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Abstract

Objective: To characterize individuals with spinal cord injuries (SCI) who use outpatient physical therapy or community wellness services for

locomotor training and predict the duration of services, controlling for demographic, injury, quality of life, and service and financial characteris-

tics. We explore how the duration of services is related to locomotor strategy.

Design: Observational study of participants at 4 SCI Model Systems centers with survival. Weibull regression model to predict the duration of services.

Setting: Rehabilitation and community wellness facilities at 4 SCI Model Systems centers.

Participants: Eligibility criteria were SCI or dysfunction resulting in motor impairment and the use of physical therapy or community wellness

programs for locomotor/gait training. We excluded those who did not complete training or who experienced a disruption in training greater than

45 days. Our sample included 62 participants in conventional therapy and 37 participants in robotic exoskeleton training.

Interventions: Outpatient physical therapy or community wellness services for locomotor/gait training.

Main Outcome Measures: SCI characteristics (level and completeness of injury) and the duration of services from medical records. Self-reported

perceptions of SCI consequences using the SCI-Functional Index for basic mobility and SCI-Quality of Life measurement system for bowel diffi-

culties, bladder difficulties, and pain interference.

Results: After controlling for predictors, the duration of services for the conventional therapy group was an average of 63% longer than for the

robotic exoskeleton group, however each visit was 50% shorter in total time. Men had an 11% longer duration of services than women had. Partic-

ipants with complete injuries had a duration of services that was approximately 1.72 times longer than participants with incomplete injuries. Per-

ceived improvement was larger in the conventional group.

Conclusions: Locomotor/gait training strategies are distinctive for individuals with SCI using a robotic exoskeleton in a community wellness facil-

ity as episodes are shorter but individual sessions are longer. Participants’ preferences and the ability to pay for ongoing services may be critical

factors associated with the duration of outpatient services.
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Introduction

