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Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence,
exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here
consider the master equation for a gene regulatory feedback loop: a gene produces protein which
then binds to the promoter of the same gene and regulates its expression. The protein degrades in
its free and bound forms. This network breaks detailed balance and involves a single bimolecular
reaction step. We provide an exact solution of the steady-state master equation for arbitrary values
of the parameters, and present simplified solutions for a number of special cases. The full parametric
dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct
numerical solution of the master equations. For the case where the degradation rate of bound and free
protein is the same, our solution is at variance with a previous claim of an exact solution [J. E. M.
Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, and P. G. Wolynes,
Phys. Rev. E 72, 051907 (2005), and subsequent studies]. We show explicitly that this is due to an
unphysical formulation of the underlying master equation in those studies. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4736721]

I. INTRODUCTION

Biochemical reaction networks underpin the robustness
of cells to both internal and external perturbations. Feedback
and nonlinearities make network behavior hard to understand,
and thus mathematical modelling of the networks can provide
useful insights. Copy numbers of gene products, such as pro-
teins, are often relatively small,1, 2 which argues for a care-
ful evaluation of the role of stochasticity. The importance of
stochasticity is without doubt in gene expression, given that
there are only one or two copies of most genes per cell.3

Modelling of the stochastic dynamics of networks is typically
more involved than sets of deterministic rate equations. Exact
solutions have been obtained for reaction networks obeying
detailed balance4–6 and for those composed of first-order (uni-
molecular) reactions.7–11 However, these restrictions are not
typical of biochemical processes inside living cells. Detailed
balance conditions are characteristic of closed systems of re-
versible chemical reactions in thermal equilibrium conditions;
they only hold for open systems in special cases.4 Living cells
are open biochemical systems which actively exchange matter
with their surroundings and which possess non-equilibrium
steady states, and hence it is clear that the principle of detailed
balance will not generally hold for intracellular biochemical
systems.12 It is also a fact that most systems of interest involve
a number of second-order (bimolecular) reactions such as
substrate-enzyme interactions, and protein-DNA interactions.

a)Electronic mail: ramon.grima@ed.ac.uk.
b)Electronic mail: dschmidt@case.edu.
c)Electronic mail: t.newman@dundee.ac.uk.

Here we focus on perhaps the simplest example of a
biochemical reaction network which overtly breaks detailed
balance and which involves both unimolecular and bimolec-
ular reaction steps. We consider a genetic regulatory network
with a feedback loop, namely, one in which the product of a
gene binds to the promoter of that same gene, and regulates
its expression. Furthermore, the free and bound proteins are
assumed to be degraded via proteolysis. Note that while
bound protein degradation is not as well known or obvious as
free protein degradation, there are mechanisms which could
mediate it, e.g., the ubiquitin-proteasome pathway can target
and degrade parts of protein complexes.13, 14 Similar feedback
mechanisms as discussed above are ubiquitous in biology, ap-
pearing in such diverse contexts as metabolism,15 signaling,16

somitogenesis,17 and circadian clocks.18 Naturally, given its
simplicity, special cases of this model have already been the
subject of a number of studies. Hornos et al.19 and subsequent
follow up studies20–22 have claimed an exact solution for the
case where the rate of bound protein degradation is equal
to the rate of free protein degradation. Qian et al.23 have
studied the case where the bound protein degradation rate is
zero and developed an approximate solution of the master
equation in the limits of slow and rapid switching of the gene
between the unbound and bound states. A few studies have
also considered variations of this simple model by allowing
inhibition or activation by protein dimers.24, 25

In this paper we obtain an exact solution of the master
equation for arbitrary free and bound protein degradation rates
in non-equilibrium steady-state conditions. For the case of
equal bound and free protein degradation rates, our solution
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differs markedly from the exact solution claimed by Hornos
et al.;19 we explicitly show that the difference between the
two solutions stems from the fact that the master equations
studied in the latter work have no consistent physical inter-
pretation and hence constitute an incorrect description of the
biochemical processes at play.

In the next section we define the model and write down a
master equation formulation of the stochastic dynamics. In
Sec. III we present the exact solution using the generating
function method. In Sec. IV we study three special cases in
which detailed balance does not hold and contrast with the
case in which detailed balance holds. In Sec. V we directly
compare our exact solution with numerical solutions of the
master equations and show their correctness. In Sec. VI we
present a careful comparison of our exact solution to previous
studies. We summarise our results and conclude in Sec. VII.

