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ABSTRACT

This work examines the discrete spectrum of the Orr-Sommerfeld problem
of hydrodynamic stability for boundary layer flows in semi-infinite regions.
Related questions concerning the continuous spectrum are also addressed.

Emphasis is placed on the stability problem for the Blasius boundary layer

profile.

A general theoretical result is given which proves that the discrete
spectrun of the Orr-Sommerfeld problem for boundary layer profiles (U(y),
0,0) has only a finite number of discrete modes when U(y) has derivatives
of all orders. This has been suspected for some time on the basis of numer-
ical evidence, but the present result is the first theoretical proof of its

type for unbounded flows.

Details are given of a highly accurate numerical technique based on
collocation with splines for the calculation of stability characteristics.
The technique includes replacement of "outer" boundary conditions by asymp-
totic forms based on the proper large parameter in the stability problem.
Implementation of the asymptotic boundary conditions is such that there is
no need to mak: apriori distinctions between subcases of the discrete spec-
trum or between the discrete and continuous spectrums. Typical calculativus
foo tte usual Blasius problem are presented, Results also show that there
are not a large number of discrete temporal modes of the Blasius problem

lying close to the temporal continuum.

The parallel flow assumption, which leads to the usual Orr~-Sommerfeld
problem, ignores the small V velocity component of the mean profile. If
V is retained, a modified Orr~Sommerfeld equation involving first and third
derivative terms is obtained. This modified equation has recently proved
competitive with non-linear approaches in predicting instability for a model
profile where V 1is stabilizing. The modified Orr-Sommerfeld problem is
considered here for the Blasius problem in which V 1is destabilizing. Both
the marginal stability curve and the higher modes of the modified problem
are discussed. Critical parameters for instability are lowered by 3%, but
this is not enough to reconcile the linear theory with experimental results.
A conjecture is given as to when linear stability predictions with V

included do not need further refinement from multiple scale methods.



INTRODUCTION

In hydrodynamic stability, a key assumption in the linear theory for

the stability of small amplitude disturbances is that the disturbance stream
function can be expanded in terms of a complete set of normal modes. These
modes, in turn, are obtained from the eigenfunctions and eigenvalues of an
appropriate boundary value problem. For example, for boundary layer type
flows over a flat plate, the parallel flow assumption and consideration of
two-d imensional disturbances leads to the usual Orr-Sommerfeld (0-S) problem
for Tollmien-Schlitching waves. This problem involves a fourth-order linear
differential equation and boundary conditions which come from the no-slip
requirement on solid walls and appropriate conditions at infinity in the

free stream.

Several basic questions arise naturally in the study of linear
stability problems. The first question, of course, concerns the stability
of the mean profile being considered. This is really a question about the
first, or least stable, eigenvalue. As, in general, no closed-form
solutions of the eigenvalue problem are possible, analytical work exploits
the fact that the Reynolds number R 1is large fcr most flows of physical
interest. Hence perturbation methods can be used to obtain asymptotic
approximations to the eigenvalue relation, and a curve of marginal stability
can be derived. On this curve, the disturbance wave number @, wave speed
c, and frequency @ = ac are all real, and hence the temporal and spacial

instability problems coincide.

Inside the marginal stability curve, small amplitude disturbances will
grow either spacially (@ complex, w real) or temporally (a real, ¢ com
plex). Numerical methods can be used to obtain curves of constant amplifi-
cation and constant phase speed in the (a,R) plane for the temporal problem
or the (w,R) plane for the spacial problem. Most work has focused on the
temporal case where the eigenvalue ¢ enters in a simple way. However, for
comparison with experimental measurements, the relatively complicated spa-

cial case is probably more appropriate.

Results for marginal stability and curves of constant amplification and

phase speed are of great importance, both theoretically and for application



to the practical engineering problem of transition prediction (Obremski,
Morkovin, and Landahl, 1969). However, information of this sort is not
adequate to attack the problem of boundary layer receptivity. Consider, for
example, the Orr-Sommerfeld problem for the usual Blasius boundary layer
profile on a flat plate ignoring the '(R-!) outflow velocity from the bound-
ary layer. The receptivity problem requires the proper decomposition of an
external disturbance into a superposition of linear stability modes.

In particular, to use linear stability theory to study the evolution of a
disturbance, we must know how the initial amplitudes of modal disturbances
in the flow are caused by external disturbances imposed on the flow.
Although few studies consider this basic question, the need to address it
has been realized for some time. Mack (1977), in a discussion of the appli~
cation of stability theory to transition prediction for boundary layers

gtates thac "

. . . if there were no disturbances, there would be no transi-
tion and the boundary layer would remain laminar. Consequently, it is fu-
tile to talk about transition without in some way bringing in the distur-
bances which cause it . . . ." PFurther on, Mack states that ". . . the pre-
cise mechanism by which, say, free stream turbulence, sound and different

types of roughness cause transition remains to be discovered."

Resolution of this type of question involves a form of wave packet
analysis. The general problem is the solution of the initial-boundary value
stability problem in which a disturbance which is initially localized in
space and time interacts with the mean flow, propagates in space, and
evolves in time. The theoretical question is to determine the distribution
of energy from an erbitrary disturbance among the mod~< of the Orr-
Sommerfeld equation and to calculate the subsequent evolution of the

disturbance,

In theory the solution to this problem is quite straightforward. We
gimply determine the complete set of normal modes of the Orr-Sommerfeld
equation and expand the initiel disturbance in terms of them. The theory
required to formally carry out this expansion has been recently derived by
Salwen (1980). Once the disturbance has been expanded in terms of the nor-
mal modes, the initial amplitude of each mode is known and the evolution of
the disturbance wave packet in the flow is completely determined by the

evolution of each mode.



To carry out the expansion of an arbitrary disturbance in terms of
normal modes of the Orr-Sommerfeld equation requires knowledge of the full
spectrun for the boundary layer flows on unbounded domains. Unfortunately,
key information on modes in the discrete spectrum has been lacking in both
the temporal and spacial problems. It is, of course, well known that there
is at least one discrete mode because a neutral stability curve exists,
Grosch and Salwen (1978a,b) have shown that both the temporal and spacial
stability problems in an unbounded domain always have a continuous spectrum.
What is not known, and is vital in order to carry out the expansion, is how_
many discrete modes exist. This report contains a theoretical proof that
there are only a finite number of discrete modes. The available evidence,
numerical, further suggests that the number of discrete modes is relatively
small, see, for example, Jordinson, 1970; Mack, 1976; Corner, Houston and
Ross, 1976; Murdock and Stewartson, 1977. All of these investigators, and
others, find a large number of possible discrete modes near the continuum.
Most authors, however, interpret these modes as spurious discrete modes.

