and multiplications only, as in section (3.3). As the number of grid points is

increased, the processing rate is slightly improved. This is due to the fact that more overlapping

between different operations is expected for large problems.

The major problem in implementing the relaxation algMithm on the CrayL? was found to be

accessing the main memory. The Cray/2 is a memory bound machine and one of the general rules

for writting efficient programs for the Cray/2 is to maximize the number of arithmetic operations

per memory access. If this is done the compiler can optimize the use of the functional units, vector

registers, and the local memory, thus minimizing the use of the main memory. It has been our

experience that a main memory access operation costs at least three times a floating point opera-

tion. Another related problem is using a memory stride of 2. This is inherent in the vectorized

relaxation algorithm and cannot be avoided A stride of 2 causes, as described before, more than

50% slowdown in data transfer rate, and about 30% slowdown in the overall algorithm processing

rate.

Because the relaxation routine has more additions than multiplications, the time to complete

one iteration can be considered as a summation of two portions; a partion with one operational

pipeline and a portion with two operational pipelines. These portions can be estimated by counting

the number of additions and multiplications separately. If the peak processing rate of one pipeline

is estimated to be 244 MFLOPS, ignoring the vector startup times, the maximum possible rate of

the relaxation algorithm will be 350 MFLOPS. Therefore, the measured processing rate for the

128x128 problem is about 29% of the peak processing rate. If the startup time of the vector func-

tional units is included, the measured processing rate for the 128x128 problem will be about 40%

22

of the peak processing rate of 257 MFLOPS.

The relaxation algorithm has two main costs, the computation cost and the memory access

cost. To estimate these costs, the following timing values are USBd:

Clock Period (e) = 4.1 nanoseconds,

Length of data path between the main memory and the registers, L, = 56 CPs,

Length of floating point functional units, Lf = 23 CPS,

A lower bound on the values of R1 and R2 are assumed here. Competition for memory banks from

other processors causes lower transfer rates. Their real values are hard to estimate.

The relaxation subroutine has two major parts, performing the relaxation kernel, see Fig. 3,

and computing the maximum residual, excluding the c a t of the ISMAX routine. These two parts

contribute more than 9096 of the total cost of the algorithm. The costs of performing these two

parts for one iteration are computed as follows:

a. Implementing the relaxation kernel,

b. Computing the maximum residual,

where

I

23

hl : Next integer greata than or equal to x,

T,,, : Total main memory access cost per iteration,

T/ : Total floating point operation cost per iteration,

Ne : Number of cells in each dimension,

N, : Number of memory access operations, 23 for part a and 12 for part b,

N, : Number of floating point op t ions , 31 additions and 18 multiplications for part a and 15

additions and 2 multiplications for part b,

N, : Number of sets (colors) = 4.

Table VIII contains the results of applying equations (5.1) through (5.4) for different problem

sizes. Also, the measured times are included in the table for comparison. The main memory

access c a t represents about 50% of the total estimated cost and at least 60% of the measured value

although a lower bound on the data transfer rates is considered. The total estimated costs exceed

the measured values because of the overlapping between memory access and arithmetic Operations.

Most of the multiplication operations are nrnning in parallel with other operations so that the multi-

plication c a t has minor impact on the overall cost. It is estimated that about one half of the addi-

tion operations can be issued while the system is fetching operands from the main memory.

24

6. Comparisons and Concluding Remmh.

The processing rate and execution time (see tables I, VI, and vrr) have been used to compare

the performance of the three architectures for the execution of this relaxation algorithm. Compar-

ing the measured processing rate with the peak processing rate of the algorithm is a useful measure

of how well the algorithm has been mapped onto the architecture. These relative performance rates

are 48% for the MPP and 40% for the Crayl2. The poor performance of the VAX format primi-

tives is the major cause of inefficiency on the MPP, while accessing the main memory is the major

problem on the Crayl2. On the other hand, there is no major overhead on the Fled32 where an

efficiency of at least 96% is obtained even for large number of processors.

