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Abstract 
Background and Purpose: Previous data suggest that large amounts of high-intensity stepping training in 
variable contexts (tasks and environments) may improve locomotor function, aerobic capacity, and treadmill 
gait kinematics in individuals poststroke. Whether similar training strategies are tolerated and efficacious for 
patients with other acute-onset neurological diagnoses, such as motor incomplete spinal cord injury (iSCI), is 
unknown. Individuals with iSCI potentially have greater bilateral impairments. This case series evaluated the 
feasibility and preliminary short- and long-term efficacy of high-intensity variable stepping practice in 
ambulatory participants for more than 1 year post-iSCI. 
Case Series Description: Four participants with iSCI (neurological levels C5-T3) completed up to 40 one-
hour sessions over 3 to 4 months. Stepping training in variable contexts was performed at up to 85% maximum 
predicted heart rate, with feasibility measures of patient tolerance, total steps/session, and intensity of training. 
Clinical measures of locomotor function, balance, peak metabolic capacity, and gait kinematics during graded 
treadmill assessments were performed at baseline and posttraining, with more than 1-year follow-up. 
Outcomes: Participants completed 24 to 40 sessions over 8 to 15 weeks, averaging 2222 ± 653 steps per 
session, with primary adverse events of fatigue and muscle soreness. Modest improvements in locomotor 
capacity where observed at posttraining, with variable changes in lower extremity kinematics during treadmill 
walking. 
Discussion: High-intensity, variable stepping training was feasible and tolerated by participants with iSCI 
although only modest gains in gait function or quality were observed. The utility of this intervention in patients 
with more profound impairments may be limited. 
Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 
1, http://links.lww.com/JNPT/A200) 
 

INTRODUCTION 
Recovery of independent walking function is often a primary goal of individuals following spinal cord injury 
(SCI).1 In individuals with motor incomplete SCI (iSCI), indicating partial preservation of supraspinal pathways, 
such recovery may be possible, although residual impairments in strength, postural control, and coordination 
often contribute to reduced gait speeds and aberrant gait kinematics (ie, quality).2,3 Training strategies used to 
treat locomotor dysfunction vary and often include exercises to address underlying impairments, such as 
strength, balance, and flexibility training, in addition to stepping practice provided on a treadmill (TM) or 
overground. In many studies, a common goal of interventions is to facilitate normal kinematic patterns using 
therapist- or robotic-assistance in part to provide afferent input related to stepping4–6 through optimizing 
sensory cues, posture, and kinematics.7 However, the efficacy of these strategies for improving locomotor 
function or quality beyond conventional approaches is unclear,8–12 as previous studies in participants with iSCI 
demonstrate negligible differences among exercise/training approaches. 
 
Recent data from studies of participants with other neurological diagnoses other than SCI (ie, stroke13,14) 
indicate that exercise interventions that emphasize combined application of specific training parameters that 
influence neuromuscular and cardiovascular function may further augment locomotor recovery.15,16 For 
example, providing large amounts of stepping practice has been shown to elicit gains in walking function, 
although walking practice alone and without consideration of other factors is not sufficient.8,10,17 Recent data in 
individuals with hemiparesis poststroke suggest that providing stepping training in variable contexts (tasks or 
environments), particularly at higher aerobic intensities, can facilitate gains in walking and nonwalking behaviors 
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as compared with an equivalent number of conventional therapy sessions.14,18,19 The exclusive focus on stepping 
training at up to 85% of age-predicted maximum heart rate (HR) was designed to maximize the amount of 
stepping practice while simultaneously increasing the neuromuscular and cardiovascular demands of that 
practice.13 In addition, stepping practice in variable contexts (ie, tasks or environments) was provided, which has 
been shown in animal models to facilitate greater gains in locomotor function than more traditional TM 
stepping.20,21 In humans with neurological injury, stepping in multiple contexts (eg, TM overground, over stairs, 
and over or around obstacles) may mimic stepping conditions that may be encountered in the community 
settings and may allow for more rapid adaptation to real-world environments.14,18,19 Application of this training 
paradigm without focusing on normalizing gait kinematics resulted in substantial gains in locomotor function in 
poststroke participants, with additional improvements in strength, balance, transfers,14,19 aerobic capacity,22 and 
selected kinematic patterns during overground or treadmill stepping.14,23 
 