Over the past half century, inpatient rehabilitation for spinal cord

injury (SCI) has been characterized by an increase in medical and

rehabilitation sophistication coupled with a decrease in length of stay

while aiming to maximize function, mobility, and independence.1,2

Outpatient services and wellness programs have helped to fill the gap

in rehabilitation resulting from decreasing inpatient length of stay

and the need to enhance function in the community.3,4 Whiteneck

et al5,6 investigated outpatient rehabilitation characteristics using a

practice-based evidence framework and reported that 44% of all

rehabilitation services provided in the first year after SCI occur after

inpatient discharge. Additionally, because SCI is a chronic condition,

often with permanent functional limitations, considerations for life-

long rehabilitation to maintain clinical gains and functional indepen-

dence are needed but seldom investigated.7

Between 249,000 to 363,000 persons live with SCI in the

United States8; most people experience functional deficits that can

improve with rehabilitation therapy.9 People with SCI have an

elevated risk of cardiorespiratory,10,11 musculoskeletal,12 and

endocrinemetabolic13,14 health conditions due, in part, to

decreased physical activity.15,16 People with SCI also have an

increased risk of chronic pain,17 anxiety, and depression.18 Loco-

motor/gait training is standard of care in rehabilitation for individ-

uals with incomplete SCI, and recovery of locomotor ability is a

high priority by people with SCI regardless of injury severity or

time since injury.19,20 Locomotor training also improves many of

the secondary conditions associated with SCI. These benefits may

be associated with mechanical loading through the trunk and

extremities during upright mobility,21 muscle elongation-relaxa-

tion cycles in the lower extremities,22 and increasing cardiorespi-

ratory demand and metabolic health.23

Since the seminal work of Whiteneck et al in characterizing inpa-

tient and outpatient rehabilitation,6 there have been significant advan-

ces in the development of robotic exoskeletons and the role that

exoskeleton-assisted walking can play. Robotic exoskeletons can

reduce a physical therapist’s effort during over-ground training of

people with chronic spinal cord injury, increase intersession reliabil-

ity, and provide resistance and trajectory guidance.24 Algorithms for

robotic exoskeleton-assisted walking are improving and can apply

principles of motor learning to people with chronic motor incomplete

spinal cord injury.25 In 2 users with motor complete thoracic lesions,

robotic exoskeleton systems have shown operability across variable

terrain and potentially stairs and ramps.26 Additionally, investigators

are exploring features of human-machine interactions.27

Investigations continue to support the efficacy of robotic exo-

skeleton in people with SCI rehabilitation eligible for locomotor

training.28-31 Using an observational design, Sale et al32 found

that robotic exoskeleton-assisted training after complete or incom-

plete SCI from cervical (C7) to lumbar (L2) resulted in significant

gait improvements. Chang et al33 randomized people with incom-

plete SCI who were also ambulatory to robotic exoskeleton versus
List of abbreviations:

AIS American Spinal Injury Association Impairment Scale

CI credible interval

OR odds ratio

PT physical therapy

SCI spinal cord injury

SCI-FI Spinal Cord Injury-Functional Index

SCI-QOL Spinal Cord Injury-Quality of Life
conventional physical therapy (PT) and found that walking endur-

ance, stride length, and step length increased significantly after

intervention in the exoskeleton group. In addition to locomotor

training, therapy using exoskeletons may improve overall health

status, reduce secondary complications, and increase function.34-37

Other studies report decreases in spasticity, improvements in

bowel and bladder function and regularity, sleep, and psychologi-

cal well-being.30,38 Based on its effect on comorbid pain and

depression, it is plausible that robotic exoskeleton-assisted walk-

ing could positively affect the use of rehabilitation services in peo-

ple with traumatic spinal cord injury.39 Recently we provided a

budget impact analysis for robotic exoskeletons at its current,

incremental, technological stage; we showed that robotic exoskel-

eton use is associated with lower locomotor training costs using

base case assumptions.40 However, the financial structure of our

health system creates a circular issue around technology where,

reimbursement requires standardization, standardization requires

clinical use, and clinical use requires reimbursement or standardi-

zation.41 Owing to a lack of reimbursement and coverage, self-

rationing may occur, presenting as canceled appointments and

wide gaps in treatment time.42

Thus, the objective of this report is to characterize individuals

with SCI who use outpatient PT or wellness program services for

locomotor/gait training and predict the duration of services (DOS),

using demographic, injury, functional, service, and financial charac-

teristics. We were particularly interested in how DOS is related to

robotic exoskeletons in locomotor training during an outpatient or

wellness episode. This information will guide our understanding of

technology use outside of an inpatient SCI setting.
Methods

Four SCI Model Systems centers collaborated on this project: The

Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of

Chicago), Craig Hospital, Shepherd Center, and TIRR Memorial

Hermann. Two Centers, Shirley Ryan AbilityLab and TIRR

Memorial Hermann, collected data prospectively using a practice-

based evidence design with the goal of comparing participants

with SCI using robotic exoskeleton versus usual locomotor train-

ing in an outpatient setting.43

Services models using robotic exoskeleton assisted locomotor

training within the context of wellness have developed and are

employed in 2 SCI Model System centers, Craig Hospital and

Shepherd Center.31 Members can participate in exoskeleton train-

ing as well as more conventional activity-based training program-

ming such as aerobic training, resistance training, gymnasium

activities, and swimming. Eligibility criteria were a diagnosis of a

SCI, ability to comprehend English, age 18 years or older, and a

goal of improving lower extremity function related to gait, balance

or functional mobility. Two centers recruited individuals partici-

pating in activity-based health and wellness programs focusing on

robotic exoskeleton training or participation in a research project,

and recruited outpatients receiving conventional or robotic exo-

skeleton-assisted therapy. Institutional review boards approved

the study for all sites.
Instruments

Centers classified SCI level as cervical (C1-7), thoracic (T1-12),

lumbar (L1-5), and sacral injury, and used the American Spinal

Injury Association Impairment Scale44 to characterize motor and
www.archives-pmr.org
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sensory impairment. For purposes of analysis, we categorized

injuries as motor complete or incomplete.

