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ABSTRACT

The structural states of proteins include ordered
globular domains as well as intrinsically disordered
protein regions that exist as highly flexible confor-
mational ensembles in isolation. Various computa-
tional tools have been developed to discriminate or-
dered and disordered segments based on the amino
acid sequence. However, properties of IDRs can also
depend on various conditions, including binding to
globular protein partners or environmental factors,
such as redox potential. These cases provide fur-
ther challenges for the computational characteriza-
tion of disordered segments. In this work we present
IUPred2A, a combined web interface that allows to
generate energy estimation based predictions for or-
dered and disordered residues by IUPred2 and for
disordered binding regions by ANCHOR2. The up-
dated web server retains the robustness of the orig-
inal programs but offers several new features. While
only minor bug fixes are implemented for IUPred, the
next version of ANCHOR is significantly improved
through a new architecture and parameters opti-
mized on novel datasets. In addition, redox-sensitive
regions can also be highlighted through a novel ex-
perimental feature. The web server offers graphical
and text outputs, a RESTful interface, access to soft-
ware download and extensive help, and can be ac-
cessed at a new location: http://iupred2a.elte.hu.

INTRODUCTION

Intrinsically disordered proteins and protein regions
(IDPs/IDRs) carry out important biological functions
without relying on a single well-defined conformation,
defying the traditional structure-function paradigm (1).
Such regions are best characterized as ensembles of
highly fluctuating conformations in isolation but their

detailed properties are delicately tailored for their specific
function (2). The activities of IDPs can directly emerge
from their flexible nature, exhibiting entropic chain func-
tions or serving as linkers between ordered domains.
Disordered proteins can also mediate protein-protein
interactions by recognizing specific partners and undergo
a disorder-to-order transition by adopting a more struc-
tured conformation. Such disordered binding regions or
MoRFs (molecular recognition features) commonly occur
in modular proteins involved in signaling and regulation
(3,4). The specific properties of these compact functional
modules, such as their plasticity and flexibility, enable their
regulation depending on cellular cues through various
mechanisms including post-translational modifications
(PTMs) or competitive binding (5). While the majority
of known disordered binding regions lose their flexibility
upon interaction (with the exception of fuzzy complexes
(6,7)), an order-to-disorder transition is the key for the
function of another group of proteins. These condition-
ally disordered proteins are folded in isolation but their
functional state requires a local or global unfolding to
a more disordered state. The transition can be induced
by interactions with other macromolecules or changes
in environmental factors, such as pH, temperature or
redox potential (8). One example for such conditional
disorder is presented by Hsp33 from Escherichia coli. This
redox-sensing chaperone becomes active upon oxidative
stress, which induces a transition to a more disordered state
exposing the substrate binding surface of the protein (9).

The growing number of examples of experimentally
verified disordered segments are collected into dedicated
databases, such as the DisProt database, which currently
holds 2,167 such disordered regions from 803 proteins
(10). However, these entries only provide a small sample
of IDPs/IDRs that are widespread in all domains of life
but are most prevalent in eukaryotic organisms (11–14).
At this scale, protein disorder can only be studied through
computational approaches. The distinct sequence proper-
ties of IDPs compared to that of globular proteins enable
the discrimination of these two groups at the amino acid se-

*To whom correspondence should be addressed. Tel: +36 1 372 2500; Fax: +36 1 372 8537; Email: dosztanyi@caesar.elte.hu

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/46/W

1/W
329/5026265 by EÃ¶tvÃ¶s LorÃ¡nd Tudom

Ã¡nyegyetem
 (ELTE) user on 07 February 2022

http://iupred2a.elte.hu


W330 Nucleic Acids Research, 2018, Vol. 46, Web Server issue

quence level at reasonable accuracies. So far, over 50 pre-
diction methods have been developed using a wide arse-
nal of approaches, including simple amino acid propen-
sity scales, simplified biophysical models, machine learn-
ing techniques and meta-servers (15–17). IUPred is one
of the commonly used methods for predicting protein dis-
order and it is based on capturing the basic biophysical
properties of IDPs (18,19). The basic assumption of this
method is that intrinsically disordered proteins have a spe-
cific amino acid composition that does not allow the forma-
tion of enough favorable inter-residue interactions to stabi-
lize a well-defined structural state (20,21). In IUPred, the in-
teraction capacity of each residue is captured by an energy
estimation scheme. While there are other methods that can
achieve higher accuracies on particular datasets, IUPred
still provides robust predictions with a favorable trade-off
between speed and accuracy (22–24). As a result, IUPred is
frequently used in itself or in combination with other tools
to provide information about disorder (25).