Despite the positive findings of prior locomotor training studies, the feasibility and efficacy of this intervention in 
individuals with other neurological diagnoses, including iSCI, have not been assessed. To date, previous studies 
have assessed the effects of variable task practice of skilled walking tasks in iSCI, although with less attention 
toward intensity.17,24 Specific data24indicated that stepping training of variable, skilled walking tasks may lead to 
greater changes in walking function, due in part to greater recruitment of neural pathways involved in skilled 
movement. However, a subsequent study17 revealed greater benefits from large amounts of TM stepping as 
compared with variable skilled walking training. A potentially important finding was that greater amounts of 
stepping practice and higher HRs were observed in the TM training groups, and the combined increases in 
stepping amount and intensity may have resulted in differences in outcomes17 as suggested previously.14,16,18 No 
studies to date have attempted to combine the training parameters of large amounts of practice at high aerobic 
intensities, while targeting variable walking skills in iSCI. 
 
The rationale for applying similar training strategies in individuals with acute-onset central neurological injury 
with different etiologies (ie, stroke, SCI and brain injury) has been articulated previously.25 The primary 
argument is that many of these disorders share commonalities in the pathways and mechanisms underlying 
motor adaptation and learning. Improved motor performance following training may, therefore, rely on plastic 
changes in spared neural networks in each disease condition, as opposed to discrete mechanisms within 
separate diagnoses. Nonetheless, application of this high-intensity variable stepping training to individuals with 
iSCI represents a separate set of challenges. For example, impairments following iSCI are bilateral and often 
more substantial, and volitional access to residual neural pathways subserving motor learning may be more 
limited. Furthermore, the resources required for delivering this training safely may be limited in individuals with 
greater impairments post-iSCI. Finally, increased risk of adverse events, such as autonomic dysreflexia during 
higher exercise intensities,26 could complicate safe delivery of this intervention in individuals with iSCI. 
 
The purpose of this case series was to investigate the feasibility and outcomes of a high-intensity variable 
stepping training on locomotor function and TM walking kinematics in ambulatory individuals with motor iSCI. 
Individuals more than 1 year following iSCI were recruited to participate in 8 weeks (up to 40 sessions) of 
walking training. Measures of feasibility included number of sessions attended, total stepping activity, and 
average intensity achieved during sessions, in addition to observed adverse events (eg, complaints of pain, 
fatigue, orthopedic injury, number of falls). We anticipated that a smaller amount of stepping practice would be 
achieved in individuals with iSCI versus stroke due to bilateral motor impairments, although we anticipated that 
reaching high-aerobic intensities such that positive gains in both function and gait quality would be 
demonstrated. Assessing the feasibility and preliminary efficacy of the effects of this training paradigm may 
provide insight into the potential challenges and benefits for future clinical investigations. 
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METHODS 
Participants 
Individuals with chronic iSCI (>1 year duration) were consecutively recruited via therapist referral from local 
outpatient rehabilitation centers and online research registries. Eligible participants were required to walk 10 m 
without physical assistance but with assistive devices and bracing below the knee as needed. All participants had 
to demonstrate lower extremity passive range of motion (ROM) of 0° to 30° plantar flexion, 0° to 60° of knee 
flexion, and 0° to 30° of hip flexion, and required medical clearance to participate. Exclusion criteria consisted of 
history of recent fractures or significant osteoporosis, cardiovascular instability, additional central or peripheral 
nervous system injury, and inability to adhere to protocol requirements, including attending training and testing 
sessions and not concurrently enrolled in physical therapyor other research interventions that focused on 
mobility or balance. Participants were encouraged to continue their normal everyday activities, and their 
subjective report of mobility in the community was obtained (ie, household or community ambulators). The 
project was approved by the local ethics committee and all participants provided written informed consent. 
 

Outcome Measures 
Participants were tested prior to (pre) and following (post) up to 40 training sessions as possible, with follow-up 
assessments at least 1 year posttraining. Feasibility outcomes were collected during training sessions and 
included number of steps per session and peak HRs and ratings of perceived exertion (RPEs) achieved during 
training, which appear to be important training variables that may influence locomotor recovery during physical 
interventions.13,14,18,27 Additional measures of feasibility included the number of therapists/personnel required 
to safely deliver the training interventions and the number and type of potential adverse events, including falls 
within and outside of training sessions, signs/symptoms of autonomic dysreflexia (eg, rapid blood pressure 
increases), orthopedic injury, complaints of pain or soreness, or excessive fatigue. 
 