Participants completed 4 instruments that assess their percep-

tions of SCI consequences. The SCI Functional Index (SCI-FI)

Basic Mobility short form measures global aspects of mobility,45

the SCI Quality of Life (SCI-QOL) Bladder Management Difficul-

ties and SCI-QOL Bowel Management Difficulties measure diffi-

culties managing bladder and bowel programs,46 respectively, and

SCI-QOL Pain Interference measures ways that pain interferes

with cognitive, social, and productive domains of life.47 All instru-

ments demonstrate evidence of adequate reliability and validity.45-

47 Participants completed instruments before their third session of

therapy and after discharge.

Staff extracted the dates of outpatient PT or wellness services

from participants’ billing records and categorized financial respon-

sibility for therapy. We counted the number of sessions and calcu-

lated the average minutes per session and the average number

of days between sessions. We created a dichotomous variable to

distinguish participants who received any robotic exoskeleton

training from those who did not. We characterized financial

responsibility for therapy as “none owing to research partic-

ipation,” “none because of insurance coverage or community

grants,” “shared responsibility between the participant and a third

party (reference group),” or “entirely self-pay.”
Analysis

We used the R platform’s brms package,48,49 which is an interface

for the general Bayesian Software Stan,50 and applied a Bayesian

framework. This framework is a means of rational learning from

experimental data based on probabilities, and it reflects how we

think about issues when presented with new information. For

example, in our daily lives, we often have an opinion about an

issue and will update our position based upon new facts. Bayesian

inferences follows this process using 3 steps: (1) identify your pre-

viously held opinion on what you’re interested in learning more

about through your research question (ie, specify the prior proba-

bility of the parameter of interest, referred to as a “prior”; (2) col-

lect and summarize the observed outcome using a likelihood

function; (3) produce a posterior distribution representing your

updated position about the unknown parameter, referred to as the

“posterior.”51 The posterior distribution allows investigators to

make statements (inferences) regarding certainty of the parameter

of interest (eg, a mean estimate or proportion) for the population

of interest (vs the sample distribution using more conventional sta-

tistical approaches).52-56 The uncertainty about the parameter is

represented by the Bayesian credible interval (CI). The CI can be

interpreted as the level of certainty for a given parameter in the

observed sample, a 95% CI represents 95% of the values of the

parameter of interest in the posterior distribution. Relevant to this

study, computational challenges owing to cell sparseness related

to small sample sizes can be overcome easily in the Bayesian

framework.57 Efron,54 Matthews,55 Wagenmakers et al,56 and

Kruschke58 provide a fuller discussion.

We implemented a survival Weibull regression model to pre-

dict DOS,59-61 that are robust to a variety of conditions without

imposing strict assumptions.60 The primary predictor is the ther-

apy group (conventional therapy vs exoskeleton). While every

other predictor is considered a covariate (confounding), as the

focus is to control for their effect. Predictors are demographic

(age, sex), injury (level and completeness), and financial responsi-

bility characteristics; participant-reported aspects of quality of life
www.archives-pmr.org
(SCI-FI for basic mobility; SCI-QOL for bowel difficulties, blad-

der difficulties, and pain interference); and service characteristics

(average number of sessions, average number of days between ses-

sions). The locomotor training service in which each participant

was treated cannot be included as a predictor because it become

redundant with other characteristics such as financial responsibil-

ity. Because the Weibull model uses a log metric, we transformed

parameter estimates to an odds ratio (OR) to interpret the multipli-

cative increase of each predictor.

At discharge, participants repeated measures of function and

activity. We evaluated differences in the 2 therapy groups in the

probability of reporting improvement in 4 domains (mobility,

activities of daily living, bladder/bowel function, and spasticity)

while controlling for the same set of covariates described above.

We evaluated group differences using Bayesian logistic regres-

sion, specifying a model to predict binary data by the addition of

the logit link; this approach predicts the change in log-odds. The

logit link function transforms continuous predicted values to the

range of probabilities (range, 0-1). Subsequently, log-odds are

transformed into OR for interpretation as effect sizes. The OR rep-

resents the multiplicative change in the odds of reporting improve-

ment in each of the 4 realms. The results are presented as OR and

the probability of reporting improvement in each realm. We plot-

ted the expected change in probability in function for the 4

realms.62,63 This approach allows us to evaluate the marginal

effect of the main predictor of interest, controlling for covariates.

