
t 

I 

Contract Nos. -1-18107, NAS1-18605 
March 1989 

NASA Contractor Report 181815 

ICASE REPORT NO. 89-18 

E A S E  
INVISCID SPATIAL STABILITY OF A COMPRESSIBLE MIXING LAYER. 

PART 11. THE FLAME SHEET MODEL 

(IiASA-Ca- 18 18 15) I E F I S C I I ;  S E d l l l l  S'LALBXELITY 889-22637 
Ck A C C H P E E S S I E L E  HIXl3G LAYkB. EAST 2: I B E  
ZLAI¶€  SEEE'I B C C I L  Final BeFcrt ( l C A S E )  
3 3  F CSCL 2OD Uoclas 

63/34 0204438 

T. L. Jackson 

C. E. Grosch 

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING 
NASA Langley Research Center, Hampton, Virginia 23665 

Operated by the Universities Space Research Association 

National Aeronautics and 
Space Administration 

lrngley Research Center 
Hampton, Virginia 23665 

https://ntrs.nasa.gov/search.jsp?R=19890013466 2020-03-20T03:09:15+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42828253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INVISCID SPATIAL STABILITY OF A COMPRESSIBLE MIXING LAYER. 
PART 11. THE FLAME SHEET MODEL 
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Abstract. We report the results of an inviscid spatial stability calculation for a compressible reacting 
mixing layer. The limit of infinite activation energy is taken and the diffusion flame is approximated by a 
flame sheet. Results are reported for the phase speeds of the neutral waves and maximum growth rates of 
the unstable waves as a function of the parameten of the problem: the ratio of the temperature of the sta- 
tionary stream to that of the moving stream, the Mach number of the moving stream, the heat release per 
unit mass fraction of the reactant, the equivalence ratio of the reaction, and the frequency of the disturbance. 
These results are compared to the phase speeds and growth rates of the corresponding nonreacting mixing 

layer. We show that the addition of combustion has important, and complex, effects on the flow stability. 

This work was suppofled by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-18107 and NASl- 
18605 while the authors were in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley 
Research Center, Hampton, VA 23665. 
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1. Introduction. Quite recently it has been realized that an understanding of the stability characteris- 
tics of compressible mixing layers is extremely important in view of the projected use of the scramjet 
engine for the propulsion of hypersonic aircraft. For example, Drummond and Mukunda (1988) state: "Even 
though the combustor flow field is quite complex, it can be realistically viewed as a collection of spatially 
developing and reacting supersonic mixing layers that are initially discrete, but that ultimately merge into 
larger more complex zones. These mixing layers begin downstream of a set of fuel injectors that introduce 
gaseous hydrogen in both a parallel and tranverse direction into a supersonic airstream entering from the 
engine inlet. The behavior of the initial portion of the combustor flow, in the mixing layers near the fuel 
injectors, appears to be most critical, since this is where the mechanism for efficient high speed mixing must 
be established to achieve the required degree of combustion downstream. Because of the structure of the 
flow field in this initial portion of the combustor, a single supersonic, spatially developing and reacting mix- 
ing layer serves as an excellent physical model for the overall flow field." Thus knowledge of the stability 
characteristics may allow one, in principle, to control the downstream evolution of such flows in the 
combustor. This is particularly important because of the observed increase in the flow stability at high 
Mach numbers (Brown and Roshko, 1974; Chinzei, Masuya, Komuro, Murakami, and Kudou, 1986; and 
Papamoschou and Roshko, 1986). Because of the increase in stability, natural transition may occur at 
downstream distances which are larger than practical combustor lengths. A number of techniques which 
may enhance mixing are discussed by Kumar, Bushnell and Hussaini (1987). A detailed understanding of 

the linear stability characteristics of compressible reacting mixing layers will be of aid in mixing enhance- 
ment. 

Despite the fact that understanding of the flow field in a reacting compressible mixing layer in a 
scramjet engine is extremely important, there appears to be very few studies of the stability of such flows. 
Menon, Anderson and Pai (1984) studied the inviscid spatial stability of a compressible wake in which there 
was a Hz-02 reaction. These calculations were carried out with a free stream Mach number of 2 and tem- 
perature of 15WK. When the reaction was turned on the flow became completely unstable. The phase 
speed was found to be a monotonically increasing function of frequency. It seems that their results show a 
complete absence of neutral or stable disturbances. 

The above result appears to be in conflict with that of Drummond and Mukunda (1988). They carried 
out a numerical simulation using the two dimensional, compressible, time dependent Navier-Stokes equa- 
tions with combustion in a mixing layer. The reaction was the burning of a 10% H2, 90% N, fuel in air. 
The free stream Mach number was taken to be 2, the temperature above and below the plate was 2000"K, 
and the velocities were 2672 m/s and 1729 m/s  above and below the plate, respectively. Because of the 
expense and difficulty of carrying out these simulations only a few have been done. Drummond and 
Mukunda found that the nonreacting flow was very stable and that turning on the combustion had little 
effect. But it should be noted that the authors were not carring out a stability calculation, per se, and did 
not excite the flow with disturbances with a fixed frequency. They relied on the "natural" disturbances to 
perturb the flow. 

We have begun a systematic study of the stability of compressible mixing layers in which a diffusion 
flame is embedded. The basic steady flow with which we began is that calculated by Jackson and Hussaini 
(1988). In their study the limit of infinite activation energy was used and the diffusion flame reduced to a 

flame sheet. The flame sheet model is a standard approximation and has been used in the study of the burn- 
ing of a fuel particle in an oxidizing atmosphere and of the flame at the mouth of a tube, for example 



(Buckmaster and Ludford, 1982; and Williams,1985). In order to understand the effect of the chemical heat 
release on the stability of this flow, one must first understand the stability characteristics of the nonreacting 
flow. 