The major exception is the work of Antar and Benek (1978) which claims to
have found two families of discrete modes lying close to the temporal

continuum.

To distinguish between a valid discrete eigenvalue and a continuum
eigenvalue in either the spacial or temporal case requires accurate determi-
nation of the associated eigenfunction from the boundary out to a large
distance into the free stream. If y denotes distance from the solid lower
boundary, the amplitude ¢(y) of the disturbance stream function for a
discrete mode will be zero at y = 0, reach a maximum inside the boundary
layer, and decay exponentially as y + ®, By contrast, a continuum eigen-
function is small in the boundary layer region, relatively large with oscil-
latory behavior above the boundary layer, and merely bounded as y » =, For
various reasons, both shooting and expansion techniques experience difficul-
ties in computing eigenfunctions on unbounded domains. Consequently, it has
not been clear that previously used numerical techniques could distinguish
between discrete modes on or very near the continuum and continuum func-
tions, so a large number of discrete modes near the continuum has remained a
disputed possibility. The present work resolves this controversy by ruling

out discrete modes near the continuum. The numerical technique employed
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here is local in nature, does not produce spurious modes, and allows accu-
rate determination of eigenfunctions in both the spacial and temporal cases.

Results are given in Section 4.

The Orr-Sommerfeld problem occupies a central place in the linear the-
ory of hydrodynamic stability and has provided great insights into the
nature of instabilities. However, it is important to note that the usual
Orr-Sommerfeld situation is somewhat restrictive, even within the context of
linear stability theory. This is due to the parallel flow assumption on the
mean velocity profile in the derivation of the usual Orr-Sommerfeld equa-
tion. Under this assumption, the 0(R-!) mean out flow velocity is neglected
entirely compared to the 0(l) mean streamwise flow. This amounts to
ignoring all x-derivatives of the mean flow stream function &(x,y,t). In an
attempt to bridge the gap between the minimum critical .eynolds number RC
for instability predicted by the Orr-Sommerfeld problem and the lower value
of Rc found experimentally, some authors e.g. Saric and Nayfeh (1975),
have retained full x dependence in derivatives of V¥ and considered the
stability problem using multiple scale techniquea. There is, however, a
middle course which remains within the framework of linear stability theory
yet still partially relaxes the parallel flow assumption. Non-parallel
effects due to outflow from the boundary layer region may be included in
linear theory by retaining 39/dx and neglect{ng only second and higher
order x~derivatives of V. The accuracy of the mean flow representation in
the stability problem now becomes the same as that of the Prandtl boundary
layer equation. The resulting linear stability problem now involves a
modified Orr-Sommerfeld equation with important first and third derivative
terms attributable to the outflow velocities. For a test problem involving
the asymptotic suction boundary layer profile, Lakin and Reid (1982) showed
that including the 0(R-}) suction component in the mean profile signifi-
cantly increased the minimum critical Reynolds number for instability. 1In
the more realistic stability problem for the Blasius boundary layer, the
effect of the outflow component of the mean profile should be destabilizing.
Barry and Ross (1970) have examined the change in Rc induced by including
the mean outflow component. However, very little work has been done on
higher modes of the modified Orr-Sommerfeld equation for the Blasius problem
including outflow. Corner, Houston, and Ross (1976) consider the higher
spacial modes, but their results for the modified Orr-Sommerfeld problem are

limited and inconclusive.
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The highly accurate numerical procedure developed during the course of
the present work has been used to re-examine the marginal stability curve
for the Blasius problem including outflow. Results were also obtained for
the higher modes of this problem in both the temporal and spacial cases.

Details are given in Section 5 of this report.

THE NATURE OF THE DISCRETE TEMPORAL SPECTRUM

In order to use eigenfunction expansion techniques in stability
calculations it is necessary to know the number and distribution of the
eigenvalues of the Orr-Sommerfeld equation. In addition to the continuous
spectrum (Grosch & Salwen, 1978; Salwen & Grosch, 1981), there is, of
course, a discrete spectrum. The work of Jordimson (1971), Mack (1976), and
Murdock & Stewartson (1977) suggests that the number of discrete eigenmodes

is finite and, at finite Reynolds number, small.

Some light can be thrown on the question of the number of eigemnvalues
of the Orr-Sommerfeld equation by using a technique developed by Lidski and
Sadovnick (1968). They considered the eigenvalue problem for the Orr-
Sommer feld problem in a finite domain and developed formulae for the sums of
integer powers of the eigenvalues of the stability problem. They suggest
that these formul ae could be used to calculate the eigenvalues. It seems
that this approach to the numerical problem is not very fruitful. However,
their methodology can be used to address the question of the number of

eigenvalues of the stability problem in the infinite domain.

Here we adapt the method of Lidski & Sadovnick, (hereafter L & S), with
some slight change in notation. The Orr-Sommerfeld problem is, for the

discrete modes,

12¢ = iaR{ (U-C)L - U"}¢, (1)
$(0) =¢'(0) =0, ¢+ ¢'+> 0 as y+ = (2a-d)
2
with L-_‘_l_-az, 3)

dy?



and U(y) the velocity profile, Cr-r o ]

Or v A/
Following L & S, define
r(y) = - ia R(U(y)-1), (4)
qo(y) = iaRU", (5)
Z = iaR(c-1). (6)

Yow L & S show that if r(y) and q(y) have derivatives of all orders,
then the four linearly independent solutions of equation (1) are given,

formally, by the four series:

6, = &Y y - (y), (79
' K=0 *
02 = e ] D% (1), (7b)
k=0
g
$3 = k}:-o b4 bk,l(y)' (7¢)
T &
$y k);o z bk,2(y) (74)

with 2z taken to be the root of (6) with positive real part.