The next challenge following the prediction of protein
disorder is the characterization of the functional properties
of IDPs/IDRs. Towards this end, most efforts focused on
predicting regions of disordered proteins that are involved
in protein-protein interactions, although methods that aim
to predict regions binding to DNA and RNA, or to recog-
nize linker regions have also been developed (26,27). The
first publicly available method developed to recognize dis-
ordered binding regions was ANCHOR (28,29). Similarly
to IUPred, this method relies on the energy estimation ap-
proach to characterize the disordered tendency and binding
capacity of protein segments. Apart from ANCHOR, ma-
chine learning methods, in particular support vector ma-
chines (SVM) have also been developed for the prediction
of disordered binding regions. MoRFpred and fMoRFpred
utilize SVM models in their predictions incorporating se-
quence conservation data and amino-acid physicochemical
properties, in addition to predictions of intrinsic disorder,
relative solvent accessibility and residue flexibility (30,31).
MFSPSSMpred and DISOPRED3 predict MoRFs based
on an SVM with a radial basis function kernel, and using
sequence-derived features and evolutionary profiles as in-
puts (32,33). MoRFchibi also employs SVMs, but uses a
dual architecture to efficiently discriminate short MoRF re-
gions from their flanking regions and to recognize similarity
to already known instances (34).

The precision of the computational identification of dis-
ordered binding regions is usually evaluated against pre-
dicting such regions within globular proteins. However,
these prediction methods should also have a discriminatory
power against disordered regions in general. The main chal-
lenge is that currently we do not have a clear idea about the
prevalence of disordered binding regions in proteins in gen-
eral. One well-characterized example, p53 shows a nearly
complete coverage by overlapping binding regions within
its N- and C-terminal disordered segments (35). Other ex-
amples suggest that this could be a common scenario for
many IDPs/IDRs, however, methods are often evaluated
on proteins with a single known disordered binding site. A
further limitation for accurate method development origi-
nates from a limited set of well-characterized examples used
for training and testing. As a result, larger datasets were re-

sorted to PDB complexes formed between short and longer
segments, assuming that the short segments are usually as-
sociated with disorder (30). However, this approach resulted
in noisy datasets without experimental verification. In this
regard, a major new development was the launch of the
DIBS database, which collects protein complexes where one
partner was shown experimentally to be both disordered in
isolation and being involved in disorder-to-order transition
(36). This database currently contains 773 entries, provid-
ing a reliable platform for further method development for
recognizing disordered binding regions.

Conditionally disordered regions provide further compu-
tational challenges for the characterization of IDPs (8). An
important category in this class corresponds to redox po-
tential regulated proteins that play important roles in ox-
idant signalling and protein biogenesis events (37). Fasci-
nating examples, such as Hsp33(9), COX17(38) or CP12
(39) indicate that redox sensing can be coupled to disorder-
to-order or order-to-disorder transitions. While the limited
number of such cases currently prevents systematic analy-
ses, we found that the biophysical model of IUPred is al-
ready equipped to highlight redox-sensitive regions in pro-
teins.

Recently, we have relocated our web-server IUPred to a
new location (25). This gave us access to further improve-
ments. Here, we describe the IUPred2A web server, which
provides a combined interface to collect predictions for dis-
ordered regions via an improved version of IUPred, disor-
dered binding segments via a new version of ANCHOR,
and can highlight redox-sensitive regions in proteins based
on the energy estimation method. These predictions can be
accessed through an HTML server, a RESTful web server
and as a downloadable software.