II. THE MODEL AND THE MASTER EQUATION

We consider a single gene and its accompanying
promoter region. Self-regulation means that the protein
corresponding to the gene can bind to the promoter region
and thereby affect the transcription and translation processes.
Following previous work, we do not explicitly consider the
transcription process, and the intermediate mRNA. Rather
we model the process by following only the number of free
proteins and the state of the promoter, namely, whether it
is bound or unbound. It is important for us to carefully
define the processes in order to make completely transparent
how these will be encoded into a master equation. By “free
proteins” we mean proteins that have been created from
transcription/translation of the gene in question, and which
are neither bound to the promoter nor degraded. We only
allow one protein to be bound to the promoter region at any
given time. We do not consider dimerization of free proteins.

We define two conditional probabilities: P0(n, t)dt is the
probability that in the time interval (t, t + δt) there are n free
proteins and the promoter is unbound, and P1(n, t)dt is the
probability that in the interval (t, t + δt) there are n free pro-
teins and the promoter is bound. In the latter case, there are in
fact n + 1 proteins in the system, n of which are free, and one
of which is bound to the promoter. The transcription process
will be altered if the promoter is bound, and so the rate of pro-
duction of proteins will depend on the state of the promoter
region. This dependence of production rate on the promoter
state breaks detailed balance and makes analytic solution
of this problem non-trivial. We define ru and rb to be the
production rates of protein given than the promoter region is
unbound or bound, respectively. We define kf to be the degra-
dation rate of free proteins. We define kb to be the degradation
rate of the bound protein. Allowing kb to be non-zero breaks
detailed balance even if ru = rb and, again, makes analytic
solution non-trivial, but not impossible as we shall see. Lastly,
we define sb to be the binding rate per protein to the promoter
region, and su to be unbinding rate from the promoter region.
Note, we assume that if the bound protein is degraded it is re-
moved from the system: explicitly the total number of proteins
will decrease by one, the total number of free proteins will
remain unchanged, and the state of the promoter will change

from bound to unbound. These processes and their accom-
panying rates are schematically illustrated in the following
reaction scheme, where Du, Db, and P represent the unbound
DNA, the bound DNA, and the free proteins, respectively:

Du
ru−→ Du + P, Db

rb−→ Db + P,

P
kf−→ Ø,

Db
kb−→ Du, Du + P

sb−⇀↽−
su

Db . (1)

Assuming that each process is an independent Poisson
process allows us to encode the dynamics using master
equations.26 The master equations for P0 and P1 have the
following forms:

d

dt
P0(n, t) = ru(P0(n − 1, t) − P0(n, t))

+ kf ((n + 1)P0(n + 1, t) − nP0(n, t))

+ kbP1(n, t) + suP1(n − 1, t) − sbnP0(n, t),

(2)

d

dt
P1(n, t) = rb(P1(n − 1, t) − P1(n, t))

+ kf ((n + 1)P1(n + 1, t) − nP1(n, t))

− kbP1(n, t)−suP1(n, t)+sb(n+1)P0(n+1, t).

(3)

We have formatted these equations to make as clear as
possible the relation of the terms to the corresponding molec-
ular processes. Each line of the above equations corresponds
to the processes described on the corresponding line of re-
action scheme (1). The first line of each equation refers to
processes originating from the gene, i.e., production of the
protein. The second line of each equation refers to processes
in the cytosol of the cell, i.e., degradation of free proteins. The
third line of each equation refers to processes occurring on the
promoter, i.e., degradation of the bound protein, and binding
and unbinding of individual proteins on the promoter.

There is no need to write special boundary conditions for
these equations, so long as we impose P0(n, t) = 0 and P1(n,
t) = 0 for n < 0. Explicitly, if we insert n = 0 into the above
equations we find

d

dt
P0(0, t) = −ruP0(n, t) + kf P0(1, t) + kbP1(0, t), (4)

d

dt
P1(0, t) = −rbP1(n, t) + kf P1(1, t) − kbP1(0, t)

− suP1(0, t) + sbP0(1, t), (5)

which correctly describe the time evolution of P0(0, t) and
P1(0, t).

In Sec. III we present the exact solution of these equa-
tions in the steady-state using the generating function method.
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III. EXACT SOLUTION

It is convenient to work with a dimensionless time vari-
able, and so we choose to scale time by the rate of degradation
of free proteins kf, i.e., τ = kft. We define the dimensionless
rates

ρu = ru/kf , ρb = rb/kf , θ = kb/kf , σu = su/kf ,

σb = sb/kf . (6)

For future reference we define the convenient parameters

(b = 1 + σb, R = ρu − ρb(b. (7)

In dimensionless variables, the master equations (2) and
(3) take the form

d

dτ
P0(n, τ ) = ρu(P0(n − 1, τ ) − P0(n, τ ))

+ ((n + 1)P0(n + 1, τ ) − nP0(n, τ ))

+ θP1(n, τ ) + σuP1(n − 1, τ ) − σbnP0(n, τ ),

(8)

d

dτ
P1(n, τ ) = ρb(P1(n − 1, τ ) − P1(n, τ ))