The functions {ak(y)} are the solutions of the recurrence

differential equations (primes denoting 3%)
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gl == vp (@ -0 g -2 OF POOR QUALITY
+ (202 -1) a'y o - 21- a"y 4
P2 A v (rqat)a 8)
with a (y) 20 if k<0, 9)
ag (0) = 1; ak(O) =0, k2> 1. (10a,b)

The first few of the {a,}] can be found quite easily. We have, for

k = 0: ad(y) = 0, ap(0) =1, (11a,b)
ag(y) = 1; (12)
k = 1: a’ (y) '-12 (a2 - r(y)), a(0) = 0, (13a,b)
1 y
a (y) = ¥ (aly -g r(£)d&); (14)
k=2
5 1.2 2y 1
a(y) = (z-)r'(y) + 74'(“ - t(y))(a‘y -g r(£)dE), (15a)
ay (0) = 0, (15b)

y
o (y) = (2.)(:(}') - £0)) +§a"y -{.azy g r(£)dE

£ y £
+ ;az z[ g r(€)dE] & + Tt'{ r(€)[ & r(£)dE]dE. (16)

«< \a



The functions {bk j(y)} are the solutions of the recurrence
)

differential equations

b, i(y) = (12 + e(y) L+ q(y)]bk_z’j, (17)
with bk ; =0 if k<0, (18)
- R - ORIGINAL PACE 1T
and by 1 (0) = 1 2 (0) =1, OF POOR QUALITY (19a,b)
bu J.(0) = b'zz j(0) = 0, (20a,b)
bu-l,j(y) = 0. @2
Again, the first few of the {bk 2(y)} can be found. We have, for
k=0, ’
Lbo 3 =0 (22)

and the boundary conditions (19a,b).  Thus,

b =e 7, (23a)
A
bp 2 =a eV, (24a)
From (21)
b . £ 0. (25)
]
Finally, for k = 2
a[12
b, s(y) [12 + rL + q]bO,j, (26)
with b, j(0) = b j(0) = 0, (27a,b)
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Therefore OF POOR QUALITY
17 - - -~
b (= o7 [e2Y78) g olEy)y=a (g (28)
179 - -
b2 2(y) = (2a?) é [ea(y ’E)—em(E y)] eagq(E)GE. (29)

The structure of the {ak(y)} and the {bk J.(y)} is now clear. Of the
1
four solutions {4’2}, L= 1,...,%, we see that ¢; and ¢, grow
exponentionally as y + = and ¢,, ¢3 decay exponent.ally as y + w,

Thus the solution to the Orr-Sommerfeld eigenvalue problem is a linear

combination of ¢72 and ¢3.

The eigenvalue relation for ¢ is therefore

$,(0) $3(0)

= 0. (30)
$5(0) $4(0)
We have
92(0) = ¢ 7 {ao(y)- a;(y)/2 + ap(y)/z2 + 0(z~3)}, (31)
¢3(y) = bo’l(y) + b2,1(y)/zz + 0(z™%). (32)

Using the definitions of the {lk(y)} and {bk 1{v;} it is easy to see that
]

$,(0) = ¢3(0) =1, (31)
$5(0) = - z + {(a® - £(0))/22 + 5 £'(0)/422 + 0 (2=}, (32)
$3(0) 2 - a

10
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Therefore the eigenvalue relation (30) is \ QUA

a +z - {(a? - £(0))/2z +5 £'(0)/422} + 0(z"H} =0

For |z| large, equation (33) is an asymptotic approximation tc the
eigenvalue relation. From (6), |z| may be large in two ways: either aR
large or @ -ad R fixed and |c| large. Once z is obtained b; solving
(33) to the appropriate .rder, c is easily obtained frow (6). Far

example, retaining terms in (23) to 0(z-!) gives
c=1- ia/R (34)

which is a single ponint on the temporal continumm. This is not a contra-
diction as the outer conditions (2¢,d) that ¢,¢' + 0 as y + = automatically
imply that ¢ and ¢! remain bounded as y » =, and these «re outer conditions

for the continuum. To the next order, (33) is
zz-az-;-(12~inR)-O. (35)

The condition Re(z) > 0 now produces a single mode with |c| = 0(1) which
does not lie on the continuum. The key point here is that equation (33)
does not involve oscillatory or other type functions which might produce an
infinite sequence of zeros, and hence, at each order, (33) will give only a
finite number of modes. Further, if izrge |z| is identified with large
|e], then the fact that (33) to 0(z}) gives (34) shows that there are no
discrete modes for fixed a and R outside of a circle with 0(1) radius
centered at the origin in the complex c-plane, The eigenvalue relation is
an entire function of ®,c, and R and consequently, in the finite region
of the c-plane inside the above circle, thare can be only a finite number of
discrete modes. Therefore, although this argument does not give the number
of discrete modes, it does prove that the Orr-Sommerfeld problem for bound-
ary layer profiles U(y) (which have derivatii»« of all orders) has only a

finite number of discrete temporal modes.

11
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NUMERICAL METHODOLOGY AND ASYMPTOTIC BOUNDARY CONDITIONS

There have previously been two basic methods for numerically solving
the Orr-Sommerfeld equaticn; the shooting method (Mack, 1965, 1976) and the
expansion method (Grosch and Salwen, 1968; Orszag, 1971; Salwen and Grosch,
1972). The shooting method is quite efficient if the approximate location
of the eigenvalue is knowvn. There are, however, problems in calculating the
eigenfunctions with this method because of the necessity of purifying or
orthonormalizing the separate pieces of the eigenfunction. The higher
discrete modes and the continuum eigenfunctions are especially difficwlt to
calculate because they are .apidly oscillating functions of the distance
frcm the boundary outside of the boundary layer and rapidly decaying inside
the boundary layer. Shooting methods also explicitly require the imposition
of the particular outer boundary conditions for either the discrete modes or
the continuum functions. Finally the integrations must be iterated until
the correct eigenvalue (the frequency in the temporal stability problem or

the wave-number in the spatial stability prohlem) is obtained.

The expansion method presents problems of a different kind. The
solution to the Orr-Sommerfeld equ.tion is expanded in some set of functions
and the expansion is truncated after a finite number of terms. This reduces
the problem to finding the eigenvalues of a matrix. Once the eigenvalues
are determined it is, at least in principle, straightforward to compute the
matrix eigenvectors and the correeponding eigenfunctions of the Orr-

Sommerfeld equations.