METHODS

IUPred2

IUPred uses an energy estimation method at its core. This
approach utilizes a low-resolution statistical potential to
characterize the tendencies of amino acid pairs to form con-
tacts, observed in a collection of globular protein structures
(40). When the structure is known, the statistical poten-
tial allows the calculation of the energy for each residue
based on its interactions with other contacting residues in
the structure. The sum of these residue-level energy terms
can be used to quantify the total stabilizing energy contri-
bution of intrachain interactions in a given protein struc-
ture. To open up a way to estimate these energies directly
from the amino acid sequence without a known structure,
a novel method was developed (18). In this model, the en-
ergy of each residue in the amino acid sequence is estimated
based on the following formula:

ei
k = � j=1

20 Pi j c j
k,

where ei
k is the energy of the residue in position k of type i,

Pij is the ijth element of the energy predictor matrix, and cj
is the jth element of amino acid composition vector, speci-
fying the ratio of amino acid type j in the sequence neigh-
bourhood of position k. P is a 20 × 20 energy predictor
matrix that connects the amino acid composition vector to
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the energy of the given residue. Its parameters were opti-
mized on a set of globular proteins to minimize the differ-
ence between the energy calculated from the known struc-
tures using the statistical potential and the energy estimated
from the amino acid sequence. Based on the energy esti-
mation, residues that have favorable energies are predicted
as ordered and residues with unfavorable energies are pre-
dicted disordered. The energies calculated for each residue
in the amino acid sequence are smoothed with the window
size (w0) and are transformed into a score between 0 and 1,
so they can be interpreted as quasi-probabilities of a given
residue being disordered.

The resulting method, IUPred (19) is able to recognize
regions of proteins that are not compatible with ordered
regions based on their inability to form enough favorable
intrachain interactions. As the method relies on a low-
resolution biophysical model of protein folding, its param-
eters are easily interpretable. Furthermore, calculations in-
volve only simple arithmetics and as a result IUPred not
only makes reliable and highly robust predictions, but is cur-
rently one of the fastest available disorder prediction algo-
rithms, making it especially suited for large-scale studies.

In the current version, IUPred2, the force field and the
architecture of the method were left unchanged. However,
integration into several resources, such as MobiDBlite (41),
MobiDB 3.0 (42) and InterPro (43) made it necessary to
implement several minor bug-fixes. IUPred2 was tested on
both the original testing sets of disordered and globular
structures (18), and the newest version of DisProt (10) as a
positive testing set, and a custom-built negative testing set
of single domain ordered proteins with known structures
(see Supplementary material). The efficiencies of IUPred2
and the original IUPred are consistent with earlier indepen-
dent testing results (22,24), and are virtually the same. This
is evidenced by the high similarities between the two receiver
operating characteristic (ROC) curves of the two algorithms
on both pairs of testing datasets (see Supplementary mate-
rial for the ROC curves), with the areas under the curves
being nearly identical (AUC = 0.855 and 0.856 for IUPred2
and IUPred on the new testing sets, and AUC = 0.924 and
0.926 on the original testing sets). From a practical point of
view, these efficiencies correspond to true positive rates of
59.6% and 68.72% when using IUPred2 with 5% and 10%
false positive rates, respectively, on the new testing sets.

ANCHOR2

Similarly to IUPred, ANCHOR also utilizes the energy esti-
mation approach, for the identification of disordered bind-
ing sites. Besides the general disorder tendency, two addi-
tional terms were also incorporated into the method that
estimate the energy associated with interaction with a glob-
ular protein and with the local disordered sequence envi-
ronment (28). These tendencies were combined using a lin-
ear combination and were transformed to yield a normal-
ized score between 0 and 1 representing the probability of
a given residue being part of a disordered binding region.
In the presented IUPred2A server, ANCHOR was substan-
tially reworked to give better predictions.

Concept and architecture of ANCHOR2. Retaining the
original idea behind ANCHOR, the new ANCHOR2 meth-
ods also employs a simple biophysics-based model to
describe disordered binding regions. In this framework,
residues belonging to disordered binding sites have to ful-
fill two distinct criteria: (i) they have to be able to form
favourable interactions with the binding surface of an or-
dered protein and (ii) they should be embedded in a gen-
erally disordered sequence environment. These two criteria
are formulized as follows:

Sk = (Egain,k(w1) − Egain,0)(Ik(w2) − I0),

where Sk is the score assigned to residue k; Egain,k(w1) =
Eloc,k(w1) – Eint,k is the energy the residue gains by mak-
ing interactions with an averaged ordered interacting sur-
face (represented by the composition vector Eint) instead of
its own sequential environment (represented by the compo-
sition vector Eloc,k(w1), calculated in a w1 half-window se-
quential neighborhood of residue k); Ik(w2) is the averaged
IUPred score in the w2 half-window sequential neighbor-
hood of residue k; Egain,0 and I0 are parameters that deter-
mine the minimum energy gain and minimum average dis-
order tendency a residue has to possess in order to become
a disordered binding site. The sign of Egain is chosen in a
way that high positive values mark true binding residues (as
usually expected from prediction methods), which is differ-
ent from the standard choice for true free energy. Keeping
this in mind, the architecture of ANCHOR2 has a clear bio-
physical meaning and contains only four parameters (w1,
w2, Egain,0 and I0) that need to be optimized during train-
ing.