In the first part of our study (Jackson and Grosch, 1989, hereafter referred to as Part I), we considered 
the inviscid spatial stability problem for the compressible mixing layer with the mean velocity profile 
approximated by the hyperbolic tangent. We found that there is only a single subsonic neutral mode for 
two dimensional waves, but that there can be three for three dimensional waves. Beyond a critical Mach 
number M, the Mach number at which the phase speed equals that of a sonic wave, the subsonic neutral 
modes are transformed into supersonic neutral modes which are subsonic at one boundary and supersonic at 
the other (we have not found any neutral or unstable modes which are supersonic at both boundaries). In 
addition, another supersonic neutral mode appears at M. 2 M, the Mach number at which the sonic speeds 
of the stationary and moving streams are equal. This supersonic neutral mode has the opposite behavior 
than the previous at the boundaries. That is, if the continuation of the subsonic neutral mode is supersonic 
in the moving stream and subsonic in the stationary stream, this new mode is subsonic in the moving stream 
and supersonic in the stationary stream. Thus, there are always at least two bands of unstable frequencies 
for Mach numbers greater than MI. One of these bands is a group of fast and the other a group of slow 
unstable supersonic modes. The fast modes are supersonic with respect to the stationary stream and the 
slow modes are supersonic with respect to the moving stream. It is important to note that both the fast and 
slow supersonic modes are vorticity modes and neither of them is an acoustic mode (Mack, 1989). These 
groups of unstable modes lie in the frequency bands between zero, corresponding to the sonic mode, and the 
frequency of the supersonic neutral mode. Because these frequency bands always overlap for some range of 
frequencies, there exist two unstable modes at a fixed Mach number and PT (the ratio of the temperature in 
the stationary stream to that of the moving stream) for every frequency in this range. The phase speeds of 
both the fast and slow supersonic modes have a small range about the average, so that little dispersion of 
wave packets is expected, with a reduction in the dispersion as the Mach number is increased. Three 
dimensional disturbances show the same general characteristics as two dimensional disturbances. There is 
always a range of propagation angles for which both the fast and slow unstable modes exist. We also find, 
in agreement with previous studies, that the maximum growth rate for any PT and M occurs for three dimen- 
sional waves. A decrease in PT results in an increase in the growth rate of the unstable waves at any Mach 
number. An increase in the Mach number at a fixed PT results in a decrease of the growth rates by a factor 
of three to four up until the Mach number equals MI. For Mach numbers greater than M., the growth rates 
of all modes level off and then with increasing Mach number, those of the slow modes begin to increase 
while those of the fast modes approach a limiting value. However, even at Mach 10, the growth rates of 
the slow modes are still small compared to those at low subsonic speeds. This, combined with the fact that 
the unstable waves have little dispersion, is a possible mechanism responsible for the observed increase in 
the flow stability. 

In this paper we report results of a study of the stability of a reacting compressible mixing layer. In 
section 2 we give the basic equations governing the mean flow and the small amplitude disturbance equa- 
tions. The boundary conditions and the numerical method are also discussed in this section. Section 3 con- 
tains a presentation of our results and conclusions are given in section 4. 

2. The Mean Flow. The nondimensional equations governing the steady two dimensional flow of a 
compressible, reacting mixing layer which lies between streams of reactants with different speeds and 
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temperatures are given by (Jackson and Hussaini, 1988) 

p(UCjx + VCj ) = ( P C ~ ) ~  - PiQ, i = 1,2, (2.le) 
Y 

In these equations the x axis is along the direction of flow, the y axis normal to the flow, U and V are the 
velocity components in the x and y directions, respectively, p is the density, T the temperature, and C1 and 
Cz the mass fractions. The reaction is assumed to be irreversible and of Arrhenius-type. The viscosity p is 
assumed to be a function of temperature. The other nondimensional parameters appearing above are: 

fl= QC1,ooVW/Cp~m(V1 - Pl)W1 Heat release per unit mass fraction of reactant, 

0 = EIRT, Activation energy, 

Damkohler number, 

Pi = P i  - Pi)Wi(Vl - Pl>W1 Parameter involving stoichiometry, 

M = UJa,  Mach number, 

where a and b are the reaction orders of C1 and C,, respectively, V j  the stoichiometric coefficient for species 
j appearing as a reactant, p, the stoichiometric coefficient for species j appearing as a product, V the sum of 
the stoichiometric coefficients of the reactants, W, the molecular weight of species j, W the average molec- 
ular weight, E the dimensional activation energy, R the universal gas constant, B the preexponential con- 
stant in rate expression, a, the speed of sound referred to T,, Q the chemical heat release per unit mass, y 
the specific-heats ratio, and finally C, the specific heat at constant pressure. The equations were nondimen- 
sionalized by the freestream values T,, p,, V,, Cl,, for the temperature, density, velocities and mass frac- 
tions, respectively. Lengths are referred to I , ,  some characteristic length scale of the flow. We have 
assumed unit Prandtl and Lewis numbers in writing down these equations. The assumption of unit Lewis 
number allows us to consider linear combinations of (2.ld) and (2.le) to eliminate the source term, which 
then admits similarity-type solutions. For a simplified Hydrogen-Oxygen reaction, typical values of the heat 
release parameter p as a function of the temperature of the moving stream are given in Table 1. Note that 
as the temperature of the moving stream is increased, fl is decreased. 