A different way of measuring performance is the time taken to solve the problem. Although

the algorithm has higher performance rate on the MPP than on the Crayl2, it takes less time to

solve the problem on the Cray/2 than on the MPP. This is due to the algorithm overhead involved

in adapting the method to the MPP; for each iteration the MPP algorithm has 145 arithmetic opera-

tions compared to 66 operations on the Cray/2. For the 128x128 problem, the times to complete

one iteration on both machines are comparable. However, for oversize problems, the Cray/2 out-

performs the MPP because of the overhead for transferring the data to and from the staging

memory. Also, it should be realized that the arithmetic on the Cray/2 is based on 64 bit words

while on both the MPP and Fled32 it is based on 32 bit words.

Another measure of performance is the number of machine cycles required to solve the prob-

lem. This measure reduces the impact of technology on the performance of the machine. For the

128x128 problem, for example, each iteration requires 135.6 million cycles on the Mpp; 2553.7

million cycles on the Crayn; and 9648.5 million cycles on 16 processors of the Fled32 (129x129

grid points was used on the Fled32).

Expanding the computational domain caused a degradation on the perfomme of the MPP

because of the size of the local memory. However, expanding the domain has minor impact on the

performance of both the Crayn and Fled32. Also, it should be realized that the Crayl2 can be

25

used to solve problems in very large domains because of the large memory available.

' Ihis experiment showed that by reordering the computations we were able to implement the

algorithm on three different architectures with no major modifications. Also, the algorithm exploits

multiple granularities of parallelism. A fine grained parallelism, involving sets of single arithmetic

operations executed in parallel, is obtained on the Mpp and Crayn. Parallelism at higher level,

large grained, is exploited on the Fled32 by executing several program units in parallel. Adapting

this algorithm to a local memory multiprocessor with a hypercube topology should be relatively

easy. A high efficiency is predicted in this case because all data transfers are to nearest neighbors

and their cost should be very small compared to the computation cost.

The performance model on the Mpp was fairly accurate on predicting the execution times of

the relaxation algorithm when we used the measured times of the VAX format primitives. The per-

formance model on the Fled32 showed that the common memory access cost dominated the over-

head cost; although, the overhead cost was less than 5% of the total cost of the algorithm. The

performance model on the Crayn was based on predicting the execution costs of separate opera-

tions. This model is used to identify the major costs of the algorithm and not to reproduce the

measured results. To develop more accurate models of the performance of these machines, a full

understanding of the assembly languages may be needed.

In summary we have found that the four color relaxation scheme can be adapted reasonably

well to the three different architectures. On the MPP, the processing power of the machine has

been fully utilized because the code consists of mostly array operations and data transfers to nearest

neighbors. On the Fled32, the scheme is easily implemented and a speedup of 15.44 on 16 proces-

sors was obtained. On the Crayn, all inner loops were vectorized and processing rate of over 100

MFLOPS was achieved

26

Acknowledgements

We would like to thank NASA Goddad Space Flight Center, NASA Ames Research Center,

and NASA Langley Research Center for allowing us access to the MPP, CrayI2, and Fled32. We

are grateful to Tor Opsahl of Science Applications Research, Dan Nagle of Cray Research, Inc.,

and Tom Crockett of NASA Langley Research Center for their help in using the machines. We are

also grateful to Dr. R. G. Voigt for his continuing support and for a critical reading of the

muscript.

References

PI

181

Adams, L., "Reordering Computations for Parallel Execution," Corn . Appl. Numer. Meths.,

Vol. 2, No. 3, May-June 1986, pp. 263-272.

Batcher, K. E., "Design of a Massively Parallel Processur," IEEE Trans. Computers, Vol. C-

29, Sept. 1980, pp. 836840.

Fled32 Multicomputer System Overview, Flexible Computer Co., 1986.

Fortran (CFT2) Reference Manual, Cray Research Inc. Publication SR-2007, 1986,

Gannon, D. B. and Van Rosendale, J., "On the Impact of Communication Complexity on the

Design of P d e l Numerical Algorithms," IEEE Trans. Computers, Vol. C-33, No. 12, Dec.