As part of the model definition, we used weakly informative

priors for the regression slopes b » N0,2. This approach defines

the parameter space without guiding the posterior distribution. We

specified 20,000 iterations of the Markov-Chain Monte Carlo esti-

mation, with 1800 warmup iterations, on 3 chains. As random

sample estimations are built-on previous samples it is referred to

as a “chain.” A phenomenon of Markov-Chain Monte Carlo esti-

mation is initial samples (ie, as the chain is getting started) may be

incorrect and should be ignored, which is why warmup iterations

are used.64 Inferences are based on posterior distributions with

6000 samples. We evaluated convergence with the potential scaled

reduction factor defined as a value for all parameters below 1.05.65
Results

Table 1 reports the descriptive statistics for the conventional and

exoskeleton groups. The sample of 99 participants includes 62

who received conventional PT and 37 who used robotic exoskele-

tons mostly in community wellness programs over a 24-month

period. The robotic exoskeleton-assisted group tended to be youn-

ger, contained proportionally more women, were less likely to

have shared financial responsibility for services, and reported

greater bowel management difficulties than the conventional ther-

apy group.

The predictive model converged after 20,000 iterations with

the potential scaled reduction factor of <1.05. Table 2 reports the

Weibull survival regression results. The model’s Bayesian R2 was

0.49 (95% CI, 0.39-0.54), indicating that, on average, the model

accounts for 49% of the variability in DOS.66 The mean difference

between the predicted vs observed DOS was 55.65 days; predicted

DOS was within the 95% CI, supporting the predictive accuracy

of the model.

Controlling for predictors, DOS for the conventional training

group was an average of 63% greater than for the robotic exoskel-

eton-assisted group, with a 95% CI ranging from 48% lower than

http://www.archives-pmr.org


Table 1 Descriptive Statistics

Conventional PT (N=62) Exoskeleton (N=37)

Mean SD Percent Mean SD Percent

Demographic Characteristics

Age 40.53 17.67 34.03 12.50

Men 73.4 67.6

Self-Reported Goals

Health and wellness 83.3 82.9

Standing and stepping 89.4 88.6

Gait 90.9 71.4

Self-control 77.3 57.1

Reduced spasticity 72.7 65.7

Neurorecovery 71.2 65.7

Other 3.0 14.3

SCI-QOL*

Basic mobility 4.17 1.81 3.68 1.87

Bowel problemsy 1.69 0.95 2.13 0.99

Bladder problems 1.86 1.71 2.14 0.94

Pain interference 2.59 2.64 2.03 0.89

SCI Level

C1-C7 34.4 48.6

T1-T12 50.0 45.9

L1-L5 15.6 5.4

SCI Completeness

Incomplete 82.8 70.3

Financial Responsibility

Both participant and third party 100.0 18.9

Research study 0.0 21.6

Self-pay 0.0 40.5

Third party entirely 0.0 18.9

Locomotor Services

Duration of services 101.17 76.45 118.70 91.18

Minutes/session 46.43 5.71 87.08 22.57

Days between sessions 6.24 2.62 6.95 9.99

Model of Service

Outpatient setting 100.0 13.5

Wellness program 0.0 86.5

Reason for Discharge

Attained goals 10.6 22.9

Financial 9.1 8.6

Difficult traveling to appointments 4.5 0.0

Injury or medical condition 6.1 2.9

Otherǂ 54.5 62.9

NOTE. Statistics include premature discharge owing to cessation of services related to the COVID-19 pandemic, schedule conflicts, equipment delivery

delays, moved, etc.
* SCI-QOL scores are computed as the average response on a rating scale that ranged from 0 (not at all) to 5 (very much).
y P<.05, 2-tailed
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robotic exoskeleton group to 278% higher. These results reflect a

high level of variability in the predicted DOS. Figure 1 illustrates

DOS for the 2 groups. Variability in DOS is greater in the conven-

tional therapy group than for the robotic exoskeleton group.