Training and benchmarking. ANCHOR2 was trained and
tested using the disordered binding regions in the DIBS
database (36) filtered for 30% sequence identity as the
positive set, using only short binding regions below 30
residues yielding a total of 374 protein regions. Four dis-
tinctively different datasets were used as negative (see Sup-
plementary material). The first negative dataset (ordered
monomers) comprises sequence regions (also filtered for
30% sequence identity) that encode single structural do-
mains with determined monomeric structures in the PDB
(4,549 protein regions). The second dataset contains 389
flexible linker regions, used previously in the assessment
of DISOPRED3(33). These two datasets can be consid-
ered as verified in a sense that they are unlikely to contain
currently unknown disordered binding regions. The third
dataset (decoy sequences) were collected as ∼15,000 protein
segments taken randomly from the human proteome, ex-
cluding extracellular proteins, transmembrane regions and
known structural Pfam domains to increase the expected ra-
tio of disordered regions. The fourth negative dataset con-
tains 1,042 known disordered protein regions from the Dis-
Prot database (10) that do not overlap with entries in DIBS.
These two datasets cannot be assumed to be devoid of
currently unknown disordered binding regions (unverified
datasets). However, for parameter optimization and testing,
the positive dataset, the ordered monomer set and the de-
coy set were split, and two thirds of all three were used in
training and the remaining one third was used in testing.
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During training the four adjustable parameters w1, w2,
Egain,0 and I0 were tuned to their optimal values. The Egain
term of the score basically describes the distinction between
disordered binding regions and other sequence regions in
general (non-binding disordered segments in particular). In
accord, w1 was set to achieve the highest information gain
(similarly to the protocol employed in (44)) calculated in
the separation of the positive and decoy training sets (see
Supplementary material). While the decoy set can in theory
contain any number of disordered binding regions, due to
the random assignment we expect their numbers to be fairly
low. In contrast to the energy gain term, the I term of the
score primarily describes the separation between disordered
binding regions and ordered proteins. Thus, w2 was set to
achieve the highest information gain in the distinction be-
tween the positive and the ordered monomer training sets
(see Supplementary material). As a final step, Egain,0 and I0
were also set to best discriminate the elements of the posi-
tive and the two negative training sets.

Testing of ANCHOR2 was done by calculating residue-
based ROC curves evaluating the ability of the method to
separate the testing positive dataset from any of the four
negative testing datasets. To better gain insights into the
strengths and weaknesses of ANCHOR2, three other meth-
ods capable of predicting disordered binding regions: the
original ANCHOR, DISOPRED3 and MoRFchibi, were
also evaluated on the same datasets. The obtained ROC
curves for all four negative testing sets are shown in Fig-
ure 1, while the calculated AUC values for all methods for
all datasets are shown in Table 1. The obtained efficiencies
of the four methods outline the clear differences between
their applicability. Both DISOPRED3 and MoRFchibi are
machine learning based methods and were trained to have
very low false positive prediction rates in both ordered and
disordered protein regions. However, this comes at the ex-
pense of recognizing disordered binding regions that are
not similar to currently known ones. ANCHOR and AN-
CHOR2 on the other hand incorporate a direct description
of protein disorder in their predictions and thus excel at giv-
ing an extremely low false positive rate on ordered protein
regions. They are also remarkable at distinguishing flexi-
ble linkers, but predict a higher ratio of disordered binding
sites in generic disordered protein datasets, such as DisProt.
While this may involve over-prediction, it is worth noting
that the exact number of true disordered binding regions in
DisProt sequences are not known and thus it is hard to de-
termine the optimal behaviour of disorder binding site pre-
dictions on these data.