1984, pp. 1180-1194.

Gatski, T. B., Grosch, C. E., and Rose, M. E., "A Numerical Study of the Two-Dimensional

Navier-Stokes Equations in Vorticity-Velocity Variables," J. Comput Phys., Vol. 48, No. 1,

1982, pp. 1-22.

General Description of the MF", Goodyear Aerospace Co., Tech. Report GER-17140, April

1983.

Grosch, C. E., "Performance analysis of Poisson solvers on array computers," in Infotech

State of the Art Report: Supercomputers, Jesshope C. R. and Hockney R. W., ed., 2 (1979),

Infotech International, pp. 147-181.

27

[9] Grosch, C. E., "Adapting a Navier-Stokes code to the ICL-DAP," SIAM J. Scientific & Sta-

tistical Computing, Vol. 8, No. 1, 1987, pp. s96-sl17.

[lo] Hockney, R. W. and Jesshope, C. R., "Parallel Cornputen: Architecture, Programming and

Algorithms," Adam Hilger, Ltd., Bristol, 1981.

[ll] Kacunan, S., "Angenaherte auflosung von systemen linearer gleichungen," Bull. Acad.

Polon, Sci Lett. A, 1937, pp. 355-357.

[12] MPP Pascal Programmer's Guide, NASA Goddard Space Flight Center, Sept. 1986.

[13] Ortega, J. M. and Voigt, R. G., "Solution of Partial Differential Equations on vector and

Parallel Computers," SIAM Rev., 27 (1985), pp. 149-240.

[14] Parkinson, D. and Liddell, H. M., "The Measurement of Performance on a Highly Parallel

System," IEEE Trans. Computers, Vol. C-32, No. 1, Jan. 1983, pp. 32-37.

[15] Philips, R. B. and Rose, M. E., "Compact Finite-Difference Schemes for Mixed Initial-

Boundary Value Problems," SIAM J. Numerical Analysis, Vol. 19, No. 4, 1982, pp. 698-720.

[16] Reeves, A. P., "Parallel Pascal: An Extended Pascal for Parallel Computers," J. Parallel &

Distributed Computing, Vol. 1, 1984, pp. 64-80.

[17] Rose, M. E., "A 'Unified' Numerical Treatment of the Wave Equation and the Cauchy-

Riemann Equations," SIAM J. Numerical Analysis, Vol. 18, No. 2, 1981, pp. 372-376.

[18] Tanabe, K., "Projection Method for Solving a Singular System of Linear Equations and its

Applications," Numer. Math., Vol. 17, 1971, pp. 203-214.

[19] Voigt, R. G., Where are the Parallel Algorithms?," 1985 National Computer Conference

Proceedings, AFIPS Press, pp. 329-334.

28

Problem size (grid points)
128x128
128x255

Execution time (msec) Processing rate (MF’LOPS)
13.56 175
50.55 94

Table I. Execution times for one iteration and processing rates for the relaxation
algorithm on the MPP.

Operation
addition

IBM format primitives VAX format primitives
38 1 824

mu1 tiplic ation
one step shift
two step shift

Primitives
IBM format
VAX format

758
96

128

Computation time Communication time Measured time

12.09 1.11 13.56
6.50 0.67

877
166
198

Table II. Estimated execution times (in machine cycles) of the elementary opera-
tions on the MPP.

Table III. Estimated times (in milliseconds) of the algorithm on the MPP.

Number of
processors

1
2
4
8
16

65x65 points
speedup efficiency

1 .Ooo 1 .Ooo
1.976 0.988
3.864 0.966
7.254 0.907

10.977 0.686

129x129 points
speedup efficiency

1 .Ooo 1 .Ooo
1.975 0.988
3.912 0.978
7.687 0.96 1

14.239 0.890

Table IV. Speedup and efficiency on the Fled32 using the MMOS locks.