Although DOS is longer for conventional therapy, each visit is

50% shorter in total time. The total minutes of training over the

episode is less for the conventional therapy group (281 minutes)

than for the robotic exoskeleton group (386 minutes).

Across groups, DOS was unrelated to age, mean minutes of

therapy, mean days between sessions, SCI-FI for basic mobility,

SCI-QOL for bladder difficulties, SCI-QOL for pain interference,

and injury level with b near 0.0. DOS was 11% longer for men
than for women. For SCI-QOL for bowel difficulties, a 1-point

increase in the raw score corresponds to an average 13% increase

in DOS. DOS for participants with low paraplegia (L1-5) was an

average 77% shorter than for participants with high paraplegia

(T1-12). Participants with incomplete injuries had an average

DOS that was 70% shorter than for participants with complete

injuries. A 1-unit increase in SCI-QOL Bladder Management Dif-

ficulty score was associated with a 9% average decrease in DOS,

and a 1-unit increase in SCI-QOL Pain Interference score was

associated with a 7% average decrease. Compared with partici-

pants with shared responsibility, DOS for research participants

was an average of 58% shorter; the self-pay group was an
www.archives-pmr.org
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Table 2 Duration of Intervention Prediction from Weibull Survival Model Results

b SE OR 2.50% 97.50%

Intercept 3.383 0.885 29.459 4.896 166.505

Conventional therapy (vs exoskeleton) 0.490 0.437 1.632 0.677 3.784

Age 0.006 0.006 1.006 0.994 1.019

Men (vs women) 0.104 0.209 1.110 0.731 1.660

Basic mobility −0.049 0.059 0.952 0.857 1.081

Bowel problems −0.119 0.122 0.888 0.707 1.138

Bladder problems −0.057 0.061 0.944 0.845 1.076

Pain interference −0.010 0.011 1.010 0.991 1.035

T1-T12 (vs cervical) −0.006 0.244 0.942 0.580 1.529

L1-L5 −0.570 0.303 0.566 0.312 1.021

Incomplete SCI (vs complete) −0.542 0.293 0.581 0.323 1.037

PT min/session 0.028 0.009 1.029 1.011 1.048

Days between PT sessions 0.068 0.030 1.071 1.071 1.145

Financial Responsibility*

Research study −0.461 0.461 0.630 0.245 1.553

Self-pay −0.402 0.516 0.669 0.240 1.807

Third party entirely −1.405 0.524 0.245 0.086 0.675

Abbreviations: b, mean of the posterior distribution; SE, standard error of the posterior distribution; OR, odds ratio (exponent of b); 2.5%, lower bound-

ary of the 95% Credible interval of the odds ratio; 97.5%, upper boundary of the 95% Credible interval of the odds ratio.
* Both Participant and Third Party serve as reference

Fig 1 Conditional predicted duration of episode for conventional therapy vs robotic exoskeleton (main predictor). Abbreviation: DOS, duration

of services.

www.archives-pmr.org
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Fig 2 Conditional predicted duration of episode for financial responsibility (covariate). Abbreviation: DOS, duration of services.

670 M. Garnier-Villarreal et al
average of 49% shorter; and the third party-covered group was an

average of 74% shorter. Figure 2 illustrates these conditional

group differences.

The robotic exoskeleton group was more than twice as likely to

terminate services because they attained their goals (36%) than

was the conventional therapy group (15%) (table 1). Figure 3

reports the extent of global goal attainment in each group.