+ ((n + 1)P1(n + 1, τ ) − nP1(n, τ ))

− θP1(n, τ ) − σuP1(n, τ )

+ σb(n + 1)P0(n + 1, τ ). (9)

We will solve these equations using the generating func-
tion method.27, 28 We define the generating functions via

G0(z) =
∞∑

n=0

znP0(n) , (10)

G1(z) =
∞∑

n=0

znP1(n) . (11)

Henceforth, we will work in the steady state, and set
dP0(n)/dτ = 0 and dP1(n)/dτ = 0. Summing the master equa-
tions (8) and (9) over n with a weight of zn, one finds the cou-
pled pair of first-order differential equations

ρu(z − 1)G0 − (z − 1)G′
0 + (θ + σuz)G1 − σbzG

′
0 = 0 ,

(12)

ρb(z − 1)G1 − (z − 1)G′
1 − (θ + σu)G1 + σbG

′
0 = 0 .

(13)

The obvious way to proceed is to write G1 in terms of G0

and G′
0 in Eq. (12) and then substitute into Eq. (13). However,

this leads to a second-order differential equation for G0 which
is not of the Riemann type, and so cannot be solved in terms
of hypergeometric functions.

The less obvious way to proceed is as follows. We dif-
ferentiate Eq. (12) to get an equation involving G0, G′

0, G′′
0,

G1, and G′
1, and then use (12) again to eliminate G0 in favour

of G′
0 and G1. This leads us to an equation involving G′

0, G′′
0,

G1, and G′
1. Finally by means of Eq. (13), G′

0 and G′′
0 can be

expressed in terms of G1 and its derivatives. This leads us to
a second-order differential equation for G1 which reads

A(z)G′′
1 + B(z)G′

1 + C(z)G1 = 0 , (14)

with

A(z) = 1 − (bz, (15)

B(z) = (ρu + ρb(b)z − ((1 + θ )(b + σu + ρu + ρb),

(16)

C(z) = ρu(θ + σu + ρb) + ρb(b − ρuρbz . (17)

Since Eq. (14) has linear coefficients in z it can be trans-
formed to the differential equation for the confluent hypergeo-
metric function. On writing G1(z) = eazG̃1(bz + c), and sub-
stituting into Eq. (14) one can determine a, b, and c, which
provides the following solution:

G1(z) = eρbzG̃1(w) , (18)

where

w = R
((bz − 1)

(2
b

, (19)

and G̃1(w) satisfies Kummer’s equation29 (i.e., the confluent
hypergeometric differential equation)

wG̃′′
1 + (β − w)G̃′

1 − αG̃1 = 0 , (20)

with

α = θ + σu(ρu − ρb)
R

, (21)

and

β = 1 + θ + 1
(b

(
σu + ρu − ρu

(b

)
. (22)

Equation (20) admits two independent solutions, the Kummer
function M(α,β, w) and the Tricomi function U (α,β, w).
The latter is inadmissible as a solution for G̃1, as we require
that P1(n) → 0 for n → ∞ and that the sum over n of P1(n)
is finite. Thus, we have the exact solution of the generating
function in the form

G1(z) = AeρbzM(α,β, w) , (23)

where A is a normalisation constant. Referring to Eq. (13) we
see that knowledge of G1(z) enables us to find an exact ex-
pression for dG0(z)/dz. Substituting Eq. (23) into Eq. (13) and
using the transformation properties of the Kummer function,
we find

dG0(z)
dz

= Aeρbz

[
α

((b − 1)
M(α + 1,β, w)

− σuρb

R
M(α,β, w)− R

(2
b

α

β
M(α + 1,β+1, w)

]
.

(24)

It is difficult to extract an explicit solution for G0(z) by in-
tegrating this expression, and this is consistent with the fact
that the second-order differential equation for G0 is not of the
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Riemann form. However, as we shall see, this is not an im-
pediment to finding explicit expressions for P0(n).

We now proceed to obtain the probability distributions
P0(n) and P1(n). The probability distribution P1(n) can be
retrieved from the generating function via

P1(n) = 1
n!

dn

dzn
G1(z)

∣∣∣∣
z=0

. (25)

Substituting Eq. (23) in the above equation leads us to

P1(n) = A

n!

n∑

m=0

Cn
mρn−m

b

×
(

R

(b

)m (α)m
(β)m

M(α + m,β + m,w0), (26)

where we have defined w0 = w(0) = −R/(2
b , the Pochham-

mer symbol (a)n = +(a + n)/+(a) = a(a + 1). . . (a
+ n − 1), with (a)0 = 1, and the combinatorial symbol
Cn

m = n!/m!(n − m)!.
Using the analogous expression to Eq. (25) for G0 and

P0, we can obtain P0(n) for n ≥ 1 by differentiating Eq. (24),
with respect to z, (n − 1) times, dividing by n! and setting z
= 0. With some use of the transformation equations for the
Kummer functions we find the compact expression