(grid points)
65x65

Number of
processors

16

met) (MFLOPS)
246.53 1.10

65x65

1.991
3.955
7.825

15.294

i points
efficiency

1 .OOo
0.996
0.989
0.978
0.956

129x129 points

1.978 0.989
3.941 0.985
7.834 0.979

15.437 0.965

Table V. Speedup and efficiency on the Fled32 using the Local locks.

I Problem size I Execution time I Processing rate I

I 129x129 I 964.85 I 1.12 I

Table VI. Execution times for one iteration and processing rates for the relax-
ation algorithm using 16 processors of the Fled32.

30

Problem Main memory Addition
size access time time

64x64 1.75 1.18
128x128 5.81 4.10
256x256 23.54 16.61
512x512 94.7 1 66.83

1024x1024 379.93 268.07

I Problem size (grid points) I Execution time (msec) I Processing rate (MFLOPS) I

Multiplication Total estimated Measured
time time time
0.53 3.46 2.62
1.78 11.69 10.47
7.22 47.37 41.83

29.03 190.57 164.40
1 16.5 1 764.5 1 639.49

64x64
128x 128
256x256
512x512

1024x1024

2.62
10.47
41.83

164.40
639.49

100
102
103
105
108

Table VII. Execution times for one iteration and processing rates for the relax-
ation algorithm on one processor of the Cray/2.

Table VIII. Estimated and measured execution times (in milliseconds) of the
algorithm on the Crayn.

F i g . 1. Typical computational cel l and the data associated with it.

1
2

3

4
5

N-2

N-1

N

F i g . 2. Computational domain and the four color cells assuming

that M and N are even numbers.

31

32
C
C
C

1

1
C
C
C

compute t h e r e s i d u a l s

compute t h e r e l a x a t i o n c o r r e c t i o n and restore t h e P ' s ,

F i g . 3. Kernel of t h e r e l a x a t i o n s u b r o u t i n e i n F o r t r a n .

33

00
$1

2 ?
X
00

cn
c

Q
c

m ‘ 3

34

Staging
Memory

1

Fig. 5 . Block diagram of the MPP.

35

al
&
7
L,
b
al

cv
cr)
\
X
al

l i

r4
al c
+J

%I
0

W

tn
4
r4

Standard Bibliographic Page

.. Report No. NASA CR-178307
ICASE Report No. 87-34

2. Government Accession NO.

'. Author@)
Raad A. Fatoohi and Chester E. Grosch

this page) 21. No. of Pages
37 19. &cr&s21p~~~ this report)

Name and
'* ~~~~@s~~'~$a:'OC)omputer Ijepdrpeicat ions in Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

and Engineering

2. Sponsoring Agency Name and Address

22. Price
A0 3

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog NO.

5. Report Date

Mav 1987
6. Performing Organization Code

8. Performing Organization Report No.

87-34
10. Work Unit No.

505-90-21-01
11. Contract or Grant No.

NAS1-17070, NASl-18107
13. Type of Report and Period Covered

d
14. Sponsoring Agency Code

.5. Supplementary Notes

Langley Technical Monitor:
J. C. South

Submitted to J. Supercomputing

Final Report
6. Abstract

In this paper, we discuss the implementation of a single algorithm on three
parallel-vector computers. The algorithm is a relaxation scheme for the
solution of the Cauchy-Riemann equations; a set of coupled first order partial
differential equations. The computers were chosen so as to encompass a variety
of architectures. They are: the MPP, an SIMD machine with 16K bit serial
processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD
machine with four vector processors. The machine architectures are briefly
described. The implementation of the algorithm is discussed in relation to
these architectures and measures of the performance on each machine are given.
Simple performance models are used to describe the performance. These models
highlight the bottlenecks and limiting factors for this algorithm on these
architectures. Finally conclusions are presented.

.7. Key Words (Suggested by Authors(8))

SIMD machine, MIMD machine, parallel
algorithms, performance analysis,
SOR method

18. Distribution Statement

61 - Computer Programming and
64 - Numerical Analysis
Unclassified - unlimited

Software

NASA Langley Form 63 (June 1986)