Primary clinical outcomes were collected at pre, post, and follow-up, with testing completed by one of the 
research therapists. Primary walking outcomes included gait speed over short distances, with 2 trials averaged 
at self-selected speeds (SSS) and fastest-possible speeds (FS; GaitMat, Chalfont, Pennsylvania), and gait distance 
using the 6-minute walk distance (6MWD) with instructions to walk at participants' SSS. All participants used 
their customary assistive devices and bracing without physical assistance; if physical assistance was required 
with loss of balance, the tests were terminated and speed and distance documented. Secondary measures 
included the Berg Balance Score (BBS), as well as peak TM speed, peak oxygen uptake (), and lower extremity 
kinematics collected during graded TM testing (the latter collected only at pre-and posttesting) with 
simultaneous collection of metabolic and kinematic data to improve efficiency). Graded TM testing was 
performed on an instrumented force TM (Bertec Corporation, Columbus, Ohio), during which participants 
walked at 0.1 m/s, with speeds increased 0.1 m/s every 2 minutes. Participants wore a safety harness without 
weight support in case of loss of balance, with use of handrails as needed. Heart rate was evaluated 
continuously using a pulse oximeter (Masimo, Irvine, California) and the HR and RPE were recorded manually 
during the last 30 seconds of each minute. Peak TM speed was determined when there was a significant loss of 
balance, the participant requested to stop, or participants' HR was within 10 beats of their age-predicted 
maximum and RPE = 20.28 
 
Kinematic data collected during graded TM testing were evaluated using an 8-camera motion capture system 
(Motion Analysis Corporation, Santa Rosa, California) and 32 reflective markers affixed bilaterally to each 
participant's pelvis and lower limbs to create a modified Cleveland Clinic 6-df model. Kinematic and kinetic data 
were sampled at a 100 Hz, processed using Cortex software (Motion Analysis Corporation, Santa Rosa, 
California), and further analyzed using custom software (C-Motion Incorporated, Germantown, Maryland; 
Mathworks, Inc, Natick, Massachusetts). Marker and force data for all walking trials were filtered using a low-
pass second-order Butterworth filter, with a cutoff frequency of 10 Hz. 
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Joint excursions and spatiotemporal measures were calculated from the transformation between the respective 
model segments. Stance and swing phases of the gait cycle (GC) were identified bilaterally for all data. Stance 
was identified as the period when vertical ground reaction force signal crossed a minimum threshold of 25N. 
Instances where participants took steps that crossed both belts, kinematic events were utilized to define heel 
strike and toe off. The maximum anterior position of the calcaneal marker and the maximum posterior position 
of the metatarsal marker identified heel strike and toe off, respectively. Kinematic measures were normalized to 
percent GC and average step cycle profiles created. Spatiotemporal metrics were extracted during stance and 
swing phases, with primary measures of peak gait speed, stride length, and cadence. Specific joint kinematics 
outcomes included bilateral total joint ROM for the ankle, knee, and hip. Consistency of intralimb kinematics 
was utilized to estimate movement coordination between the hip and knee joints and calculated using the 
average coefficient of consistency (ACC).29,30 The ACC utilized a vector coding technique, which was applied to 
frame-by-frame to the hip-knee angle-angle plots. The change in hip-knee angles from each frame to frame was 
represented as a vector, which averaged across multiple GCs, and the coefficient of correlation for each frame of 
the GC was determined. The ACC was calculated by the mean of the correlations for each frame-to-frame 
interval; ACC values close to 1 indicated greater consistency, with 0 indicating no consistency. 
 