We assume that the stream at +oo is moving, while that at --oo is stationary. Thus, the boundary con- 
ditions consistent with (2.1) are 

T =  U = C1= 1 ,  C2= 0 m y - , = ,  (2.2a) 

(2.2b) 

If PT is less than one, the stationary gas is relatively cold compared to the moving stream, and if PT is 
greater than one it is relatively hot. 

The enthalpy for species 1 and 2 is defined by 

Hi = T + e ,  i = 1,2. Pi 

Combining (2.ld) and (2.le), and using the boundary conditions (2.2), one finds 

111 = PT + (1 - PT + P)u + +hf2u(l-u), 

where 4 is the equivalence ratio, defined by 

(2.4a) 

(2.4b) 

which is the ratio of the mass fraction C1 in the moving stream to the mass fraction C2 in the stationary 
stream divided by the ratio of their molecular weights times their stoichiometric coefficients. Note that if 
$ = 1, then the mixture is said to be stoichiometric, and if @ > 1 it is C1 rich, while if I$ e 1 it is C1 lean. 

A thin diffusion flame exists within the mixing layer and is characterized by near-equilibrium condi- 
tions; C1 = 0 on one side of the flame and C2 = 0 on the other. In the limit of infinite activation energy this 
thin diffusion flame reduces to a flame sheet and from the relations (2.4), we see that the flow can be 
described by 

c1 = 1 - (1 + $-1)(l--U), c2 = 0, (2.6a) 

for y > yp and 

P2 

P1 
c1 = 0, c, = -[@-I - (1 + cp--')uJ, (2.7a) 
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T = PT + (1 - PT + P)u + fiM2u(1-m, (2.7b) 

for y e yF Here, yf gives the location of the flame sheet where both reactants vanish, and T takes the adia- 
batic flame value T/, given by 

2 

Tf= PT -t (1 - PT -I- P)uf + q@uAl-u,), (2.8) 

and 

1 Uf = UQf) = - (2.9) 

defines the flame location. 

The temperature and mass fraction profiles for the steady mean flow have been obtained in terms of 
the mean flow velocity distribution, UQ). As discussed in Part I, we assume here that 

(1 + ranh(q)), (2.10) 1 u = -  
2 

where q is the 
linear viscosity 

similarity variable and the Howarth-Dorodnitzyn transformation, together with the Chapman 

law, has been used. This profile satisfies the boundary conditions 

u + 1  as q+++m, u+ 0 as q + --. (2.1 1) 

The basic mean flow considered here is thus given by (2.6), (2.7), and (2.10). 

In Figure la  we show plots of T(q) for PT = 2, M = 0, Cp = 1 and for various values of the heat release 
parameter p. If p is different from zero, the temperature always has a discontinuity in its slope at the loca- 
tion of the flame sheet. Figure l b  shows plots of T for PT = 2, P = 2, M = 0, and for various values of 4. 
When Cp = 1, the flame sheet is located at qf= 0. For Cp > 1, the mixture is C ,  rich and the flame location 
shifts to %e 0. For Cp e 1, the converse is true. Finally, Figure IC shows T for various values of the Mach 
number. As can be seen from (2.6)-(2.8), increasing M increases T. It should be noted that an increase in 
p at fixed M has a qualitatively similar effect on T as an increase in M at a fixed p. 

The flow field is perturbed by introducing two dimensional wave disturbances in the velocity, pres- 
sure, temperature, density and mass fractions on either si& of the flame sheet with amplitudes which are 
functions of q. In addition, the flame sheet location must also be perturbed with a wave disturbance. For 
example, the pressure perturbation is 

p = Wq)exp[i(oLx - ~ 0 1 ,  (2.12) 

with I7 the amplitude. Here, for spatial stability a is complex. The real part of a is the wave number in the 
x direction, while the imaginary part of a indicates whether the disturbance is amplified, neutral, or damped 
depending on whether ai is negative, zero, or positive. The frequency w is taken to be real. Substituting the 
expression (2.12) for the pressure perturbation and similar expressions for the other flow quantities into the 
inviscid compressible equations yields the ordinary differential equations for the perturbation amplitudes. It 
is straightforward to derive a single equation governing n, given by 
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which is valid on either side of the flame sheet. Here, c is the complex wave velocity 

(2.13) 

(2.14) 

and primes indicate differentiation with respect to the similarity variable q. The phase speed, cph, is given 
by w / a,. For a neutral wave the phase speed will be denoted by cN. 

The boundary conditions for ll are obtained by considering the limiting form of equation (2.13) as 
q + f-. The solutions to (2.13) are of the form 

where 

Q2 + - - a 2 [ l  - M2(1-c)2], Q2- = Ci2PT[PT - M2C2]. (2.16) 

Let us define c* to be the values of the phase speed for which Q2, vanishes. Thus, 

4s c- = - 1 
M' M '  c+=  1 - - (2.17) 

Note that c+ is the phase speed of a sonic disturbance in the moving stream and c- is the phase speed of a 
sonic disturbance in the stationary stream. At 

M =  M* 1 + & (2.18) 

c* are equal. In addition to the boundary conditions at q = f-, we must impose the conditions that ll and 
n' are continuous across the flame sheet. 