Logistic regression results are presented in table 3, with infer-

ences about group differences in perceived improvement, in 4

body function and activity domains while controlling for covari-

ates. We omit the covariate effects in the table to simplify the

results. After controlling for covariates, the conventional group

was more likely than the exoskeleton group to perceive improve-

ments in all 4 domains. The conventional group reported signifi-

cant improvement in spasticity, bowel function, activities of daily

living, and mobility relative to the exoskeleton group.
Discussion

DOS for participants using robotic exoskeletons was shorter than

for those receiving convention therapy, and robotic exoskeleton

sessions were longer when controlling for age, sex, injury level,

injury completeness, financial characteristics, quality of life (SCI-

FI for basic mobility; SCI-QOL for bowel difficulties, bladder dif-

ficulties, and pain interference), and service characteristics (aver-

age number of sessions, average number of days between
sessions). The shorter DOS may reflect the fact that exoskeleton

use was often a component of a wellness program, where most

participants self-pay for services, or were part of a research study

(over 20% in the exoskeleton group), wherein DOS was deter-

mined by the study protocol. Outpatient services were more likely

to include conventional therapy, where insurance is available to

cover services. Total minutes per session tended to be longer for

the exoskeleton group, likely owing to a difference in service

delivery models or the time required to set up the robotic device.

Most robotic exoskeleton participants received services in a com-

munity wellness program where the standard session is 1 to

2 hours, whereas participants receiving conventional therapy were

treated in outpatient departments where 1-hour sessions are the

norm. Unlike other forms of locomotor training, exoskeleton users

may be able to tolerate longer bouts of training without becoming

fatigued because the metabolic demand falls within the moderate

physical activity range.67,68

Important predictors of DOS were level and completeness of

injury, sex, SCI-QOL Bladder Management Difficulty and Pain

Interference, and financial responsibility. Individuals with greater

injury impairment and functional limitations required longer epi-

sodes. The finding that those with cervical injuries had shorter

DOS than did participants with thoracic and lumbar injuries may

seem counter-intuitive, but injuries at the cervical spinal levels

were likely less severe (eg, motor incomplete injuries) because

severe injuries at higher spinal levels (cervical spine) would likely

preclude a participant from locomotor/gait training. Difficulties
www.archives-pmr.org
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Fig 3 Global ratings of goal attainment (%).
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with bladder management and pain are secondary conditions that

affect quality of life69 and may limit full participation in therapies,

resulting in a plateau in function.

DOS for the conventional therapy group was characterized by

great variability, perhaps reflecting variability in participants’

goals, motivation, and financial resources including insurance cov-

erage and access to transportation. Alternatively, variability may

reflect eligibility criteria for exoskeleton locomotor/gait training.

Thus, DOS variability in this group is likely to be smaller than for
Fig 4 Participant-reported improvements. A

www.archives-pmr.org
the conventional therapy group, for which there are no specific

inclusion criteria.

Service characteristics were unrelated to DOS; number of ses-

sions and time interval between sessions were independent of

DOS. We expected to find evidence related to self-rationing

through differences in time interval between sessions, but the set-

ting differences may have resulted in self-selection where those

unable to afford services would choose not to access exoskeleton

therapy. The sessions were funded personally or via grants, and
bbreviation: ADL, activities of daily living.

http://www.archives-pmr.org


Table 3 Logistic Regression Results of Perceived Improvement in

Therapy Goals: Conventional Therapy vs Exoskeleton Group

Predictor* b SE OR 2.5% 97.5%

Bowel 0.45 1.22 1.564 0.139 17.445

Spasticity 0.09 1.02 1.091 0.156 8.209

ADLs 1.98 1.03 7.230 1.003 56.297

Mobility 2.09 0.99 8.054 1.247 59.784

NOTE. The logistic regression model primary predictor is the therapy

group (conventional therapy vs exoskeleton). Other predictors are

demographic (age, sex), injury (level and completeness), and financial

responsibility characteristics; participant-reported aspects of quality

of life (SCI-FI basic mobility, SCI-QOL bowel difficulties, bladder diffi-

culties, pain interference); and service characteristics (average number

of sessions, average number of days between sessions)

Abbreviation: ADLs, activities of daily living; b, mean of the posterior

distribution; SE, standard error of the posterior distribution; OR, odds

ratio (exponent of b); 2.5%, lower boundary of the 95% credible inter-

val of the odds ratio; 97.5%, upper boundary of the 95% credible inter-

val of the odds ratio.
* Predictors for which the 95% credibility interval of the OR does not

include 0 in logistic regression results: Bowel and Mobility (financial

responsibility, research study group), Spasticity (SCI-FI basic mobil-

ity), ADLs (sex)
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when grants ended, users seldom transitioned to a self-pay model.