Intervention 
Participants were scheduled to receive up to 40 sessions at 3 to 5 times per week within 10 
weeks.14,18 Individuals wore validated, reliable accelerometers on the ankle of their weaker leg during training 
sessions to estimate total amount of stepping practice. Each 1-hour session allowed up to 40 minutes of 
stepping training in variable contexts at the targeted intensity,14,18 with rest breaks as needed. Successful 
stepping was defined as maintaining upright posture (ie, no hip or knee buckling, frontal and sagittal plane 
stability), moving in a specific direction (forward, backward, sideway), and generating bilateral positive step 
lengths. Orthotics and bracing were utilized as needed to prevent musculoskeletal injury (ie, ankle inversion or 
knee hyperextension), although bracing to minimize knee buckling was not permitted. Targeted training 
intensities were up to 85% of age-predicted maximum HR (ie, HRmax= 208 – [0.7 × age]) and evaluated 
continuously with a pulse oximeter. The minimum HR threshold for high-intensity training was set at 70% age-
predicted maximum HR, consistent with previous published guidelines for high- or “vigorous”-intensity 
training31,32 (see, however, Billinger et al33). In addition, subjective reports of intensity were obtained using the 
RPE scale,34with target intensities of 15 to 18. Both RPEs and HRs were recorded every 3 to 5 minutes. 
 
Training sessions were supervised by a single physical therapist, with assistance from another research aide as 
needed. During the first 2 weeks (6-10 sessions), only forward stepping on a motorized TM (speed-dependent 
TM training) was performed to allow participants to accommodate to the large volumes of stepping at higher 
cardiovascular intensities. Minimal body weight support and handrail support were provided only as needed; 
only 1 participant was provided less than 10% body weight support and unilateral physical assistance for lower 
extremity advancement in the first week. There was no additional assistance provided to normalize kinematic 
patterns other than to simply continue stepping.18 
 
Training over the remaining weeks was divided into 10-minute increments of speed-dependent TM training 
(described previously), skill-dependent TM training, overground training, and stair climbing, while trying to 
maintain the targeted HR range. Skill-dependent TM training included activities such as stepping in different 
directions (sideward or backward), applied perturbations to challenge various aspects of stepping (limb swing, 
propulsion, upright, lateral stability) in the form of obstacles and/or weights on the trunk or limbs, limiting use 
of upper extremities, or inclined surfaces. Participants practiced 2 to 5 different physical tasks that were 
randomly alternated and repeated within each 10-minute period; tasks were selected by the therapist on the 
basis of the individual's impairments and gait limitations, with consideration of participant preferences. For 
example, in individuals with difficulty with sagittal or frontal plane stability during walking and standing, practice 
focused on tasks that challenged dynamic stability, including walking without handrail support in multiple 
directions or on an inclined surface. Conversely, if participants demonstrated difficulty with limb advancement, 
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leg weights were applied if the participant could continue stepping or focus directed toward stepping over 
obstacles or up an inclined TM. If a participant was unsuccessful during 3 to 5 consecutive attempts of a 
stepping task, task difficulty was reduced or physical assistance was provided. 
 
Overground training focused on fast speeds and variable tasks as described previously, including walking over 
compliant, uneven, or narrow surfaces, and/or in different directions. Therapists used an overhead rail system 
or gait belt as needed for safety during overground stepping. Stair climbing was performed over static or 
rotating stairs with the use of an overhead catch system or a gait belt as deemed appropriate by the training 
therapist. The difficulty and intensity of stair negotiation were progressed by increasing speeds and reducing 
handrail support. If participants reported specific locomotor deficits or difficulties that limited their mobility, 
attention was directed toward these tasks (eg, limitation in community mobility may be addressed with obstacle 
avoidance tasks during overground walking, including stepping over or around objects, use of leg weights, or 
stepping on inclined surfaces). Therapists documented total amount of stepping activity during training sessions. 
 

Data Analyses 
The measures of feasibility and efficacy are detailed both individually and grouped throughout the text and in 
tables as means ± standard deviations. Measures of feasibility included the amount of stepping activity achieved 
during training and the ability to achieve training HRs or RPEs (maximum HR/RPE per session). Other measures 
of feasibility, including personnel required during training and potential adverse events, were documented 
descriptively. Primary and secondary outcomes include measures of gait speed, distance, balance, peak 
metabolic capacity, and gait kinematics as described previously. Because this is a case series, descriptive but not 
inferential statistical analyses are utilized, although comparisons are made to available data in other studies and 
as compared with minimally detectable changes and minimal clinically important differences in iSCI. 
 