As a final step, the prediction score of ANCHOR was
normalized to fall between 0 and 1 in such a way that the
ratio of binding residues stayed below 50% even in the Dis-
Prot database, where it was the highest among the nega-
tive datasets. Using this threshold, the ratio of residues pre-
dicted to be binding in the positive and negative datasets is
shown in Table 2. While this reduces the apparent efficiency
of ANCHOR2 as compared to the scaling used in the origi-
nal ANCHOR (the 0.5 cutoff corresponded to 5% false pos-
itive prediction on ordered protein segments), ANCHOR2
is still able to correctly predict nearly 64% of residues in
known binding regions (true positive rate), with over 72%

of known binding regions harboring at least one correctly
predicted residue (segment-level true positive rate).

Redox-state dependent prediction of protein disorder

In another group of conditionally disordered proteins,
changes of the oxidation status are coupled to disorder-
to-order or order-to-disorder transitions (37). One exam-
ple for this behaviour is provided by the human small cop-
per chaperone Cox17. This protein can be viewed as a pro-
totype for proteins that are synthesized on cytosolic ribo-
somes and diffuse as intrinsically disordered proteins to the
mitochondrial intermembrane space, where they become
oxidized and fold into their functional conformations (38).
The activity of Hsp33 also depends on oxidative condi-
tions, however, for this protein the functional state is disor-
dered. Under non-stress conditions, Hsp33 is a compactly
folded zinc-binding protein with negligible activity. Oxida-
tive stress causes the formation of two intramolecular disul-
fide bonds and the release of Zn2+ ions. This leads to the un-
folding of the zinc-binding domain, exposing the substrate
binding surface of the chaperone that is necessary for its ac-
tivity (45).

The key sensors built into these redox-regulated proteins
are cysteine residues which can undergo reversible thiol ox-
idation in response to the oxidation status of the molecular
environment. Under reducing conditions cysteine residues
can behave as polar amino acids, most similar to serine,
without contributing much to protein stability. However,
they can also play essential roles in stabilizing the folded
conformation by coordinating Zn2+ ions under reducing
conditions, or by forming disulfide bonds that are com-
monly used by extracellular proteins that experience oxida-
tive conditions (46). In our energy estimation scheme, the
strong stabilizing feature of cysteine residues can be ade-
quately captured, with the most extreme energy terms cor-
responding to interactions mediated by cysteine residues.
In order to capture the other end of the spectrum, cys-
teine residues can be changed to serine in the amino acid
sequence. Thus, we generate two disorder prediction pro-
files, one corresponding to the state that is achieved through
cysteine stabilization (redox-plus) and one without cysteine
stabilization (redox-minus), modeled by a cysteine/serine
swap. In many cases the two profiles would not differ signif-
icantly. However, our assumption is that in the case of con-
ditionally disordered redox proteins the two profiles would
be separated and would highlight redox-sensitive regions
based on their different disorder tendencies. These regions
are defined when the redox-minus line predicts disorder for
a minimal region of 10 residues, while no disorder is pre-
dicted for the same region by the redox-plus profile. This
core region is then extended in both directions to the point
where the separation in the disorder score between the two
lines falls below 0.15. Thus identified redox-sensitive re-
gions are merged if their sequence separation is less than
10 residues (for details see Supplementary material). While
this feature of IUPred2A cannot be tested rigorously, exam-
ples provided in later sections and on the server help pages
indicate that the prediction of redox-sensitive regions can
be used to explore this phenomenon at the large-scale. Our
preliminary data suggests that redox sensitive regions can be
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Figure 1. ROC curves of four methods predicting disordered binding regions/MoRFs on the four different negative testing datasets. The upper row shows
testing on verified negative data containing virtually no disordered binding regions. Negative sets of the bottom row might contain an unknown number
of disordered binding regions, albeit with a significantly lower frequency compared to the positive set.

Table 1. Area under the curve (AUC) values calculated from the ROC curves in Figure 1

Methods

ANCHOR2 ANCHOR DISOPRED3 MoRFchibi

Datasets ordered monomers 0.901 0.835 0.627 0.561
linkers 0.870 0.859 0.612 0.581
decoy 0.865 0.840 0.536 0.595
DisProt 0.590 0.610 0.522 0.588

AUC values can range from 0.5 for random predictions to 1 for perfect predictions. The highest AUC values for each negative dataset are highlighted in
bold.