This method requires that the expansion functions be complete; and this
requires, of course, the specification of some boundary conditions at the
"outer" boundary. There are two ways to handle a boundary at in .nity:
either to apply the boundary conditions at some finite distance from the
boundary where the base flow is approximately that at infinity or to map
the infinite region into a finite region (Grosch and Orszag, 1977). In
either case the boundary conditions for only the discrete modes or for only

the continuum functions must be applied.

12



Then N eigenvalues of the N by N matrix are readily found, say by
using the QR algorithm. Some of these N eigenvalues are approximations
to the true discrete eigenvalues of the Orr-Sommerfeld equation and, if
there are only a finite number of discrete modes, M, and M < N, the

remaining N-M modes are spurious.

The numerical procedure used in the present work utilizes a solution
process involving collocation with B-splines. The basis of this techmnique
is the collocation code COLSYS developed by Ascher, Christiansen, and
Russell (1978) for linear and non-linear boundary value problems. Because
of the nature of the solution process, COLSYS does not suffer from the
purification, normalization, and spuricus mode problems which have plagued
current shooting and expansion techniques. As implemented in the present
study, there is also no need to treat discrete and continuum cases

differently ir terms of conditions at the outer boundary.

As developed by Ascher et al., COLSYS is a real variable code on a
finite interval for problems not involving eigenvalue determination. By
contrast, the 0-S problem for boundary layer profiles is an eigenvalue
problem involving complex variables on a semi-infinite interval. These
differences help to explain why this collocation code has not previously
been used in the stability context. To overcome these apparent limitations
and produce a package which gives highly accurate numerical results for both
eigenfunctions and eigenvalues in the boundary layer stability context,

several strategies were used.

To enable the basic code to be used for eigenvalue problems, the
eigenvalue was considered to be a varible and a scalar, first order equation

de da
(a?. 0 or Iy 0) was appended to the usual Orr-Sommerfeld problem.

This changes the formulation from a linear to a non~linear boundary value
problem, but introduces no additional difficulties so far as COLSYS is
concerned. Indeed, increasing the order of the problem allows specification
of an additional condition which provides a natural vehicle for nommalizing

the numerical solutions.

13
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The package of subroutines which comprise COLSYS involves only real
arithmetic, and, because of the nature of these routines, COLSYS itself
cannot be re-written to employ direct complex arithmetic. The complex-

valued equations of the stability problem could be rewritten in real-valued
form by explicitly deriving real and imaginary parts, but this procedure was
rejected as being cumbersome, inflexible, and subject to manipulative
errors. Instead, COLSYS itself was left untouched but the manner in which
complex numbers are stored in computer memory was exploited so that complex
arithmetic could be used directly in user-supplied subroutines specifying
the eigenvalue problem, Real and complex derivatives were related using
complex-valued Jacobians. Compatibility of COLSYS with the complex-arithme-
tic subroutines also required appropriate re-ordering of the dependent vari-

ables and their derivatives,

The principal difficulty in adapting COLSYS to boundary layer stability
involves reduction of the computational domain from the semi-infinite
physical interval [0, 4'] to the interval [O,Y] where Y 1is not excessivly
large, e.g. Y< 20 say. Simply putting a "top" on the problem is known to
produce spurious modes in the discrete spectrum. The semi-infinite interval
may also be mapped into a finite interval [Grosch and Orszag (1977)] but the
resulting problem is quite complicated. The present work employs asymptotic
outer bound:ry conditions which are equivalent to an asymptotic-numerical
matching at Y of the computed eigenfunction for y € Y ga-d the proper

asymptotic form of the eigenfunction for y > Y.

The heart of the asymptotic boundary conditions is the theoretical
result of Lakin and Reid (1982) that unbounded dumain effects induce higher
order corrections to solutions of the eigenvalue relation for bounded values
of y, right down to y = 0. Inclusion of these effects requires
derivation and use of a proper large parameter which differs from the usual
large parameter in the bounded domain case [Lakin and Reid (1970), Lakin,
Ng, and Reid (1978)]. To obtain the proper parameter, consider the Orr-

Sommerfeld equation in the explicit form

(0? - a2)2¢ = jaR{ (U=C)(D® - a2)¢ - U"$} (3.1)

14
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where again U = U(y) 1is the mean velocity profile, <« 1is the wavenumber,

¢ 1s the wave speed, ¢(y) 1s the amplitude of the disturbance wave

. d . .
function, and D = I The Reynolds number R in (3.1) is based on the
free stream velocity U; and the length scale L rather than the boundary
layer thickness §.* Length scale conversions can be made, if desired,

using the relation
§*% = 1.7207L. (3.2)

In the present scaling, as y > =, U(y)+* 1, U'"(y) + 0, and the O0-§
equation tends to a constant coefficient equation which can be written in

the factored form

(F -a2)(® -22)p =0 (3.3)
where

22 = jaR(1-¢) +a? and Re(r) > 0. (3.4)

Solutions of equation (3.3) which do not violate the outer boundary

conditions are e &7 and e.xy. For continuum modes, which have Re(l) Z

+y

. . .. - .
0, the solution e 18 also admissible. The e Y  solution can be

identified with analytic continuations of solutions of the Rayleigh equation

_(0 _(0
(U-c) (0? -a2)¢( ) u'w( ) - 0 3.5)

to large y. As (3.5) is obtained from (3.1) by formally letting R + =,
these solutions exhibit inviscid-type behavior. By contrast, the e-ky solu-
tions have viscous-type behavior. This argument also indicates that the
proper parameter in the usual O0-8 problem for boundary layer flows is A2
rather thant1 « R, In particular, the scaling in A is relative to the free
stream velocity rather than the shear in the critical layer as in the case

of bounded channel flows.

Asymptotic outer boundary conditions are based on solution-s of equation

(3.3) and avoid the spurious mode difficulties known to occur in the case of

15
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the discrete spectrum if a "top" is put on the flow. To examine the source
of the spurious mode difficulties, suppose that a top is put on the flow at
some (large) value y = T (say) and the exact outer boundary conditions are
replaced by the two conditions ¢ (T) = ¢'(T) = 0. 1In effect, the unbounded
domain has been replaced by a bounded dcmain (which could, for exarnle, be
rescaled to [0,1] if desired). It is now well known that stability
problems on bounded domains have an infinite number of discrete modes.
Consequently, spurious discrete modes are to be expected in global methods
which impose tops, as the problem they are actually solving does not provide
a uniform approximation to the true problem for large y, no matter how
large T 1is taken. The problem, of course, is that ¢ and ¢' in the
true 0-5 problem for boundary layer flows may be exponentially small at T,
but unless T = # (which is not practical computationally), ¢(T) and

¢ '(T) are not identically zero.