P0(n) = A

n!

n−1∑

m=0

Cn−1
m ρn−1−m

b

(
R

(b

)m (α)m
(β)m

×
[

(b

((b − 1)
(m + α) M(α + m + 1,β + m,w0)

−
(
m + α + σuρb

R

)
M(α + m,β + m,w0)

]
,

(27)

for n ≥ 1. This just leaves P0(0), which can be found directly
from the master equation (8) on setting n = 0 in the steady
state

ρuP0(0) = P0(1) + θP1(0). (28)

On substituting the exact forms for P1(0) and P0(1) from
Eqs. (26) and (27), respectively, we find

P0(0) = A

[
(b

((b−1)
α

ρu

M(α+1,β, w0)−σu

R
M(α,β, w0)

]
.

(29)

Note, this last expression requires ρu > 0 for P0(0) to be fi-
nite. In fact, this condition is required for the existence of a
non-empty steady state. If ρu = 0 then there is an absorbing
state of zero proteins, and the steady state in that case will
correspond to an empty system.

The evaluation of A requires us to normalise by calculat-
ing the sum over n of P0(n) and P1(n),

∞∑

n=0

(P0(n) + P1(n)) = 1. (30)

The sum over P1(n) is straightforward, since it is just G1(1).
However, the sum over P0(n) cannot be reduced to a simple

form as we do not have an explicit expression for G0(z). One
can perform the sum over n of P0(n) using the explicit expres-
sion (27), but this cannot be reduced beyond definite integrals
over Kummer functions whose form is apparently unknown.
As such, the normalisation constant A is most easily found
by numerically computing the sums over n of the explicit ex-
pressions for P0(n) and P1(n). The probability that there are n
proteins in steady-state conditions, P(n), is then given by the
sum of P0(n) and P1(n). Ratios of moments such as the Fano
factor, i.e., the variance of fluctuations divided by the mean
number of molecules, do not depend on A and hence explicit
expressions can always be written down for such quantities.

We finish this section by noting that the exact expres-
sions, Eqs. (26), (27), and (29), are valid for R '= 0. The sin-
gular case R = 0 requires special attention and is treated in
Appendix A.

IV. SPECIAL CASES

In this section, we provide results for four special cases
which can be grouped into two classes: (i) the case of detailed
balance (ρu = ρb and θ = 0), in which Poisson statistics are
expected to hold, and (ii) three cases in which detailed bal-
ance does not hold: ρb = 0, α = 0, and α = β. In each of these
cases one can write down simple expressions for the normal-
isation constant of the probability distribution and hence one
can also obtain explicit expressions for all the moments of the
distribution. In what follows we calculate the dependence of
the fraction of time for which the promoter is bound on the av-
erage number of free proteins. We denote the former quantity
by foff, which is defined explicitly by

foff =
∞∑

n=0

P1(n), (31)

and denote the average number of free proteins by 〈n〉, which
is defined explicitly by

〈n〉 =
∞∑

n=0

n(P0(n) + P1(n)). (32)

We will find that the functional dependence foff(〈n〉) under
non-detailed balance conditions can differ markedly from the
detailed balance case.

A. Detailed balance conditions

The self-regulating gene, described purely in terms of the
states representing the number of free proteins, does not gen-
erally satisfy detailed balance. This has two causes: (i) the
degradation of bound protein, and (ii) the differing rates at
which proteins are produced depending on the state of the
promoter. Thus, detailed balance can be restored by taking
θ = 0 and ρu = ρb (see, for example, Ref. 30 for a general
discussion of detailed balance in a gene regulation context).
In this case, production of protein is independent of the state
of the promoter, and degradation occurs only in the free pro-
tein pool. As such, detailed balance holds, and, indeed, the
distribution of free protein is trivially Poisson. A well known,
yet non-trivial, observation is the simple relationship between
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foff and 〈n〉 in this case, which satisfies the Hill function31

foff = 〈n〉
〈n〉 + su

sb

. (33)

This provides a test of our exact solution which we now
confirm. We equate the scaled production rates to each other,
defining in the process ρ ≡ ρu = ρb. We first note from
Eq. (21) that when ρu = ρb and θ = 0, then α = 0. The Kum-
mer function M(α = 0,β, w) = 1, and so, from Eq. (23) we
have

G1(z) = Aeρz. (34)

It is straightforward to integrate Eq. (24) for G0 in this
case, and one finds

G0(z) = A
σu

ρσb

eρz + B, (35)

where B is an integration constant. This constant can be
fixed by imposing the condition (28) and one finds B = 0.
Normalisation fixes A, and one can then retrieve the explicit
solutions for the probability distributions