Therefore, their DOS was dictated by the terms of the grant. Addi-

tionally, wellness-based robotic exoskeleton training did not have

specific therapy goals and functioned more like supervised exer-

cise training with a personal trainer. Individuals participate in

wellness training programs for cardiovascular health benefits, psy-

chosocial wellbeing, or bowel/bladder management. Despite

appearing to meet a longer lifestyle need, participants had shorter

DOS, which may be explained by cost, self-rationing of services,42

or achievement of short-term goals.

Participants’ perceptions of goal attainment reported on a 5-

point Likert scale indicated 52% of the conventional group vs

42% of the exoskeleton group attained “much more” or

“somewhat more” than expected (fig 3). Consistent with the

results on the Goal Attainment Scale, gains related to specific

goals (fig 4) show the conventional group also reported higher per-

centage gains compared with the robotic exoskeleton group. This

difference in perceived gains could be owing to the longer DOS in

the conventional group.

The findings are novel and clinically significant because they

characterize participant engagement in outpatient settings including

a sustainable model of robotic exoskeletal training using a practice-

based evidence design.70 The findings highlight the tension between

fidelity and fit,71 as the lifestyle wellness model used by many for

exoskeletal training produces a viable model for participant use in

the community under current reimbursement constraints, but may

draw concerns on the grounds of fidelity owing to distant supervision

by a physical therapist relative to conventional outpatient treatment.

Although not a primary purpose of this study, assessing participant

health outcomes would provide clarity on questions of fidelity and is

a research need. Conversely, we acknowledge this may be the only

way those with severe injuries can access these technologies owing

to insurance reimbursement constraints. Individuals with more

severe injuries often do not have opportunities to engage in locomo-

tor training in conventional therapy,72 resulting in the need to pay

out of pocket in wellness programs. Understanding the long-term

health and wellness benefits of exoskeleton gait training for
individuals with complete SCI can assist in determining whether

these services should be reimbursed.

Self-pay models also have clear equity concerns. Future

research should focus on an individual’s ability and willingness to

pay for exoskeleton services as part of wellness programs and the

potential for reducing inequities for those who can only access

rehabilitation with private insurance or out-of-pocket payments.

Studies should also compare the efficacy of robotic exoskeleton vs

conventional locomotor training in maximizing mobility and inde-

pendence for those with motor incomplete SCIs and the return on

investment in using exoskeletons to maintain health and wellness.

Future studies should examine variations across rehabilitation cen-

ters. Only 2 centers offered wellness programs in our study. The

study also highlights that exoskeletal devices can be used to sup-

port lifelong rehabilitation through general health and wellness,

which conventional care models are not designed to support. This

work extends this research to other care models, which will help

the continuum of care for people with SCI. Understanding these

phenomena will help expand use of these devices and potential

reimbursement by insurers leading to more deployment, which

will make these devices more affordable and useful as need drives

production, decreasing the cost of manufacturing and delivery.