RESULTS 
Feasibility 
Five individuals with a history of chronic iSCI were referred consecutively from outpatient physical therapists 
and met all inclusion criteria. One potential participant did not receive medical clearance from their physician 
and was not enrolled. Demographic and clinical characteristics of the 4 participants (S1-S4) who initiated training 
are depicted in Table 1, indicating the variability in age (18-48 years) and duration post-SCI (14-53 months). 
Participants S1, S2, and S3 presented with substantial motor impairments, including relatively low values for 
Lower Extremity Motor Scores (LEMS; range: 21-34 pts), BBS (5-9 points), and slower gaits speeds (Table 2), 
particularly as compared with S4 who performed at a higher functional level. Participants S1 and S3 wore 
articulating ankle-foot orthoses (AFOs) bilaterally, and all 3 walked with a walker for shorter, that is, household 
distances, with community mobility accomplished using a wheelchair. In contrast, participant S4 did not use any 
assistive devices or braces and never used a wheelchair for home or community mobility. 
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Table 1. Baseline Demographics, Clinical Characteristics, and Training Parameters of Enrolled Participants 
 Participant 1 Participant 2 Participant 3 Participant 4 
Demographics/Clinical characteristics     

Age, y  34  45  48  18 
Duration, mo  16  53  17  14 
Gender  M  M  M  F 
AIS classification  D  C  C  D 
Neurologic level  C5  C7  T3  C5 
LEMS  34  30  21  38 
Assistive devices  Rolling walker  Walker  Walker  None 
Bracing  Bilateral AFOs  None  Bilateral AFOs  None 

Medications  80-mg baclofen  None  10-mg baclofen  None 
Training parameters     

No. sessions  40  24  38  40 
Steps per session (min-max)  
 

1963 ± 189  
(1586-2242)  

1795 ± 190 (1360-1984) 1932 ± 206 (1475-2284)  3195 ± 354 (2342-3698) 

%HRmax (min-max)  72 ± 4.1% (63%-79%)  65 ± 2.8% (57%-70%)  80 ± 4.2% (67%-88%)  83 ± 3.9% (72%-92%) 
RPE (min-max)  18 ± 1.2 (15-19) 18 ± 1.3  (16-20) 17 ± 1.0 (15-19) 19 ± 1.1 (16-20) 

Abbreviations: AFOs, ankle foot orthoses; AIS, American Spinal Injury Association Impairment Scale; HR, heart rate; LEMS, Lower Extremity Motor Scores; 
RPE, rating of perceived exertion. 
 
Table 2. Pretraining, Posttraining, and Follow-up Outcomes for Primary and Secondary Clinical Assessments 

 Participant 
1 

  Participant 
2 

  Participant 
3 

  Participant 
4 

  

 Pre Post Follow-
up 

Pre Post Follow-
up 

Pre Post Follow-
up 

Pre Post Follow-
up 

Primary             
SSS (m/s)  0.22  0.26 0.24 0.10  0.19  . . .  0.13  0.18  0.12  1.02  1.25  0.99 
FS (m/s)  0.29  0.36  0.36  0.10  0.26  . . .  0.16  0.27  0.15  1.53  1.64  1.37 
6MWD (m)  76  87  91  35  64  . . .  34  80  31  432  509  433 

Secondary             
BBS  9  12  15  8  12  . . .  5  7  6  51  53  51 
Peak TM speed 
(m/s)  

0.50  0.60  0.50  0.20  0.50  . . .  0.10  0.30  0.10  1.2  1.3  1.3 

˙VO2peak (mL/kg/min)  26  30  17  17  23  . . .  19  22  11  25  29  23 
Abbreviations: BBS, Berg Balance Score; FS, fastest-possible speeds; 6MWD, 6-minute walk distance; SSS, self-selected speeds; TM, treadmill. 
  



 
 
 
 
Over the course of the intervention, participants S1, S3, and S4 completed 24 to 40 sessions of training within 10 
weeks, while participant S2 required 15 weeks to complete training secondary to illness (ie, influenza). During 
each session, overhead harness safety systems were used for all participants in case of loss of balance and 
physical assistance from an aide was necessary for participants S1, S2, and S3, particularly early after the 
initiation of training and during stair climbing to ensure safety and adherence to protocol (ie, attempts at 
reciprocal stepping). Only participant S2 required approximately 10% body weight support early during training, 
which was reduced by the end of 2 weeks. Training parameters achieved are also presented in Table 1 for each 
participant, indicating the mean and standard deviations of peak HRs and RPEs, as well as the minimum and 
maximum peak values throughout training. All participants were able to achieve at least 70% of HRmax and RPEs 
of more than 15 during the first training session, although in participants S1 and SR HR responses were blunted 
across training. Peak HRs achieved during sessions averaged between 65% and 83% of age-predicted HRmax, 
while peak RPEs ranged from 17 to 19. 
 