P0(n) = e−ρ

(
1 + ρσb

σu

) ρn

n!
, (36)

P1(n) = e−ρ

(
1 + σu

ρσb

) ρn

n!
. (37)

Note, the distribution of free proteins, P0(n) + P1(n)
= e−ρρn/n!: a Poisson distribution as anticipated. Summing
these distributions over n with a weight of n, the average
number of proteins is easily found to be 〈n〉 = ρ. Now the
fraction of time for which the promoter is bound, foff, is equal
to the probability that the gene is “off,” which is obtained
by summing Eq. (37) over n. Expressing the latter in terms
of 〈n〉 and reverting to unscaled rate parameters we obtain
Eq. (33), as required.

We finish this section by noting that the deterministic
model of the genetic feedback loop predicts that foff has a
Hill function dependence on 〈n〉 for all parameter values
(see Appendix B). Hence, for the detailed balance case, the
predictions of the stochastic and deterministic models are in
agreement.

B. Non-detailed balance conditions

1. The case ρb = 0

This is the case of strong transcriptional repression since
the production of the gene in the bound state is zero. In this
case, we see from Eq. (24) that the expression for dG0(z)/dz is
a sum of Kummer functions, which can be directly integrated.
On doing so, and, again, utilising the transformation formulae
for Kummer functions, one finds the compact result

G0(z) = A

ρu((b − 1)
[(θ + σu)(bM(α + 1,β, w)

− σu((b − 1)M(α,β, w)] . (38)

In principle, an unknown constant B should be added to this
expression; however, one can fix this constant by utilising the

relation (28) and one finds that B = 0. Directly from Eq. (23),
we have

G1(z) = AM(α,β, w) , (39)

where we have the simpler expressions α = θ + σ u and
w(z) = ρu((bz − 1)/(2

b ; the parameter β is still given by
Eq. (22).

It is now straightforward to determine the normalisation
constant A by imposing condition (30), which is equivalent to
G0(1) + G1(1) = 1. One finds

A = ρu((b − 1)Ã, (40)

where

Ã = [(θ + σu)(bM(α + 1,β, w1)

+ (ρu − σu)((b − 1)M(α,β, w1)]−1 , (41)

and w1 = w(1) = ρu((b − 1)/(2
b .

The explicit forms for the probability distributions can
be obtained directly from the general formulae (26), (27), and
(29), or from direct evaluation from the explicit generating
functions (38) and (39). In either case, one obtains

P0(n) = Ã

n!

(
ρu

(b

)n (α)n
(β)n

[(α+n)(bM(α + n + 1,β+n,w0)

− σu((b − 1)M(α + n,β + n,w0)] , (42)

and

P1(n) = A

n!

(
ρu

(b

)n (α)n
(β)n

M(α + n,β + n,w0), (43)

where in this case w0 = w(0) = −ρu/(2
b . Note that Eq. (42)

for P0(n) is valid for all n ≥ 0.
The fraction of time for which the promoter is bound, foff,

is given by G1(1), and has the form

foff = ρu((b − 1)ÃM(α,β, w1). (44)

The mean number of free proteins, regardless of the state
of the gene, is given by G′

0(1) + G′
1(1) and has the form

〈n〉 = ρuαÃ [(bM(α + 1,β, w1) − ((b − 1)M(α,β, w1)] .

(45)

Unlike the detailed balance case, it does not seem gen-
erally possible to write foff as a function of 〈n〉. The behavior
for small and large 〈n〉 can however be easily deduced. It is
clear that in the limit of large 〈n〉, foff approaches one. The
small 〈n〉 behavior can be inferred by a series expansion of
Eqs. (44) and (45) in powers of ρu,

foff = σbρu

θ(b + σu

+ O(ρ2
u), (46)

〈n〉 = (θ + σu)ρu

θ(b + σu

+ O(ρ2
u). (47)

From these expressions, one can deduce that

foff + σb〈n〉
θ + σu

. (48)
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FIG. 1. Plot of foff as a function of 〈n〉 for the case ρb = 0. The solid lines are generated by evaluating Eqs. (44) and (45) for varying values of ρu. We also
plot, for comparison, the Hill function (dashed lines) given by Eq. (49), whose small and large 〈n〉 limits agree with those of the actual function (the one given
by solid lines). Note that the Hill function is also the prediction of the deterministic model of the genetic feedback loop (Appendix B). The parameters are σ b
= 0.01, σ u = 2 in (a), and σ b = 2, σ u = 0.01 in (b). In both cases θ = 0. Note that the Hill function approximates well the actual function for small σ b; this is
generally the case for all θ .