The nature of the disturbances and the appropriate boundary conditions can now be illustrated by 
reference to Figure 2, where we plot ck versus M for a typical value of PT. In what follows we assume that 
a2, > a2i. These curves divide the c,-M plane into four regions, where c, is the real part of c. If a distur- 
bance exists with a M and c, in region 1, then n2+ and n2- are both positive, and the disturbance is sub- 
sonic at both boundaries. In region 3, both n2+ and LIZ- are negative and hence the disturbance is supersonic 
at both boundaries. In region 2, Q2+ is positive and n2- is negative, and the disturbance is subsonic at += 
and supersonic at -90, and we classify it as a fast mode. Finally, in region 4, a*+ is negative and n2- is 
positive so the disturbance is supersonic at +oo and subsonic at -0, and we classify it as a slow mode. 

One can now see that the appropiate boundary condition for either damped or outgoing waves in the 
moving and stationary streams are, respectively, 

-ill- n + e*+", if c, > c+, n + e , if c, < c+, (2.19a) 

(2.19b) 



To solve the disturbance equation (2.13), we first transform it to a Riccati equation by setting 

(2.20) 

Thus, (2.13) becomes 

(2.21) 2U' T 
U-c T 

G' + aTG2 - [- - -]G = a[T - M2(V-c)2]. 

The boundary conditions can be found from (2.19) and (2.20), with G continuous across the flame sheet. 

The stability problem is thus to solve equation (2.21) for a given real frequency o and Mach number 
M, with U and T defined by (2.10) and (2.6b),(2.7b). In addition to M, the important parameters of this 
problem are PT, p, and Cp. The eigenvalue is the wavenumber a. Because this equation has a singularity at 
U = c,, we shall integrate it along the complex contour (-6,-1) to (qpO) and (6,-1) to (qpO), where qf gives 
the flame sheet location defined by (2.9). Using a Runge-Kutta scheme with variable step size, we choose 
an initial a and compute the boundary conditions from (2.19). We then iterate on a, using Muller's 
method, until the boundary conditions are satisfied and the jump in G at (qpO) is less than lod. All calcu- 
lations were done in 64 bit precision. 

3. Results. In all of our calculations we have taken y = 1.4; PT = 0.5, 1, 2; 0 I p S 5 ;  Cp = 0.5, 1, 2; 
and 0 I M I 10. 

Lees and Lin (1946) have proven that if a neutral mode is to exist in region 1, the phase speed will be 
given by C, = U(q,), where q, is found from the regularity condition 

d dU S(q) = -(7-2-) = 0. 
4 4  

The corresponding neutral wave number, a,, must be determined numerically. The eigenfunction is called 
a subsonic neutral mode. Because f is discontinuous at %for nonzero p, S(q) will also be discontinuous at 
this point. Fiqure 3 is a plot of S versus q for various values of p. As one can see from examination of 
this figure, S can have a single root, two roots one of which corresponds to q positive and the other nega- 
tive, or two roots one of which is a one-sided zero. The mots of S, which corresponds to phase speeds that 
are subsonic at both boundaries, are the phase speeds of subsonic neutral modes. The one-sided zero of S 
may or may not yield a phase speed of a neutral mode. Finally, there can also be singular neutral modes, 
ones whose phase speeds are not given by (3.1) and are subsonic at the boundaries. If the phase speed 
corresponding to a zero of S is supersonic at either or both boundaries it may or may not be that of a neu- 
tral mode. This can only be determined numerically. 

3.1. M = 0. The introduction of a chemical reaction, in the form of a flame sheet, has complex 
effects on the flow stability. In order to show these effects clearly, we first consider the case of zero Mach 
number and examine the variation of the eigenvalue, a, with the heat release parameter p and equivalence 
ratio +. In Figure 4a we show a plot of the growth rate (-ai) versus the real part of the wavenumber (a,) 
for the case of PT = 0.5, Cp = 1, and various values of p. Note that all of the curves pass through the origin, 
which corresponds to w = 0, and also cross the a, axis, corresponding to ~ i )  > 0. These give the two neutral 
waves. We classify these as true stability curves since the unstable waves are found between two neutral 
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waves. 

The curves shown in Figure 4a are for values of P S 0.98. For this particular set of parameter values 
we were not able to find solutions to the stability problem whose eigenvalues had the behavior shown in this 
figure for any values of p > 0.983. In order to understand the reason for this we carried out an extensive 
search for eigenvalues in the a plane while varying P. We discovered that the eigenvalue problem has two 
unstable solutions for any P > 0 and the other values of the parameters. Some of these results are shown in 
Figure 4b. It is clear that there is a saddle point for P about 0.984 at a = 0.24-0.601'. For P e 0.984 there 
are two sets of eigenvalue curves. The lower set appears to be the physically relevant one because it yields 
the eigenvalue relation for the nonreacting mixing layer as P approaches zero. We believe that the upper 
branch, while corresponding to a correct mathematical solution of the eigenvalue problem, has no physical 
relevance because none of these upper branch curves intersects the a, axis and hence there are no neutral 
solutions (ai = 0) or stable solutions (ai > 0). Similarly, we believe that the solutions on the other two 
branches, the dashed branches in Figure 4b, are also non-physical because each of them crosses the a, axis 
at only one point in the right half plane, that is with a, 2 0 and hence c, > 0. In other words, these solution 
branches have only one neutral solution with c, > 0 and we therefore believe that these are not physically 
meaningful solutions. Thus for this set of parameter values, the physically acceptable modes only exist if 
0 I p S 0.983. 

We have found similar behavior in the eigenvalue spectrum for other values of the parameters, that is, 
there is a critical value of p (pc) beyond which one of the physically acceptable modes no longer exists. 
This value of pc depends on all of the other parameters of the problem, and the general trends are similar. 
As PT is increased, pc also increases. Typical values of Pc are given in Table 2. The implications, and pos- 
sible causes, of the existence of pc will be discussed in section 4. 