Following an initial warm-up period and delay in HR increases early during training, all participants were able to 
maintain their HRs within approximately 5% of this peak HRmax achieved each session, although only participants 
S3 and S4 were consistently able to achieve more than 70% predicted HRmaxthroughout training sessions. 
Participants took an average of 2222 ± 653 steps per session (range: 1795-3197) throughout training, with the 
largest amounts of practice in the participant S4. There were no reports of orthopedic injury or pain other than 
muscle soreness during the first 2 to 3 weeks, with the exception of low back pain reported by participant S2 
that did not restrict participation. There were no additional adverse events, including no falls during or outside 
of training, or episodes of hypertension or autonomic dysreflexia. All but 1 participant reported fatigue during 
the period of training that subsided within the first 3 weeks, with the exception of participant S2 who reported 
fatigue intermittently throughout training. Participants S1, S3, and S4 were available to complete follow-up 
assessments, all 3 indicated attempts to maintain exercise programs at local gyms or at home following training. 
 

Clinical and Metabolic Testing Outcomes 
Changes in locomotor and other clinical measures for each participant are presented in Table 2. Changes in 
walking function included mean improvements in SSS (0.10 ± 0.09 m/s), FS (0.11 ± 0.03 m/s), and 6MWD (41 ± 
28 m). Additional secondary assessments included increases in BBS of 2.8 ± 0.96, as well as increases in peak TM 
speed (0.18 ± 0.10 m/s) and (4.3 ± 1.5 mL/kg/min). In the participants who attended follow-up testing (S1, S3, 
and S4), gains were not maintained at least 1 year following training, with all clinical outcomes similar to 
pretraining assessments. 
 

Kinematic Outcomes 
Secondary analyses of TM gait kinematics were performed on all participants at pre and post. Immediately 
following training, all participants demonstrated changes in stride length (S1), cadence (S4), or both (S2 and S3) 
to accommodate for changes in peak TM speeds, with the largest relative changes in S2. Sagittal-plane joint 
angular excursions were, however, variable across the participants. Ankle, knee, and hip ROM increased 
minimally or up to 20° on the less impaired limb across participants, while changes in the more impaired limb 
were smaller. Compared with the other participants, larger changes in hip ROM were observed in S1 and S3 
(both of whom wore AFOs during testing). However, there were no consistent trends for changes in joint or 
spatiotemporal kinematics. 
 
Changes in gait quality during TM walking were evaluated using ACC values to estimate hip-knee coordination, 
which also demonstrated inconsistent changes across participants. Specifically, bilateral improvements in ACC 
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were observed in S2 (0.07 and 0.17 in less and more impaired limbs), although very little changes were observed 
for S1 and S4. In contrast, bilateral decreases in ACC were observed in S3 (0.07-0.09), despite large changes in 
stride length and hip ROM (Table 3). 
 
  

javascript:void(0)


Table 3. Changes in Selected Gait Kinematics Pre- and Posttraining 
 Participant 1  Participant 2  Participant 3  Participant 4  
Spatiotemporal         

Speed (m/s)  0.50  0.60  0.20  0.50  0.10  0.30  1.2  1.3 
Stride length (m)  1.2  1.5  0.7  1.1  0.5  0.9  1.5  1.4 
Cadence (steps/min)  51  51  37  57  24  46  100  111 

Less impaired         
Ankle ROM (◦)  40  45  14  18  16  38  34  36 
Knee ROM (◦)  81  85  73  68  47  50  46  61 
Hip ROM (◦)  60  70  49  48  29  42  55  58 
ACC  0.95  0.95  0.79  0.86  0.61  0.52  0.89  0.87 

More impaired         
Ankle ROM (◦)  38  43  21  22  11  13  18  19 
Knee ROM (◦)  79  72  73  68  26  25  29  26 
Hip ROM (◦)  66  65  36  38  17  30  46  48 
ACC  0.88  0.84  0.62  0.79  0.54  0.47  0.89  0.96 

Abbreviations: ACC, average coefficient of consistency; ROM, range of motion. 
 