Table 2. Prediction rates of ANCHOR2 on training and testing datasets

Dataset name Dataset type
Fraction of residues predicted to be disordered
binding regions by ANCHOR2

DIBS training Verified positive 57.31% (66.40% at segment level)
DIBS testing 63.83% (72.58% at segment level)
Ordered monomers training Verified negative 2.38%
Ordered monomers testing 2.44%
Linker regions Verified negative 6.03%
Decoy training Putative negative 10.69%
Decoy testing 11.55%
DisProt Putative negative 50%

Datasets were evaluated using 0.5 cutoff to discriminate between disordered binding regions and non-binding residues.
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quite common in the human proteome: the few experimen-
tally characterized examples indicate that how this redox
sensitivity is used in biological context can be more complex
and can be fully understood only based on further experi-
ments.

SERVER DESCRIPTION

Input

To ease the transition of users of the original IUPred server,
the user interface of IUPred2A inherits a lot from its prede-
cessor, enabling fast and straightforward usage. The main
page features entry boxes, which accept a FASTA for-
matted or plain protein sequence, or any valid UniProt
accession/ID. The sequences of corresponding UniProt en-
tries are accessed through an SQL database containing in-
formation about the specified input, or extract the informa-
tion directly from UniProt, in case of an SQL database fail-
ure. In addition, a multi-FASTA formatted file with a max-
imum size of 200 megabytes can also be uploaded. The new
web-server also incorporates RESTful services using cus-
tom links for searches. For IUPred2 predictions, three types
of predictions can be chosen depending on the type of struc-
tural regions the user wants to analyse: short stretches of
disorder (such as flexible loops or linkers), long disordered
regions (such as disordered domains), or structured do-
mains. These options are directly inherited from the previ-
ous IUPred implementation (19,25). In addition, IUPred2A
features optional context dependent prediction options, us-
ing either ANCHOR2 for the identification of disordered
binding sites, or the redox-sensitive feature to uncover redox
potential dependent disorder. Once the proper inputs are
filled, the server calculates the results on a Django 2.0 based
back-end. Each prediction is calculated on-the-fly server
side, utilizing the latest MPI technology for maximum ef-
ficiency. To ease the load on the server, multi-FASTA up-
loads are treated separately and are queued until the server
has enough free capacity.

Output

The latest version of Bokeh (0.12.14) is responsible for the
visualization of the results that is directly integrated into
the Django framework. The graphical output presents the
requested predictions. By default, it contains disorder pre-
dictions from IUPred2 and binding site predictions from
ANCHOR2, but the individual predictions can be turned
on and off on the plot. Alternatively, the redox-sensitive
regions are highlighted. Integration with the UniProt re-
source enables the display of various additional informa-
tion about the requested protein (when available), such as
PFAM annotations (47), low-throughput post-translational
modifications (including phosphorylation, methylation and
acetylation sites) from PhosphoSitePlus (48), related struc-
tures from the PDB (49) and experimentally verified disor-
dered regions from three different databases: generic disor-
der from DisProt (10) and disordered binding regions from
DIBS (36) and MFIB (50). Besides the visual output, both
text based and JSON formatted outputs are downloadable
for each prediction. Despite the intensive use of cutting-

edge web technologies, IUPred2A supports all HTML5 and
WebP compatible browsers.

Supporting features

To further enhance the usability of IUPred2A, the site fea-
tures the description of the method, together with various
examples that highlight its functionality and aid the correct
interpretation of the results. Furthermore, IUPred2A also
supports the local use of IUPred2 and ANCHOR2, as both
methods are available for download as Python3 codes.

EXAMPLES

ANCHOR2 can correctly recognize many disordered bind-
ing regions that machine learning methods are likely to
overlook due to their very conservative estimates of the oc-
currence of these functional modules. This is demonstrated
through the example of the oncogenic Human adenovirus
C early E1A protein (Figure 2). E1A is a largely disordered
protein (51), which is essential for forcing the host cell into
S phase via modulation of the Rb1/E2F1 pathway (52) and
the inhibition of apoptosis via modulation of p53 degra-
dation (53). These host-pathogen interactions are mediated
by several binding events. Rb1 and CBP are targeted by
two N-terminal tandem binding sites with determined com-
plex structures deposited in the PDB. These known disor-
dered binding regions are identified by ANCHOR2 as two
distinct neighbouring peaks in the output score. While no
other E1A-human protein complexes are currently known
in structural detail, E1A harbors two additional known mo-
tifs capable of forming host-specific interactions. Both mo-
tifs, together with the putative binding site for the deubiq-
uitinase UBE2I are correctly recognized by ANCHOR2 as
a separate peak in the prediction score. A distinct peak C-
terminal of the structured zinc-finger has no known binding
partners; however it entails a serine residue that was shown
to be phosphorylated by host kinases (54), hinting at an
additional important binding region with currently limited
characterization.