In Figures 5, 6, and 7 we show the variation of the neutral phase speeds cN with p for various values 
of PT and +. First, recall that for the nonreactive case (Part I), with p = 0 and + = 1, only a single neutral 
mode exists at M = 0, given by (3.1), and is classified as fast or slow depending on whether cN > 1/2 or 
CN < 112, respectively. We will show that the addition of heat release (p > 0) can cause both fast and slow 
modes to coexist, although both types may not always exist for all values of p. Also, there may exist singu- 
lar neutral modes, those which are found numerically but do not satisfy the regularity condition (3.1). This 
is in direct contrast to the results of Part I. 

It can be shown from (3.1), and from (2.6b), (2.7b) and (2.10), that fast waves only exist for 

with corresponding neutral phase speed 

while slow waves only exist for 

(3.4) 
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with corresponding neutral phase speed 

Note that the value of the slow neutral phase speed is independent of the equivalence ratio 4. Also note 
that there is a mode switch located at p = 0 and $ = pT-'; Le., the modes interchange their characteristics at 
p = 0. 

The phase speeds of the neutral modes for PT= 0.5 are plotted in Figure 5. Note that there are both 
fast and slow subsonic neutral modes whose phase speeds are given by (3.3) and (3.5). In addition, there 
are both fast and slow singular subsonic neutral modes, adjancent to their corresponding regular neutral 
modes, whose phase speeds are independent of P. It is clear from the results shown here that it is the slow 
modes which cease to exist when J3 > pc and that J3, increases with increasing values of the equivalence 
ratio $. The fast modes, on the other hand, only exist for those values of p which satisfy (3.2). From Fig- 
ure 5c one can see that there will be a mode switch for $ > 2 at P = 0. The phase speeds of the neutral 
modes for PT= 1 are plotted in Figure 6. Again we see that there are both fast and slow regular neutral 
modes with adjacent singular modes. Note that there is a mode switch at p = 0 as $ is increased past one. 
That is, for Cp < 1, only the slow modes exist at p = 0, and conversely for Cp > 1. The critical value pc, 
beyond which there are no acceptable solutions, only affects the slower branch. Finally, Figure 7 shows the 
variation of the phase speed with p for PT = 2. The mode switch occurs when t$ exceeds 0.5. It is clear 
that pc is greater than 5 for all values of Cp for which results are shown here. 

In addition to the neutral modes there are, of course, associated unstable modes. The maximum 
growth rates of the unstable modes for various values of PT and $ are plotted as a function of p in Figures 
8-10. It is important to note the changes of scale between these figures. 

In Figure 8 the variation of -aim with P is shown for PT = 0.5 and $ = 0.5, 1, 2. The slow modes 

are much more unstable than the fast modes for those ranges of P for which the slow modes exist, i.e. 
P < pc. The maximum growth rates of these slow modes first decrease slightly and then increase with an 
increase in P. The maximum growth rates of fast modes increase with $ for any p but are much smaller 
than those of the slow modes. Similar results are shown in Figure 9 for PT = 1. The switching between fast 
and slow modes past Cp = 1 which was noted in our discussion of the phase speeds of the neutral modes is 
apparent in this figure. The growth rates of the fast waves increase with $, while those of the slow waves 
decrease. Finally the plots of the maximum growth rate versus P for PT = 2, shown in Figure 10, have the 
same general behavior as the two previous figures. That is, there is a mode switch at p = 0 past $ = 1/2. 

The results shown in these figures can be summarized as follows. An increase in PT causes a decrease 
in the maximum growth rate of the most unstabIe modes. At fixed PT and $ the growth rate of the slow 
modes increases as P becomes large, while the growth rate of the fast modes approaches a limiting value. 
As we shall see, this is the same generic behavior as results from increasing the Mach number while hold- 
ing all other parameters fixed. Thus, for sufficiently large P, the slow modes are the most unstable ones. 
For fixed P, an increase in $ causes an increase in the maximum growth rates of the fast modes, while 
decreasing the maximum growth rates of the slow modes. Finally, as in Part I we have found that the phase 
speeds cph of the unstable modes lie between the phase speed of the regular neutral mode and its adjacent 
singular neutral mode. 
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3.2. M > 0. In this section we show the variation of the phase speeds of the neutral waves and the 
maximum growth rates of the unstable waves as a function of the Mach number for various combinations of 

PT, p, and 

In Figure l l a  we show the phase speed of the neutral modes for the nonreactive (p = 0, Q = 1) mixing 
layer (Part I) for PT= 112. From this figure, taken from Part I, one can see that there is only a single sub- 
sonic neutral mode in region 1. This mode crosses over the sonic curve at M, , the Mach number at which 
the phase speed equals that of a sonic wave, and is transformed into a supersonic neutral mode in region 4. 
In addition, a fast supersonic neutral mode appears at M. in region 2. In regions 2 and 4 there are unstable 
modes with phase speeds between that of the supersonic neutral mode and that of the sonic neutral mode. 
Thus, there are two bands of unstable frequencies for Mach numbers greater than MI. The band in region 2 
is a group of fast and the band in region 4 is a group of slow unstable modes. The phase speeds of both the 
fast and slow modes have a small range about the average, so that little dispersion of wave packets is 
expected, with a reduction in the dispersion as the Mach number is increased. 