  



DISCUSSION 
The present case series details the potential feasibility and resultant locomotor, metabolic, and kinematic 
outcomes in 4 participants with chronic iSCI following high-intensity variable stepping training. Following the 
interventions, participants demonstrated modest improvements in selected outcomes, including gains in clinical 
measures of walking function, balance, and metabolic function, with improvements in selected measures of TM-
based locomotor kinematics. The protocol appeared to be safe, resulting in no substantial adverse events and 
limited complaints of fatigue and soreness, with the exception of 1 participant. The protocol appeared to be 
feasible with the assistance of a therapist and an aide, with specific equipment such as harness support systems 
or bracing to allow safe training. 
 
Average stepping activity during high-intensity training prioritized in this intervention (∼2200 steps per sessions) 
was greater than published amounts of stepping activity observed during clinical treatment of patients with 
neurological injury.35 These values are, however, lower than average stepping recorded in participants with 
subacute or chronic stroke who underwent similar training protocols (2500-3000 steps per session), some of 
whom were nonambulatory at the beginning of training.14,18 The present data are likely influenced by the 3 
substantially impaired participants with iSCI (S1, S2, and S3) in whom stepping activity averaged less than 2000 
steps per session, despite maintaining moderate to high aerobic intensities. Improvements in primary measures 
were also limited in the 3 participants who had greater impairment and varied among all participants. Two 
individuals (S3 and S4) demonstrated changes that exceeded the reported minimal detectable change scores for 
6MWD (ie, 46 m),36 while three-fourths of participants (S1, S2, and S3) exceeded the minimal detectable change 
for SSS and FS utilizing changes relative to an individual's initial walking speed.37 Finally, small gains in BBS were 
observed in all participants, regardless of extent of initial disability. The combined changes in locomotion and 
balance were similar to those observed in recent trials investigating the effects of various forms of locomotor 
training in participants with Isci,10,38 including strategies of focused TM training or variable stepping activity 
performed overground.17Nonetheless, observed changes were relatively small as compared with data from 
participants with chronic stroke following a similar training protocol (eg, SSS: 0.23 ± 17 m/s; FS: 0.39 ± 0.23 m/s; 
6MWD: 89 ± 60 m).18 
 
During graded exercise testing, both peak TM speeds and increased consistently across participants. The average 
gains of 2 to 6 mL/kg/min in and 0.1 to 0.3 m/s in peak TM speeds approximate changes were observed in 
participants with chronic stroke or SCI following higher-intensity TM training39–41 and gains in participants with 
iSCI following lower-intensity, recumbent stepping training.42 While the data suggest some functional benefits of 
high-intensity training, kinematic analyses were utilized to provide some insight into strategies used to increase 
walking speed. Participants in this case series demonstrated improvements in stride length (S1), cadence (S4), or 
both (S2 and S3) to achieve higher TM speeds following training. Improvements in spatiotemporal measures 
were larger than changes obtained during overground stepping following different locomotor strategies, 
although the speed increases during TM testing likely account for these differences. The increases in stride 
length in 3 participants (S...) are of particular interest as previous data in iSCI suggested that increases in TM 
speeds are accomplished primarily using cadence,43 with smaller changes in stride length (see, however, Leech 
et al40). Participants described in the former study were able to walk at faster speeds, similar to our higher 
functioning participant, who demonstrated limited gains in stride length (S4). The current findings suggest that 
individuals with iSCI, particularly those with lower levels of functioning, may be able to modulate both stride 
length and frequency with training to reach higher velocities.40 
 
Consistent with the aforementioned and previous findings,28 evaluation of joint kinematics during TM walking 
revealed changes primarily in those participants who demonstrated increases in stride length, namely, increased 
hip ROM was observed in at least 2 participants (S1 and S3) to account for changes in peak speeds, with limited 
or variable changes in knee and ankle ROM across all participants. These specific differences in hip ROM may be 
expected, as both S1 and S3 required AFOs during testing. Given the restriction of ankle motion and reduced 
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propulsive forces generated by the plantar flexors with AFO use, increases in hip ROM could reflect 
compensatory strategies used to increase gait speed.44 However, gait speed changes were similar in participants 
who did not wear AFOs, and biomechanical strategies appear to differ from those with lower extremity bracing. 
Unfortunately, we were not able to collect accurate gait kinetics during testing because of foot placement, and 
such analyses in future studies would provide further insight into the biomechanical mechanisms of increased 
speeds. 
 