The approach taken in the present work reduces the computational domain
to 0< y< Y yet avoids problems with spurious modes by matching the
computed solution for 0 € y < Y to an appropriate functional form of the
solution valid asymptotically for y » Y. Specifically, at y =Y, ¢(y) is

matched to an appropriate exponential solution of equation (3.5)
E(vy) = e Y (3.6)

were, consistent with equation (3.3), for discrete modes

a if Re(a) < Re(A)
Y(a,c,R) = {
A if Re(A) < Re(a)

Appropriate choices for y in different situations are:

\1) Temporal discrete modes: In this case, a 1is real, |A| is

large, and o < Re(A). Consequently, the viscous contribution e Ay to

solutions of (3.3) dies out rapidly relative to the inviscid contribution
e®Y, For later use in rejecting the possibility of discrete modes close to
the tempor-l continuum, it may be noted that even if l-cr is small but non-
zero, |A\2| is still large for large aR, and hence the appropriate choice

10 (3.7) is always Y = a for discrete temporal modes.

16
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(2) Spacial discrete modes: For these modes, a 1is complex while the
frequency @ = ac 1is real. In this case, it is convenient to re-write the
large parameter as

ORI, 0 =iy
A2 = jR(a-w) + a? OF FLOR QUALITY (3.8)

to decide if Y should be @ or A. Care is now required in assessing the
relative speed with which viscous-type and inviscid-type solution of (3.3)
die out as y+ ®. For fixed values of w and R, Re(a) < Re(A) fer most

values of a. However, because of the complex nature of =, there are cases

A . - .
when e ° dies out slower than e ¥ and hence viscous effects penetrate

relatively far outside the boundary layer. This may be seen by explicitly

writing a ar + i«i and separating A2 into real and imaginary parts to

obtain
A= x(aiR) {1 - ——a—i-r -1 ( aiR + ai )} . (3.9)

If R 1is large while @, ‘i, and ® - ® are all order one, then

a -
/2 @ -w) /2

1
A= i(@R) [1—1—-;—4 . (3.10)
i

Both real and imaginary parts of [A - i(ar - lﬂ)/ai]uz are order one and
consequently Re(d) = O(aiR)l’z. Hence, e '’ will die out rapidly
compared to e ™Y and the latter exponential provides the appropriate
asymptotic form of the eigenfunction for the asymptotic numerical matching.
However, as noticed by Houston, Corner, and Ross (1976), if a = u, to
lowest order the imaginary part of A 1is still large, but now

1/72
Re(A ) = ar(ai/R) K1 (3.10)

As o = 0(1), the proper asymptotic form of solutions of (3.3) now

involves e-Ay rather than e-ay.

A major strength of the present numerical technique is that the outer
boundary conditions need not be specified apriori and are not iatrinsically

built into the main elements of the code, e.g. into the choice of expansion

17



functions. Rather, boundary conditiors enter the present technique through
separate. subroutines. This feature allows specification of the appropriate
asymptotic functional form (3.6) of the eigenvalue at Y, but does not
require that an apriori choice be made for Y(a,c,R) {or Y(a,w,R)}. Rather,
during the course of the stability calculation, the relative sizes of a
and Re(A) can be compared, and Y can be suitably chosen. As indicated
above, this flexibility is vital in the case of discrete spacial modes.
However, it also zllows treatment of continuum modes without the need to
explicitly change from decaying to merely bounded outer boundary conditions.
This can be done automatically when required based on the computed value of
Re(A). More will be said about continuum modes in the next section. How-
ever, it is worthwhile emphasizing that the use of asymptotic outer boundary
conditions not only consistently reduces the computational decision but also

eliminates the need to treat discrete and continuum modes separately.

For discrete temporal modes, values of Y from 16 to 18 were found
adequate to give seven decimal place accuracy in the imaginary part of the
eigenvalue c¢. For the spacial stability problem, corresponding accuracy
for the imaginary part of the eigenvalue a required slightly larger values
of Y, e.g. 18 to 20. Some typical results of eigenfunctions in both the
spacial and temporal problems are given in Tables 1 and 2. For the temporal
problem, the standard test case R = 580 and a = ,179 1is considered. The
slightly unstable mode shown has ¢ = .36412 + i 0.0079597. For the spacial
problem, R = 580 and w = 0.06520. Table 2 gives the slightly unstable
mode with a = ,17933 - i 0.0033173.

One further point regarding the present numerical results should be
considered. Stability calculations are extremently sensitive to errors in
specifying the mean velocity profile. This is not a problem in the case of
bounded channel flows or model boundary layer-type flows, such as the asymp-
totic suction boundary layer profile, which can be specified analytically.
For the Blasius problem, however, the profile must be obtained numerically

as the solution of the boundary value problem

£f""(m) + f(n) f"(n) = 0
(3.12)

' ‘ - ORIGINAL PAGL 19
£(0) = £'(0) = 0, £'+ 1 as n + OF POOR QUALITY
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Table 1. Unstable discrete temporal mode of the Blasius stability
problem for alpha = 0,179 and R = 580. Asymptotic boundary
conditions were applied at Y = 18, The computed value of
¢ = 0.36412 + 0.0079597 4.

X PHI PHLP
000000 Qe Qe 0. 0.

o 36304400 =.383556=02 161146400  +39821E-02
30000 Si7206E400  .536188-03 =.21310E=01  +15523E~03
5 . 4000 *37839E400 <10739E=03 =¢636976=01 =s17671E~03
72000 "275588400  .20869E=05 =c49280E=01 =, 36392E=05
90000 199696400  66046E=08 =~c35T44E=01 =.23961E=07

108000 144686400 =.36693E=10 =¢29899E-0L =oI69LLE-09
12.6000 104836400 <613659E=10 =,187656=01 =+33495E=10
1404000 S I5056E<01 =e29227E=11 =¢13596E=01  ¢84633E=12
1642600  450346-01 ~-.16641E~11 =.905116=02 +23131E=12
18,0000 T39875E=01 -.13361E-48 =,71377E-02  +13312E-35
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Table 2. Unstable discrete spacial mode for the Blasius stability )
problem with omega = 0,06520 and R = 58C. Asymptotic boundary :
conditions were applied at Y = 20, The computed value of
alpha = 0.17933 - .0033178 1 corresponding to a wave speed
c = 0,36346 + 0.0067246 1.
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Table 2. continued.