The intermediate 〈n〉 behavior is however unknown. The de-
pendence of foff with 〈n〉 is most easily explored by numeri-
cally evaluating Eqs. (44) and (45) for various values of ρu. In
Fig. 1 we show two plots generated in this manner, one for σ b

small and the other for σ b large, both with θ = 0. In each case
we compare with the Hill function

f ∗
off = 〈n〉

〈n〉 + θ+σu

σb

. (49)

Note that this function’s small and large 〈n〉 dependence are
the same as those of the exact solution. Furthermore, this
function is the prediction of the deterministic model (see Ap-
pendix B). From Fig. 1, we see that the Hill function is a good
approximation to the actual function for small σ b; in the op-
posite limit of large σ b, the two functions are considerably
different for intermediate 〈n〉. In this case the exact solution
shows a piecewise linear form, with the linear dependence of
foff approximately holding until the function “breaks” at its
threshold value of unity.

As a last comment in this subsection, defining by 〈n〉0 the
average of n conditioned on the promoter being unbound, i.e.,

〈n〉0 =
∑∞

n=0 n P0(n)∑∞
n=0 P0(n)

, (50)

we find the simple form

〈n〉0 = ρuÃ(θ + σu)M(α,β, w1)
(1 − foff)

. (51)

Comparing this with Eq. (44) we have

〈n〉0 = (θ + σu)
((b − 1)

foff

(1 − foff)
, (52)

which can be inverted to obtain the curious result

foff = 〈n〉0

〈n〉0 + (θ+σu)
σb

. (53)

Thus, an equation resembling the Hill function is found, but
the average of n is replaced by the average of n conditioned
on the promoter being unbound (i.e., the gene being switched
on). In fact, one can show that this relationship holds quite

generally (i.e., for arbitrary values of ρb) by summing the
master equation (8) for P0(n) over n and using the definitions
of foff and 〈n〉0.

2. The case α = 0

We saw in Subsection IV A on detailed balance condi-
tions that when α = 0 the Kummer function is a constant, and
G1 then simplifies to an exponential function, giving Poisson
statistics for P1(n) (and also for P0(n) in that case). The cases
considered in this subsection and Subsection IV B 3 are two
further cases in which the exact solution for G1 reduces to a
pure exponential function. Note, we have previously defined
R = ρu − ρb(b. We will not be using R for this case and the
next one, as it is helpful to see the role of ρu and ρb explicitly.

In setting α = 0, but without imposing the two conditions
for detailed balance, we have

G1(z) = Aeρbz, (54)

and Poisson statistics for P1(n). The condition α = 0 can be
written

θ = σu(ρu − ρb)
(ρb(b − ρu)

. (55)

To hold, this relation requires a quite severe constraint on the
range of ρu, namely, ρb ≤ ρu < ρb(b. Given the form of G1

in Eq. (54), one can use Eq. (24) to retrieve the simple ex-
ponential form for G0 and the normalisation condition and
Eq. (28) to fix the two arbitrary constants that arise. After
some algebra one finds

P0(n) = e−ρb

(
1 + (ρb(b−ρu)

σu

) ρn
b

n!
, (56)

P1(n) = e−ρb

(
1 + σu

(ρb(b−ρu)

) ρn
b

n!
. (57)

The mean number of free proteins has the particularly simple
form 〈n〉 = ρb = rb/kf.
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In this and Subsection IV B 3 the special cases
impose non-trivial relationships between parameters (see
Eqs. (55) and (59)). As such, these solutions are valid on hy-
persurfaces in parameter space. Because of this non-trivial
relationship between parameters, one cannot change 〈n〉
through variation of a single parameter, and as such the func-
tional relationship foff(〈n〉) is of limited experimental interest,
and thus we do not report such results here.

3. The case α = β

In setting α = β we can take advantage of the fact that
M(α,α, w) = ew.29 Thus, using Eqs. (19) and (23) we have

G1(z) = A′eρuz/(b , (58)

and, consequently, Poisson statistics for P1(n). Using
Eqs. (21) and (22), the condition α = β translates to fixing
σ u in terms of ρu, ρb, and (b, independent of θ , as follows:

σu = (ρu − ρb(b)((2
b + ρu((b − 1))

ρu(b((b − 1)
. (59)

Note, this condition requires ρu > ρb(b, and so this condition
has no overlap with the condition α = 0 studied above. The
implicit reason for this stems from the definitions of α and β:
while the former can take a value of zero, the latter is always
greater than 1.

One can now substitute the expression for G1(z) into
Eq. (24), and find the explicit form for G0(z),

G0(z) = A′

((b − 1)

[(
ρu − ρb(b

ρu

)
z

+ (b

ρu

(
θ + (ρu − ρb(b)

ρu((b − 1)

)]
eρuz/(b . (60)

Note, the arbitrary constant which arises from integrating
Eq. (24) is found to be zero on application of the condition
(28). Given the z dependence of the prefactor to the exponen-
tial, P0(n) will not have a purely Poisson form.