Relatedly, Medicare has recently created a procedural code to

reimburse medically necessary robotic exoskeleton use.73
Clinical implications

Locomotor/gait training strategies and goals are distinctive for

individuals using a robotic exoskeleton in a community wellness

facility compared with conventional outpatient therapy in an out-

patient rehabilitation setting. In the conventional setting, physical

therapists typically supervise and manage patient care directly,

using a combination of locomotor strategies such as over-ground

walking, treadmill training with body weight support, or stationary

robotic devices, as needed. The primary goal of conventional ther-

apy is to improve walking independence and function that trans-

lates to greater walking outside of supportive devices that

provides variable assistance to the end-users tailored to their spe-

cific abilities and limitations. This focus on demonstrating

improved walking function outside of the supportive devices in

conventional therapy justifies continued reimbursable services,

which may result in a longer DOS. Wellness models typically

employ exercise specialists under the supervision of physical

therapists. This model has the potential for employing multiple

robotic units and exercise staff supervised by a single physical

therapist. The wellness model will likely be shorter in duration as

most individuals are paying out of pocket for these services. Gen-

erally, they have either demonstrated a plateau in their ability to

make functional walking gains or have been diagnosed with a

severe injury in which walking improvement is not expected (out-

side of the exoskeleton) and, therefore, not reimbursed by insur-

ance. Individual wellness sessions last longer because people with

SCI include other aspects of health maintenance within a larger

wellness session and individuals are very motivated to walk as

long and as far as they can each session to improve their wellness

and see a return on their investment. Wellness models may also

require greater attention to scheduling and coordination, given dif-

ferent supervisory relationships. Although our analysis did not

characterize differences between people with complete and

incomplete SCI, we identified that DOS was longer for those with

complete injury because these individuals are likely using exoskele-

ton-assisted walking as ongoing health and wellness whereas those
www.archives-pmr.org
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with incomplete injuries are participating in gait training to regain

lost function and not relying on this exercise to maintain ongoing

health and wellness. This understanding of longer DOS should be

incorporated to setting individual expectations related to locomotor

training. Women were found to have a shorter DOS compared with

men. Further research needs to evaluate these sex differences. It is

possibly related to barriers to participation including the need for

transportation,74 less partner/social support,74,75 and greater effects

of pain, fatigue, and consequences of bowel and bladder dysfunc-

tion.74 Clinicians should consider these broader constructs to address

a person’s capacity to engage in SCI locomotor training with differ-

ential attention paid to sex-specific concerns.74

With technology, the potential to support people with SCI with

lifelong rehabilitation is becoming increasingly possible, although

we have yet to realize optimal patterns of engagement with tech-

nology. Although there are gaps with respect to affordability of

robotic exoskeleton technology, wellness-based programs allow

people with SCI to experience the benefits of robotic exoskeletal

therapy and its potential advantages at a lower cost than acquiring

an exoskeleton for personal use. These models open the opportu-

nity for greater use of technology and greater access to technology

despite gaps in access remaining.

Participant preference and the ability to pay for services are

important factors associated with the DOS. Therapists must write

functional goals and demonstrate progress in their documentation

to justify ongoing services to commercial insurance, Medicare,

or Medicaid. Individuals who do not demonstrate functional

improvement face the decision to stop services or find other

resources to continue training. Even though someone may be mak-

ing functional improvements, outpatient therapy caps set by the

Centers for Medicare and Medicaid Services and commercial

insurers may limit continuation of services. Individuals using

robotic exoskeleton at Craig Hospital and Shepherd Center paid

out of pocket for services, but tended to have shorter DOS than

participants receiving conventional therapy which is likely associ-

ated with the financial burden.
Limitations

Study limitations include a relatively small sample, an analytical

approach that is finely tuned to this sample, and recruitment at

SCI Model Systems facilities. Generalizing to other sites and sam-

ples may be limited. In particular, our sample of people with com-

plete SCI was low, preventing our characterization of their

experience based on locomotor training strategy. Unmeasured var-

iables may have affected prediction. We did not include race, and

there is preliminary evidence that implicit bias can affect manage-

ment of individuals with SCI.76 From Martini and colleague’s sur-

vey,7 it appears that secondary health conditions may increase

engagement with PT services; but, we did not include secondary

health conditions in the model. Several individuals using exoskel-

etons were covered by a source of funding that restricted the num-

ber of visits, or if paid for personally, fell under a budget

constraint. Likewise, research study status may have influenced

outcomes such as participants’ goals.
Conclusions

Locomotor/gait training strategies are distinctive for individuals

using a robotic exoskeleton in a community wellness facility com-

pared with conventional outpatient therapy. The duration of the
www.archives-pmr.org
treatment episode was shorter but individual sessions were longer

for robotic exoskeleton. Ability to pay likely limits access to exo-

skeleton programs. Participants’ ability to engage in locomotor/

gait training needs further study as conventional therapy generally

focuses on individuals with incomplete injuries, creating an envi-

ronment where self-pay wellness models are the most viable

opportunity for individuals with complete injuries to engage in

locomotor training using robotic exoskeletons.
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