B 20’Jbﬁ
i} 2 05)&5
Z.vaL —
309)(&
QLJUL _
—‘;—. -l ‘ ~» ——
Q:QQf«._
I L
TITOUCC T
3.0 T
- I:?)uﬁ-'
TS e
—iculeT
T e 90U0 T
503“0“
""6330

’.U 'U-

- — p—

9.°JUv__
LJ.OQUO

TTle000C

Cad.020t
LJ.UQUQ

—EOUQTG -

T1ae0ICL
1°.UOVQ

ITe03wi _

&50\---4\

L‘;anv

ISR

YA L B X1
.60515:09»
046933 *d(

"ol TeeTze0v
YL 7

chlovccty.

cbTead-eul

ellol:¢00

YT

e 31sE%00

Y (4 PILH N
.b6759&¢dc'”
o“béV‘EQQt.
~ W55 7.20=02"
T e83321E=v2
T et 4 3iE=02

45994 ®dC

NPT MV

o 346(00lESCV

:o~¢659°’00
ed3cidkeul
elywllteuy

o ltci2zeul
e La9UVE*O(
o 2iolTzeld
oL dez=ui

etlidet~vl
Qb 7:.0'0:.01.

e 58C63c=21
s0l324E=04
.39:7&&*0&
edstooe=01"

e¢7633:=01

-

0331i722=2
037 312L=v2

0e4202iz=V¢d

eef3ivE=u2

;.99119£:J2
ev21c=02

0 2% 33nE=UL

T eSThy9E=02 _ = .
®el4c03z=0)

236225502
sHUITEE=VL
val4lI5E=ug
ob37ecE=)2’
o564 819E=02

.aealic-ﬁz

- QOS‘Z&E'UZ

ooy hebs=ud

©39204g=0l

osﬁfﬁbl'ﬂz
0402?65'13

“:;Qiﬂukaol
037’1Q¢.02n
e33778c=v2

estlldei®id’
20737 =i

023000202

PPIR S LY

“elo3%4e=ue

‘-

ORIGINAL pa~e r
OF POOR CuALY

5394 3= 1
0405632=0U1
LR VY
0 0T799:=,1
o L7512E=31
~ oTo7E=0¢
e32701E=C3
- 72UT9E=02

®,cb5%3E=vl
’02”525"1
Tee333085=yl

“.33672e=vl

-o%3012:=0.
=e03773E=Va

P T} LY-L R

‘®evi022é=C1
-ek2719E=01
-e35700L=01
Te 2 v86%¢=_])

g2 avhei=Ul_

‘02150‘5'(1
‘oL’QZ;E;CI

°-3¢-&7Jc-01
T @eiJdllii=vi

Y M T O]

e IAVI I ST

eb2275E=L2

e44227:z=v2

039 902:=02

e3509%%E=02

0319°3h‘h2-:
0283042
20099t =C2

e2l76lt=02 =

QISJQQE‘UZ‘
020200c=U2

= eidocle=2

e2l083E=027

Te9T321E~VT
T eulJTOE=03 T
Te229V3E=UN
«e135ulé=03d

=e26b6TE~CS"

«e34410E=03
“od3T26=03

Tme433i2E=U3d

T mel0302E~01

-0 895E=03

‘@gnwauwgi=03”
;’_02 $27:=03 ~
e oC712c=03
-ed3Lb0E=VT
eedd1922=03"
’o:ZLQﬁE'bé-
’02’3&&3‘%3

o5 9389E~CE -ecbbOVE~C)

-0‘90355‘02

- . .-

‘0137025'03

21

e s n it

-




winere n 1is a similarity variable. The form of (3.12) is awkward
computationally, as it involves an outer condition at infinity. It has been
known for some time (see, for example, Rosenhead (1963), page 222) that
(3.12) can be converted to an equivalent initial value problem for a
function F(s) defined by f(n) = aF(s) where a 1is a '"homotopy" constant,
§ = a, and the initial values are F(0) = F;(0) = 0, F"(0) = 1. The
homotopy constant a is determined by the limiting behavior of F'(s), i.e.

. ' 172
a = (1 FTG)T (3.13)

8 @

The computation must be carried to sufficiently large s that a 1is
determined to the required accuracy. Even slight errors in a may lead to
a limiting behavior of f£'(n) which differs from unity, and this critically

effects the stability characteristics.

While relatively simple itself, the system (3.12) provides a cannonical
example of problems of boundary layer-type which are amenable to homotopy
methods. It is therefore worth noting that the numerical determination of
fn), f'(m), and f'(n) can be made more efficient through use of a "k-

homotopy" constant. In particular, define

f(n) = bF(E) with & = bn (3.14)

Then, F(§) satisfies the same equation as f(n), i.e.

F"' + FF" = 0. (3.15)

Suppose F(£) has initial values
F(O) =F'(0) = 0 and F"(0) = K. (3.16)

Then, (3.14) and the condition F'+ 1 as n + ® give that

: 172
b-{Eh':‘. F'()) and
: 372
£(0) = K ({7, F'E) (3.17)
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Another quantity of basic interest is the limiting value Bg of the Blasius

out flow velocity defined by

lim OMBINAL PaGe 1y
8o nsw (nf' - £ ¥ POOR QUALITY (3.18)
In terms of the X-variables, this can be expressed as
; 172 .
By = {ghf'. F'(gl {Ehf,(gl-“' - F)}. (3.19)

For K= 1, the K-variables reduce to the usual homotopy variables. For K

# 1, tra relations are

173 : 1/2
lim , -
a=k () FE) (3. 20)
and
173
s =K £, (3.21)

To see the advantage in using the K-hamotopy technique, let £ (K)
denote the value of £ to which it is necessary to carry the initial value
calculation in K-variables to achieve sufficient accuracy in the deter-
mination of the K-constant b. The advantage to choosing K > 1 1is that
§, 18 a decreasing function of K. Consequently, by choosing a relatively
large value of K, the computational dcmain can be significantly reduced
for a given accuracy. The relationship between K and &, (K) for eight

place accuracy is given in Table 3. Corresponding values of £"(0) and B¢
were found to Ye