After some algebra, one finds the explicit forms for the
probability distributions

P0(n) = A′

((b − 1)

[(
ρu − ρb(b

ρu

)
(ρu/(b)n−1

(n − 1)!

+ (b

ρu

(
θ + (ρu − ρb(b)

ρu((b − 1)

)
(ρu/(b)n

n!

]
, (61)

P1(n) = A′ (ρu/(b)n

n!
, (62)

where

A′ = ρ2
u((b − 1)2e−ρu/(b

(b [(ρu − ρb(b) + ρu((b − 1)(θ + ρu − ρb)]
. (63)

Note, Eq. (61) holds for n = 0 with the understanding that
1/(− 1)! = 0.

Using these distributions, we find

〈n〉 = ρu

[
(ρu − ρb(b)(b + ρu((b − 1)(θ + ρu − ρb)

(ρu − ρb(b) + ρu((b − 1)(θ + ρu − ρb)

]
.

(64)

Note that 〈n〉 > ρu, and hence 〈n〉 > ρu/(b which is the pa-
rameter in the Poisson-like distributions.

V. NUMERICAL VALIDATION OF THE EXACT
SOLUTION

In this section we numerically solve the master equations,
Eqs. (8) and (9), and compare with the exact solutions ob-
tained in Sec. III. 2N difference equations are generated by
substituting n = 0, 1, 2, . . . , N − 1 in Eqs. (8) and (9) with
the time derivative set to zero. The boundary conditions are
set to P0( − 1) = P1( − 1) = P0(N) = P1(N) = 0, taking
into account also the absence of probability flux into P0(N)
and P1(N). This set of difference equations is solved simulta-
neously for P0(0), P1(0), P0(1), P1(1), . . . , P0(N − 1), P1(N
− 1). Note that the exact solution corresponds to N equals
positive infinity. Of course practically we are only interested
in obtaining the probability distribution solution to some de-
sired accuracy and hence it is sufficient to solve the equations
for a large enough positive integer N. This should be chosen
large enough such that the probability distribution solution
P0(n) + P1(n) smoothly decays to zero as n approaches N.

We use the latter method with N = 500 to obtain
the dependence of the steady-state probability distribution
solution of the master equations, Eqs. (8) and (9), on the five
non-dimensional parameters θ , σ b, σ u, ρb, and ρu. The same
is obtained by means of the analytical solutions given by
Eqs. (26), (27), and (29). The results from the two methods
are compared in Fig. 2 where the open circles show the
numerics and the crosses show the analytical solution. Note
that in all cases, P(n) goes to zero for n much less than 500
and hence artificial boundary effects due to finite N should be
negligible; indeed we verified that the probability distribution
solution obtained with N = 1000 is indistinguishable from
the one obtained with N = 500. Note that the numerics and
the analytical solution are in perfect agreement which indeed
verifies the correctness of the main result of this paper,
namely, the exact solution given by Eqs. (26), (27), and (29).

It is interesting that in (a) and (b), as we gradually in-
crease θ and σ b, respectively, we observe a transition from
a bimodal to a unimodal probability distribution while in (c)
we see the reverse transition as the parameter ρu is increased.
The bimodal character of the distribution is particularly inter-
esting since the deterministic model of the genetic feedback
loop does not exhibit bistability (see Appendix B). The mech-
anism behind the origin of bimodality and the transition from
bimodal to unimodal behavior can be inferred as follows. In
cases (a)–(c), the peaks of the bimodal distribution occur at
n + ρu and at n + ρb while the single peak of the unimodal
distribution occurs at one of these two (depending on param-

eter values). Now the processes Du
ru−→ Du + P, and P

kf−→ Ø
considered by themselves lead to a Poisson distribution for the
number of protein molecules with peak at n + ρu in steady-
state conditions; similarly a peak at n + ρb can be associ-

ated with the processes Db
rb−→ Db + P, and P

kf−→ Ø. Hence,
it is clear that bimodality occurs whenever the gene switches
slowly between its bound and unbound states which leads to
a switch between the two sets of reactions discussed above.
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FIG. 2. Dependence of the steady-state probability distribution on the non-dimensional parameters θ (panel a and f), σ b (panel b), ρu (panel c), σ u (panel d),
and ρb (panel e). The distributions are obtained by numerically integrating the master equations, Eqs. (8) and (9) (shown by the open circles), and by evaluating
the analytical solutions, Eqs. (26), (27), and (29) (shown by the crosses). The perfect agreement of the two verifies that the latter equations are an exact solution
of the master equation for the self-regulating gene. The solid lines are a guide to the eye.