In the case of disordered binding regions, the transition
between the disordered and the folded state is induced by
the presence of a protein partner. However, in certain cases
both the structural state and molecular interactions can be
influenced by redox potential. A prime example of such be-
haviour is presented by the endothelial nitric oxide synthase
(NOS3). Dimerization of this protein is essential for its oxi-
doreductase activity. The dimer interface is formed through
a Zn2+-cysteine complex, where Cys94 and Cys99 from each
subunit coordinate the Zn2+. These cysteines appeared sus-
ceptible to redox modifications which promote a disulfide
bond formation within each monomer and subsequent re-
lease of Zn2+. This results in the disruption of the dimer
and a transition to the monomeric state, parallelled by the
disruption of the enzyme activity (46,55). Figure 3 shows
the prediction for NOS3 generated using the experimen-
tal redox-state option of IUPred2, correctly capturing the
redox-sensitive region involved in this structural transition.
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Figure 2. The output of IUPred2 and ANCHOR2 for the oncogenic Human adenovirus C early E1A protein. Top: IUPred2 and ANCHOR2 scores are
shown in red and blue. Bottom: schematic architecture of E1A. Disordered binding regions with known complex structure are shown in deep red boxes.
Light red boxes correspond to known linear motifs. Grey box marks the region sufficient for interaction with UBE2I.

Figure 3. The output of the redox-state dependent IUPred2 predictor for the N-terminal region of NOS3. Top: the coordination of Zn2+ by cysteines
94 and 99 from both chains in the dimeric NOS3 structure. Bottom: the output of IUPred2 using the redox state modeling option, where the estimated
sensitivity of the disorder tendency is marked in purple. The plot is zoomed into the N-terminal region that can be seen in the dimeric complex (PDB:
3NOS).

CONCLUSION

The current paper presents the new IUPred2A server that
serves as a unified platform for both generic and context-
dependent prediction of protein disorder. IUPred2A com-
bines and supersedes our general disorder prediction
method IUPred and disordered binding region prediction

method ANCHOR. While IUPred2 features only slight
improvements over its predecessor, ANCHOR2 was com-
pletely re-trained and re-tested built on a new architecture,
bringing a significant improvement over the original ver-
sion. In addition, IUPred2A also incorporates a new exper-
imental feature that targets the identification of protein re-
gions capable of redox-state dependent transition between
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disordered and ordered states. These methods are available
through a completely rewritten server at a new location.
The IUPred2A server retains all options for data input from
previous versions, but also significantly expands its func-
tionality by introducing RESTful services, and automated
data integration from a range of databases with information
about protein structure. Furthermore, completely rewritten
codes for IUPred2 and ANCHOR2 are available for down-
load to aid local large-scale analyses.

Concurrent machine learning algorithms typically excel
at correctly predicting protein regions with a substantial
similarity to training examples. However, owing to their
biophysics-based models, IUPred2 and ANCHOR2 are ex-
pected to be able to correctly recognize protein regions that
share limited to no resemblance to currently known dis-
ordered regions or binding sites. This, together with the
fact that both IUPred and ANCHOR present virtually
the fastest methods with high accuracies in their respec-
tive fields (56), make them outstandingly suited for de novo
identification of binding- and non-binding disordered pro-
tein regions in large-scale studies.

While the computational identification of protein disor-
der in general has already been targeted by several methods,
the possible context dependence of structural features has
been generally overlooked from a prediction standpoint.
IUPred2A presents the first attempt at the unified descrip-
tion of the context-dependence of protein disorder by being
able to describe the lack of structure and its dependence on
the presence of a partner protein or a change in redox envi-
ronment. As IUPred2A is rooted in a biophysical model of
molecular interactions, it holds the potential for the future
extension of its architecture to successfully incorporate the
effects of other structure-modifying environmental factors,
such as pH or post-translational modifications.
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