£"(0) = 0.46960020

acd (3.22)
Bo * 1.2167789

This value of £"(0), together with £(0) - £'(0) = 0, can now be used to

solve the Blasius equation as a straightforward initial value probluom.
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Table 3. The kappa-homotopy
in £'"(0).

quantity f.o(k) for eight place accuracy

L § (x)
o

1.0 4.8

2.0 3.8

3.0 3.5

5.0 2.9

10.0 2.3
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THE CONTINUOUS SPECTRUM AND THE POSSIBILITY OF NEARBY DISCRETE
TEMPORAL MODES

For continuum modes of the Orr-Sommerfeld problem, the outer boundary

conditions ¢, ¢ 0 ac y = are replaced by the weaker conditions
$(y), ¢'(y) bounded as y . (4.1)

Grosch and Salwen (1978) have shown that on the continuum Re(A) = 0, and
henc~ the proper functional form which describes the behavior of ¢(y) for
large y will involve both e4y and e-ky. Based on this observation,
the technique ¢i replacing the exact order conditions (4.1) by asymptotic
conditions at Y in numerical calculations based on COLSYS .. easily
extended to the continuous spectrum. Indeed, this can be done in such a way
that there is no need for apriori specification of whether a continuous or
discrete mode is being computed, the decision being me = automatically in
the course of the computation. Physically, continuum modes miy be
identified with free stream vorticity. In particular, the eigenfunctions
are relstively large outside the boundary layer region. An interesting
observation, which has not been previously made, is that the appropriate
parameter A, which is large for the discrete spectrum, is not necessarily
large on the continuum. For example, on the temporal continuum, Grosch and

Salwen have shown that

c=1-i(1+ 1) a/R (4.2)

wvhere k 1is real and non-zero. If this expression is substituted into
(3.4), the dependence of A on R cancels identically and

A= |xja (4.3)

Thus, as k need be merely non-zero, for very lightly damped continuum
modes, || may in fact be small.

While the temporal continuus is simply the straight line ¢, 1 and

¢; < 0, the nature of the spacial continuum is more complicated due to the

25



complex nature of the eigenvalue a. Corner, Houston, and Ross (1976) have
found two higher discrete modes of the spacial problem for the Blasius
profile which lie fairly close to the spacial continuum. However, the

nearby cortinuous modes are easily Jdistinguished from these discrete modes
by the behavior of their eigenfunctions. An example of a spacial continuum
eigenfunction for the Blasius profile is given in Table 4. For this mode,
R = 581l.1, w = 0,04649, and the computed eigenvalue is a = 0.047583 +
0.0085513. The corresponding value of the complex wave speed for this mode
is ¢ = .9%645 -i 0.1701.

in section 2 of this report, it was proved that there cannot be an
infinite number of discrete modes in the temporal stability problem for
bYoundary layer profiles. Although this is the first theoretical result to
be proved to date, this fact ha:z been accepted by most authors for some time
based on numerical evidence. Further, most authors feel that for fixed a
and R, the number of discrete modes is small (six or seven for Blasius).
Frevious numerical studies have produced moacs near the continuum, but these
were usually dismissed as spurious discrete mode: attempting to mimic the
continuum. However, there has been some room for doubt. For example, if
there were, as perhaps might be inferred from the available numerical
evidence, a number of discrete modes lying very close to the continuum it
appears that neither shooting or expansion techniques could distinguish
betwe ‘1 these modes and the continuum functions. A case in point is
provided by the work of Antar and Benek (1978). They numerically studied
the spectrum of Blasius flow by imposing the boundary conditions at some
finite distance from boundary and attempted to infer the nature of the
spectrum for the semi-infinite region by systematically increasing the
distance of the "upper" boundary from the lower boundary. Antar and Benek
claim to have found two additional groups of discrete moles, which they
label the P and S families, lying close to the temporal continum. In
particular, the P {amily has C. close to 1 while the S family was
initially found to lie along the line C, = 0, £45. Further, the §S

fanily was conjectured by them to contain an infinite nunber of modes.

The conjecture of Antar and Bcnek about the infinite extent of the §
fanily is disproved hy the theoretical results of section 2. The numerical

procedure developed in the present work was also used tn search for modes
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Table 4.

were applied at Y = 20,

Spacial continuum mode of the Blasius stability problem
for omega = 0.04649 and R = 581.1,

Asymptotic boundary conditions

The computed eigenvalue is

alpha = 0.047583 + 0.0085517 1 corresponding to a wave speed
c = 0.94645 - 0.17010 1.
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close to the continuum. For a = ,179 and R = 580 (in the L scaling)
values of ¢ attributed to both the P and § families of temporal modes
by Antar and Benek were used as initial guesses for calculat:ions with
ssymptotic boundary conditions applied at the relatively large value of Y =
20. The eigenfunctions obtained were all clearly continuum eigenfunctions
rather than discrete eigenfunctions. A typical calculation is shown in
Table 5. 1In light of the present results, it must be concluded that the P
and S families are spurious discrete modes consequently, there are not large

nunbers of discrete modes lying close to the continuum.

BOUNDARY LAYER STABILITY INCLUDING OUTFLOW VELOCITIES

The parallel flow assumption of linear stability analysis assumes that
streamwise amplifications of disturbance quantities takes place on a scale
which is small relative to the scale for boundary layer growth. Consequent-
ly, streamwise gradients of mean flow quantities are ignored, e.g. all «x
derivatives of the streamfunction V¥ for the mean velocity profile. This
corresponds to neglecting the small outflow (or inflow) velocities of the
boundary layer and in the case of boundary layer flows over a flat plate
leads to the usual Orr-Sommerfeld problem. One of the most important flows

of this type is, of course, the Blasius profile.

Early theoretical work on the Blasius problem was done by Tollmien
(1929) and Lim (1945) using piecewise polynomial approximations to the exact
velocity profile f'(n). When the experimental data of Schubauer and
Skramstad (1947) first became available, it was found to be in good agree-
ment with the theoretical predictions. Unfortunately, later, more accurate
nunerical calculations by Jordinson (1971), who used numerical solutions
rather than analytic approximations, for £'(n), showed this apparent
agreement to be illusory. Attempts were then made to restore agreement by

taking into account the non-parallel character of the basic flow.