It can be seen from Figure l l b  that chemical reaction has a major effect on c,. First, recall from Fig- 
ure 5b that the slow subsonic neutral mode only exists for p < Pc at M = 0, while the fast subsonic neutral 
mode only exists for p ‘2 1/2. As can be expected, the value of pc is also a function of the Mach number. 
Thus, we find that the slow neutral mode only exists if the Mach number is greater than the critical value 
M, (see Figure llb). Apart from this the values of CN on this branch are only slightly affected by changes 
in p and the effect is quite small at large M. Finally, one can see that a fast subsonic neutral mode is 
present for all M because p is greater than 0.5. Note that the values of c, for this fast mode in region 1 
increase markedly with increasing p. This is also true for the lower Mach number range in region 2, but all 
of the C, curves for different p appear to asymptote to a single curve for large M. Associated with the fast 
and slow modes there are singular subsonic neutral modes in region 1. The range of phase speeds of the 
unstable modes in region 1 lies between the fast modes and their associated singular mode, and between the 
slow modes and their associated singular mode. In regions 2 and 4, the range of phase speeds of the 
unstable modes lies between the fast (slow) supersonic neutral modes and the associated fast (slow) sonic 
neutral modes. The range of the phase speeds of the unstable modes increases with p and is quite large for 
Mach numbers around MI, thus yielding an increase in dispersion. However for Mach numbers much larger 

than M. the dispersion is essentially independent of p. 
Figure 12 shows the phase speed of the neutral modes for PT = 1, $ = 1 and various values of p as a 

function of the Mach number. The results for p = 0 are shown in Figure 12a and those for p > 0 in Figure 
12b. The curves of cN versus M are symmetric about the line CN = 112 because the mean velocity profile is 
symmetric about q = 0 (where U = 1/2) and so is the temperature profile for any p if Q = 1. Hence, the 
subsonic neutral mode in region 1 of Figure 12a splits into a symmetric pair of fast and slow supersonic 
modes at M.. From Figure 12b at can be seen that this is also true for any nonzero p. The only exception 
is for sufficiently large p, where the slow neutral modes only exist if the Mach number exceeds M,. For 
this case, the singular subsonic mode in region 1 has a phase speed of 1/2, and the range of phase speeds of 
the unstable modes lies between this mode and the corresponding fast and slow neutral modes. As p 
increases the phase speeds of the fast (slow) neutral modes increase (decrease) at any fixed M. Again it 
should be noted that al l  of the curves for both the fast and slow neutral modes at different p are asymptotic 
to a single curve for large M. As for the previous case, an increase in p causes an increase in the range of 
the phase speeds of the unstable modes, in the vicinity of MI, and hence an increase in the dispersion. 
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Finally, in Figure 13 we show similar plots of CN versus M for PT = 2. In Figure 13% with p = 0, 
there is only a subsonic fast neutral mode in region 1 which is transformed into a supersonic neutral mode 
in region 2. The slow supersonic neutral mode only exists in region 4. The effects of increasing p are 
similiar to those of the cases discussed above. There is an increase in the phase speed of the fast modes as 
p is increased. The phase speed of the slow supersonic modes of region 4 decreases with increasing p and, 
for p > 1, a singular subsonic neutral mode with cN = 1/2 appears in region 1. Correspondingly, for p > 0, 
there also exists a singular subsonic neutral mode in region 1 associated with the fast modes. Again the 
curves for the fast and slow neutral modes are each asymptotic to a single curve for large M. As in the pre- 
vious two cases, an increase in p causes an increase in the range of the phase speeds of the unstable waves 
and hence an increase in the dispersion. 

We have also carried out calculations of cN versus M for fixed PT and p with various values of +. 
The results can be easily summarized. As + increases the phase speed of the slow mode is unchanged, con- 
sistent with the Mach zero results (see equation 3.5). The only effect is a change in the critical value of M, 
below which this neutral mode does not exist; the smaller the value of + the larger is the value of M,. The 
phase speed of the fast neutral modes decreases with increasing +. Finally, all of these curves appear to be 
asymptotic to a single curve as M + 00. 

In addition to the phase speeds we have calculated the maximum growth rates of the unstable modes 
for these values of PT, p, and + as a function of the Mach number. The results are shown in Figures 14-16. 
Again, it is important to note the changes of scales between these figures. 

The maximum growth rate as a function of M with PT = 1/2, + = 1 and various p is plotted in Figure 
14a. For p = 0 an increase in the Mach number from zero results in a decrease in the growth rate of the 
slow mode by a factor of three to four up to MI, and for higher Mach numbers the growth rate levels off 
and eventually begins to increase with increasing Mach number. An increase in p causes the growth rate of 
the slow modes to increase, but the variation of the growth rate with M is similar to that for p = 0. How- 
ever it must be recalled that, if p > 0, the slow modes only exist for Mach numbers greater than M,, and 
this is reflected in the curves for p > 0.983. The growth rates of the fast modes are much smaller and 
increasing p has only a slight effect on them. Figure 14b contains similar results, but with p = 2 and vary- 
ing +. An increase in + causes an increase in the maximum growth rate of the slow modes and a decrease 
for the fast modes at low and moderate Mach numbers. At higher Mach numbers, the growth rates are 
essentially independent of $. 