A surprising kinematic finding was the lack of improvements in hip-knee angular consistency following training. 
Previous data in participants with stroke23 or incomplete SCI40,45 following higher-intensity stepping protocols 
demonstrate improvements in ACC, although other stepping protocols that may not focus on high cardiovascular 
intensities elicit variable changes in intralimb consistency.45 The inconsistent changes in ACC do not appear to be 
due to limited changes in speed, as participants with similar speed improvements demonstrated both positive 
and negative ACC changes (eg, S2 and S3). Interestingly, the participant with large decreases in ACC bilaterally 
(S3) was the most impaired, as indicated by lower LEMS (21) and BBS (5) at baseline. Conversely, while S2 
presented with equivalent initial walking speed as S3 at baseline, S2 demonstrated a higher LEMS and the 
largest gains in ACC values. Perhaps individuals with more severe motor deficits utilize alternative and 
inconsistent compensatory strategies to advance the limbs during stepping tasks, whereas those with greater 
motor control may be able to demonstrate greater intralimb consistency and coordination with improvements 
in gait speed with training. Greater sample sizes in future studies may help elucidate the validity of this 
hypothesis. 
 
Even with the modest improvements observed, none of the gains were maintained in the 3 participants tested 
at follow-up. Given the increased prevalence of cardiovascular disease and diabetes mellitus in persons with 
SCI,46 lower peak metabolic capacity,40,47 and reduced daily stepping,2additional interventions of physical activity 
are likely necessary to maintain gains in motor function following interventions. Selected reports have 
elucidated the positive effects of cardiovascular gains when training walking ability,10,48 with a recent systematic 
review reporting a low risk of cardiovascular training when conducted with proper safety precautions.49Given 
reduced access to such interventions, community-based strategies to increase participation in high-intensity 
stepping training may be an effective way to maintain gains observed. 
 
Limitations of our case series include lack of blinded assessors and potential testing effects contributing to the 
outcomes. In addition, while assessment of gait kinematics during TM testing may be similar to overground 
walking, the use of bilateral handrails could result in very different biomechanical strategies as compared with 
overground ambulation.50 Furthermore, the small sample size and limited diversity of individuals of varying 
levels of impairment are specific limitations that may limit the ability to generalize these findings. More directly, 
3 participants presented with fairly low LEMS and BBS scores (S1-S3) and could not achieve more than 2000 
steps/session, and the benefits may be limited in very impaired individuals post-iSCI.10 
 
A potentially important, related limitation is the inability to consistently achieve the desired HR range of at least 
70% predicted HRmax during training in specific participants. For both S1 and S2, mean peak HRs were below or 
near 70% HRmax despite attempts to achieve up to 85% HRmax. Reduced HRs may be due to reduced afferent 
feedback with substantial deficits in volitional neuromuscular activation following SCI, or more likely decreased 
central drive to thoracic-level sympathetic neural circuits that innervate the heart.51 Indeed, both S1 and S2 
achieved lower average peak HRs and presented with cervical-level injuries and substantial motor impairments 
that may underlie the reduced central drive to increase HRs. Use of surrogate measures, such as RPEs, may 
assist in estimating exercise intensity; its use in individuals with SCI may also be limited52 and may reflect other 
subjective measures. Whether the limited benefits observed in selected participants were due to the degree of 
neuromuscular impairments or limited cardiovascular regulation, or both, is not clear. Perhaps additional, 
adjunctive strategies, such as electrical stimulation of central neural tissues53 to augment neuromuscular 
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activation, may better facilitate gains and augment exercise intensity in individuals with lower functional 
capacity when paired with higher-intensity stepping strategies. 
 

SUMMARY 
The combined findings of this case series suggested modest improvement in locomotor function in individuals 
with motor iSCI with variable stepping training at high intensities, and emphasized the importance of assessing 
intervention strategies directly on a targeted clinical population. Gains in lower-functioning, ambulatory 
individuals with chronic iSCI may be more limited than anticipated, and comparable outcomes may be expected 
when similar strategies are applied in the clinic. Given these limitations, the potential benefits of high-intensity 
variable stepping training in this population is uncertain. Investigations that delineate changes in both 
locomotor function and quality across individuals with varying motor impairments will facilitate appropriate 
clinical implementation as warranted. 
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