One approach which appeared promising was due to Barry and Ross (1970).
They suggest that if ¢(x,y,t) is the streamfunction of the mean flow, then
effects of the boundary layer outflow velocity can be introduced by retain-
ing 3Y /A x and neglecting only second and higher streamwise derivatives of

V. The accuracy of the mean flow representation in the stability problem
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Table 5.

for alpha = 0,179 and R = 580,
were applied at Y = 20,

Temporal continuum mode »f the Blasius stability problem
Asymptotic boundary conditions

Values of ¢ for a supposed discrete

mode in the P family of Antar and Benek (1978) were used as

starting values for the calculation.
c = 0.99760 - 0.022995 1i.
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is now the same as in the Prandtl boundary layer equation. The resulting

stability problem involves a mcdified Orr-Sommerfeld equation of the fomm
(2 a?){( (1?a?) - RVD}Y = iaR{ (U~c) (D®-a2) - UlY - RV"¥ (5.1)

where the mean profile is now (U,V,0) and V = O0(R™1),

For the Blasius problem, inclision of the mean boundary layer out flow
velocity should be destabilizing. However, neutral stability calculations
of Barry and Ross (1970) based on equation (5.1) led to only a slight reduc-
tion in the predicted value of R.. Recently, interest in equation (5.1)
has waned considerably in favor of the multiple-scale approach of Saric and
Nayfeh (1975). Almost no work has been done on the higher discrete modes of
the stability problem based on (5.1).

Recently, Lakin and Reid (1982) have provided a highly accurate
treatment of the linear boundary layer stability problem based on uniform
asymptotic expansions involving generalized Airy functions. As a test of
the asymptotic theory, the gtability characteristics of the asymptotic

suction boundary layer profile, for which
UCy) =1-e? and V=-"'/R 0<y< +w (5.2)

were considered on the basis of both equation (3.1) [V ignored] and equation
(5.1) [V included]. Results showed that inclusion of the small suction

component had a significant effect on stability increasing the value of the
R, from 47,152 to 54,405. The latter value of R. was in agreement

with Hocking's (1975) non~linear treatment of the stability problem
including suction.

The approach to stability including V based on equation (5.1) is
attractive because of its relative simplicity. Based on its competitiveness
with other approaches in the case of the asymptotic suction boundary layer
profile, it seemed appropriate to re-examine the stability of the Blasius
problem based on equation (5.1). This was done using the present numerical
technique and asymptotic outer boundary conditions involving the appropriate
large parameter. If outflow is included, the analogue of equation (3.3) as

y+ = is
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(P-a2)([D - By /4)¢ - A2 =0 (5.3)

where now

A2 = jaR(1-c) + a2 + 8%/16 (5.4)

and Bg 1is as in (3.18) and (3.22). 1In particular, the asymptotic behavior
of "viscous~type" solutions of (5.1) as y + «» 1is now

B
e~An + ZOn (5.5)

. ~A .
rather than simply e n. Consequently, the appropriate form of the asymp-
totic boundary conditions for the discrete modes depends on the relative
sizes of Re(a) ard Re(A-B)/4) when Re()) is larger than g,/4.

The marginal stability curve computed from equation (5.1) and the dis-
crete boundary conditions are shown in figure 1. The computed values of the
critical parameters are Rc = 290.21312 at q; = 0.17776 and c. =
0.40308. The corresponding variation of ¢ with @ along the marginal
stability curve is given in figure 2. The value of R. in (5.6) is frac-
tionally, but not significantly, lower than the value obtained by Barry and
Ross (1970). For comparison, when the outflow velocity V 1is neglected,
Davey (unpublished) has obtained the critical values Ec = 301.64, ;c =
0.17653, and c. = 0.39664 in the L-scaling. These values are marked with
an x in figures 1 and 2. Experimentally observed values of R, ara 261
[ Schubauer and Scramstad (1947)] and 232 [Ross et al. (1970)]. Figure 1
only shows the "nose" of the marginal stability curve. However, for values
of R greater than 500, differences between neutral parameters including
and neglecting outflow become slight. Further, good agreement is observed

between the usual linear theory predictions and the experimental dat-.

Previous work on the higher nodes of the Blasius problem based on equa-
tion (5.1) [Corner, Houston, and Ross (1976)] considered only the spacial
case and results were inconclusive. Computations of the higher modes in the

present work at the standard test values inside the nose of the neutral
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curve did not suffer from convergence problems and showed very little dif-
ference in decay rates when V was retained or neglected. The eigenfunc-
tions of mode 3 of the temporal stability problem for a = 0.179 and R =
580 are given as an example in Table 6. With V ignored the computed
eigenvalue is ¢ = 0.48393 - i.19207 while with V 1included the eigenvalue
is c = 0.48698 - 1.19208.

The present results show that while linear stability theory is excel-
lent for predicting general stability characteristics, the inclusion of the
velocity V along the lines of equation (5.1) is not sufficient to recon-
cile theory and 2xperimental results for boundary layer profiles involving
out flow. When contrasted with the success of equation (5.1) in the case of
the asymptotic suction boundary layer profile, a tentative conclusion may be
drawn: For boundary layer flows where V 1is destabilizing, boundary layer
growth effects may require the use of more complicated mul tiple-scale
approaches to refine linear stability predictions. However, if V 1is stab-
ilizing, good results can be expected from the linear stability problem
based on equation (5.1). In particular, if suction is used on a flat plate
(back from the leading edge) to retard instabilities and retain a laminar
flow, the resulting local V velocity will be stabilizing and equation

(5.1) should give accurate stability predictions.
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Table 6.

The effect of partially relaxing the parallel flow

assumption on mode 3 in the discrete temporal spectrum

of

the Blasius stability problem with alpha = 0.179 and

R = 580. Asymptotic boundary condition was applied at
Y = 18,

A,

The eigenfunction based on equation (3.1) where V is

ignored. The computed eigenvalue is ¢ = 0.48393 - 0.19207 1.
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Table 6. Continued. oy
Ve ey

3. The eigenfunction based on equation (5.1) where V is included.
The computed eigenvalue is ¢ = 0,48698 - 0,19208 {.
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