Similar results, but with PT= 1, are given in Figure 15. It can be seen that the effects of varying p 
on the growth rate (Figure 15a) is somewhat more complex than for the previous case. The maximum 
growth rate of the slow modes at low Mach numbers first decreases and then increases with increasing p, 
consistent with the Mach zero results of Figure 9. At higher Mach numbers, increasing /3 causes a mono- 
tonic increase in the maximum growth rates of the slow modes. Again there is a three to four fold decrease 
in the growth rates of the slow modes as the Mach number increases from zero to M,, and a slight increase 
at higher Mach numbers. Apart from the appearance of the fast modes at low Mach number, increasing p 
has little effect on their maximum growth rates. Finally, in Figure 15b, an increase in + with fixed p results 
in an increase in the maximum growth rate of the fast modes and a decrease in the maximum growth rate of 
the slow modes at low and moderate Mach numbers. At higher Mach numbers, the growth rates are again 
independent of +. 
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In Figure 16 similar results are given for PT = 2. These results are consistent with the Mach zero 
results of Figure 10. In particular, Figure 16a shows that the slow modes are srrictly increasing and those of 
the fast modes are strictly decreasing with increasing p at zero Mach number. Thus, increasing p causes a 
substantial decrease in the maximum growth rates of the fast modes and a substantial increase in the max- 
imum growth rates of the slow modes at low and moderate Mach numbers. As in the previous case, the 
results of Figure 16b show that increasing 4 yields an increased in the growth rates of the fast modes while 
decreasing those of the slow modes. As before, the growth rates of both are independent of Cp at higher 
Mach number. 

The results presented in Figures 14-16 thus show that the maximum growth rates of the slow modes 
increase as the Mach number becomes large, while that of the fast modes approaches a limiting value. As 
we have seen, this was the same generic behavior as results from increasing the heat release parameter p at 
zero Mach number. 

Figures 17 thru 20 are plots of selected two dimensional neutral eigenfunctions for PT = 1, @ = 1, 
Mach 5 and increasing values of p. These plots show the variation of ll with qr on the contour vi  = -1. 
All of these have been normalized so that the maximum of the absolute value of ll is unity. The eigenfunc- 
tions shown are all fast supersonic neutral modes. Note the rapid variation of both the amplitude and phase 
near qr = 0. Because these modes are fast, they show exponential decay in the subsonic region and oscilla- 
tions with constant amplitude and linear phase in the supersonic region. As p is increased, the variation of 
the amplitude near qr = 0 increases markedly. Also, the decay of the amplitude in the subsonic region is 
more rapid and the rate of change of the phase in the supersonic region increases. The behavior of the 
eigenfunction with increasing heat release, p, is similar to the behavior with increasing Mach number. 

4. Conclusions. The addition of combustion in the form of a flame sheet has important, and complex, 
effects on the flow stability. In contrast to the nonreacting case, we have shown the existence of multiple 
regular and singular subsonic neuual modes in region 1. For Mach numbers greater than M., there are two 
bands of unstable frequencies (just as in the nonreacting case); one a group of fast supersonic modes and the 
other a group of slow supersonic modes. In general, an increase in p causes an increase (decrease) in the 
phase speed of the fast (slow) neutral modes. Since the range of phase speeds is increased at low and 
moderate Mach numbers as the heat release parameter p is increased, there is an increase in the dispersion 
of wave packets. Finally, we have found that the addition of chemical heating has almost no effect on the 
phase speeds at higher Mach numbers. 

The maximum growth rates of the unstable modes decrease by a factor of three to four as the Mach 
number approaches M., even with the presence of the reaction. Just as in the nonreacting case, for Mach 
numbers greater than M., the growth rates level off and those of the slow modes eventually begin to 
increase with increasing Mach number, while the growth rates of the fast modes approaches a limiting 
value. The same behavior results from increasing p while the Mach number is held fixed. Finally, if the 
stationary gas is colder than the moving gas, P T <  1, the effect of increasing the equivalence ratio + is to 
increase the growth rate of the slow modes and decrease the growth rate of the fast modes. On the other 
hand, if pT 2 1, increasing Cp has the opposite effect. However, at higher Mach numbers, changes in Cp have 
little effect on the growth rates for any pT. Finally, an examination of the eigenfunctions shows that 
increasing p has the same generic effect as increasing the Mach number. 
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As was discussed in section 3.1, we found that with PT = 1/2, @ = 1, and M = 0 there was a saddle 
point in the complex a plane for p about 0.984. For any p > 0 there were two branches of a. As was dis- 
cussed in that section, we accepted only that branch which yielded the eigenvalue relation for the nonreact- 
ing mixing layer as p approached zero. Similar behavior was also found for other values of PT and Mach 
numbers, but generally the saddle point appeared at larger values of p. Thus, one can conclude that there 
will be a value of p beyond which one of the branches ceases to have physically meaningful solutions to the 
stability problem. We suspect that this is due to the use of the flame sheet approximation. In this model, 
although T is continuous everywhere, I' is discontinuous across the flame sheet and the magnitude of the 
jump in T' increases with p. If we are correct, the activation energy 8 must be taken to be large but finite. 

This study is the only comprehensive study, of which we know, of the inviscid spatial stability of a 
reacting compressible mixing layer. We do not h o w  how sensitive our results are to the assumptions used 
in this study. In particular, we have assumed unit Prandtl and Lewis numbers, used Chapman's linear rela- 
tion between viscosity and temperature, and approximated the mean velocity profile by a hyperbolic tangent. 
In addition, we have taken the limit of infinite activation energy which reduces the diffusion flame to a 
flame sheet. Despite these limitations, we believe that this systematic study is an important first step in 
classifying and understanding the complex effects that chemistry has on the stability of compressible free 
shear layers. As mentioned above, the next step is to consider a more realistic model of the chemistry and 
the thermodynamics. This will then yield mean velocity, temperature, and mass fraction distributions which 
will be continuous and have continuous derivatives across the flame. However the calculation of the mean 
field as well as the perturbation solution will be more difficult since now the velocity, temperature, and 
mass fraction equations are coupled. We have begun this study with large, but finite 8, and hope to report 
the results at a later date and will compare those results to the benchmark results reported here. 
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CP P 
( K O )  (callmole K O )  (kcallmole) 

1000 9.03 5 16.5 3.2 
1500 9.94 5 16.5 1.9 
2000 10.60 5 16.5 1.4 

Table 1. Typical values of the heat release parameter p as a function of 
temperature. 

0.5 0.7 0.984 1.8 
1 .o 2.0 3.1 >5 
2.0 >5 >5 >5 

Table 2. Typical values of pc at M = 0 as a function of pT and Q. 
I 
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Figure la. Plot of temperature T versus 7 for PT = 2, P = 0, 1, 3, 5, 0 = 1, and M = 0. 

T T  

I 

! T- 

I I ! 1 

T- 

L I I I I 1 I I 

- 4  2 4 
Figure IC. Plot of temperature T versus q for PT = 2, P = 2, $' = 1, and M = 0, 2 3, 5. 
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Figure 2. Plot of the sonic speeds c* versus Mach number for p7 = 3.5. 
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Figure 3. Plot of S(q) for PT = 2, j.3 = 0.5, 1, 2, $ = 1, and M = 0. 
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Figure 4a Plot of the growth rate (-4) versus the real part of the wavenumber (a,) far b= 0.5, 
B = 0, 0.5, 0.9, 0.98, 0 = 1, and M = 0. 
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Figure 4b. Plot of the growth rate (-q) versus the real part of the wavenumber (q) for PT= 0.5, 
0 = 1, M = 0, and various values of p showing the saddle point location. 
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Figure Sb. Plot of neuaal phase speeds CN versus j3 for j 3 ~  = 0.5, $ = 1, and M = 0. 

Figure Sc. Plot of neutral phase speeds CN versus p for PT = 0.5, $ = 2, and M = 0. 
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Plot of neuaal phase speeds CN versus p for PT = 1, 0 = 0.5, and M = 0. 
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Plot of neutral phase speeds CN versus p for PT = 1. 4 = 1, and M = 0. 
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Figure 8. Plot of maximum growth rates of the fast and slow modes versus p for Pr = 0.5, 
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Figure 9. Plot of maximum growth rates of the fast and slow modes vmus p for &= 1, 
0 = 0.5. 1, 2, and M = 0. 
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Figure 10. Plot of maximum growth rates of the fast and slow modes vems p for PT= 2. 
0 = 0.5, 1, 2, and M = 0. 
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Figure lla. Plot of neutral phase speeds (solid) and sonic speeds (dashed) VQSUS Mach number for 
&= 0.5, p = 0, and + = 1. 
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Figure llb. Plot of neutral phase speeds (solid) and sonic speeds (dashed) versus Mach number for 
PT = 0.5, P = 1, 2, 5, and + = 1. 
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Figure 12a. Plot of neutral phase speeds (solid) and sonic speeds (dashed) versus Mach number for 
Pr= 1, P = 0, md + =  1. 
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Figure 12b. Plot of neutral phase speeds (solid) and sonic speeds (dashed) versus Mach number for 
PT = 1, P = 1, 2, 5, and 4 = 1. 
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Figure 13a. Plot of neutral phase speeds (solid) and sonic speeds (dashed) v e m s  Mach number for 
b = 2 , P = O , a n d $ = l .  
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Figure 13b. Plot of neutral phase speeds (solid) and sonic speeds (dashed) versus Mach number for 
0 M IO 

PT = 2, p = 1, 2, 5, and 4 = 1. 
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Figure 14a Plot of maximum growth rates of the fast and slow modes versus Mach number for 
~ = 0 . 5 , j 3 = 0 , 1 , 2 , S , a n d + = l .  
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Figure 15a. Plot of maximum growth rates of the fast and slow modes versus Mach number for 
&.= 1. p = 0, 1.2, 5, and + = 1. 
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Figure 15b. Plot of maximum growth-rates of the fast and slow modes versus Mach number for 
PT = 1, P = 2, and Q = 0.5, 1, 2. 
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Figure 16a. Plot of maximum growth rates of the fast and slow modes versus Mach number for 
&.= 2, p = 0 ,1 ,2 ,5 ,  and 4 = 1. 
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Figure 16b. Plot of-maximum growth raws of the fast and slow modes versus Mach number for 
& = 2, p = 2, and +. = 0.5, 1, 2. 
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Plot of the two dimensional fast supersonic neutral eigenfunction n(q) along the contour 
q = q, - i. The solid curve corresponds to the amplitude and the dashed curve to the phase. M = 5, 
pT = 1, $ = 1, p = 0, with ON = 0.184813, % = 0.215661, CN = 0.85696. 
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Figure 18. Plot of the two dimensional fast supersonic neutral eigenfunction n(q) along the contour 
q = q, - i. The solid curve corresponds to the amplitude and the dashed curve to the phase. M = 5, 
PT = 1, 4 = 1, P = 1, with ON = 0.235413, = 0.269485, CN = 0.873565. 
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Plot of the two dimensional fast supersonic neutral eigenfunction n(q) along the contour 
q = q, - i. The solid curve corresponds to the amplitude and the dashed curve to the phase. M = 5, 

= 1, Q = 1, p = 2, with ON = 0.276698, = 0.312299, CN = 0.886001. 
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Figure 20. Plot of the two dimensional fast supersonic neutral eigenfunction n(q) along the contour 
I\ = q, - i. The solid curve corresponds to the amplitude and the dashed curve to the phase. M = 5, 
PT = 1, Q = 1, p = 5, with ON = 0.356124, aN = 0.390535, CN = 0.911887. 
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