Inspection of the reaction mechanism Eq. (1) shows that the
switching rates increase with θ , σ b, and σ u. Hence, if for some
parameter set we have bimodality, increasing any one of the
aforementioned three parameters will lead to a switch from
bimodal to unimodal behavior; these are cases (a) and (b).
If we have unimodality then the distribution will of course
stay unimodal upon variation of one of the three parameters;
this is case (d). Slow transitions between unbound and bound
states are necessary but not sufficient to induce bimodality;
the protein production rates of the two gene states must be
sufficiently different such that the peaks of the Poisson dis-
tributions associated with each state are well separated; this
is case (c). Cases (a)–(d) are ones in which the genetic feed-

back loop is negative, i.e., ρb ≤ ρu. In contrast cases (e) and
(f) are for a positive feedback loop, i.e., ρb > ρu. As for
the negative feedback case, both unimodal (case (e)) and bi-
modal behaviors (case (f)) are possible and their existence can
be understood by the same switching mechanism elucidated
above. For example, the case θ = 0 in (f) is bimodal with
peaks at n + ρu and n + ρb indicating slow switching be-
tween the steady states of the bound and unbound genes. In-
creasing θ leads to an increase in the switching rate from the
bound to the unbound states explaining the increase in the size
of the peak associated with the unbound state and the corre-
sponding decrease of the peak size associated with the bound
state.
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VI. CRITIQUE OF A PREVIOUS “EXACT” SOLUTION

In this section we make a careful and explicit compar-
ison of our master equations with those of Hornos et al.19

in the original paper claiming an exact solution to the prob-
lem of a self-regulating gene with the condition kf = kb (i.e.,
θ = 1). In that work, the variable n of the probability distri-
butions represents the total number of proteins in the system,
that is the number of free proteins plus (when the promoter is
bound) the bound protein.

The following key provides the translation between the
notation we have used in Sec. II and the notation of Hornos
et al.

P0(n, t) ←→ αn(t), (65)

P1(n, t) ←→ βn+1(t), (66)

ru ←→ gα, (67)

rb ←→ gβ, (68)

kf ←→ kf , (69)

kb ←→ kb, (70)

su ←→ f, (71)

sb ←→ h. (72)

Note, in their original work, Hornos et al. assume from the
outset that the rates of degradation of free and bound proteins
are the same, and use the symbol k for this degradation rate.
Here, for clarity in the handling of these two different pro-
cesses, we allow the rates to be different, and use the symbols
kf and kb consistent with the notation used in Sec. II, setting
them equal eventually.

With the key given above, the correct master
equations (2) and (3) take the form

d

dt
αn(t) = gα (αn−1 − αn)

+ kf ((n + 1)αn+1 − nαn)

+ kbβn+1 + fβn − hnαn, (73)

d

dt
βn = gβ (βn−1 − βn)

+ kf (nβn+1 − (n − 1)βn)

− kbβn − fβn + hnαn. (74)

The first equation is valid for n ≥ 0 while the second equation
is valid for n ≥ 1. The boundary conditions P0( − 1, t) =
0 and P1( − 1, t) = 0 imply the new boundary conditions
α−1 = β0 = 0.

On setting the free and bound degradation rates to be
equal kf = kb = k, the master equations above take the form

d

dt
αn(t) = gα (αn−1 − αn)

+ k ((n + 1)αn+1 − nαn)

+ kβn+1 + fβn − hnαn, (75)

d

dt
βn = gβ (βn−1 − βn)

+ k (nβn+1 − (n − 1)βn)

− kβn − fβn + hnαn. (76)

We are now in a position to directly compare these master
equations with those of Hornos et al. Equations (1) and (2) of
that paper read (for n > 0)

d

dt
αn(t) = gα (αn−1 − αn)

+ k ((n + 1)αn+1 − nαn)

+ fβn − hnαn, (77)

d

dt
βn = gβ (βn−1 − βn)

+ k (nβn+1 − (n − 1)βn)

+ k (βn+1 − βn) − fβn + hnαn. (78)

Obviously, in the second and third lines of Eq. (78) one can
combine the terms with a prefactor of k to give k((n + 1)βn + 1

− nβn), but we have separated these terms to emphasise the
comparison to the correct Eq. (76) in which, as stressed in
Sec. II, each line of the equation corresponds to processes
occurring on the gene, the cytosol, and the promoter, re-
spectively. In order to conserve probability, Hornos et al. are
obliged to write a separate equation for n = 0 which reads

d

dt
α0(t) = −gαα0 + k(α1 + β1), (79)

which is consistent with Eq. (75) for n = 0 and using the
boundary condition α−1 = 0. They also enforce the boundary
condition β0 = 0. The same master equations, Eqs. (77) and
(78), appear also in several followup papers.20–22

Let us denote the master equations (75) and (76), as
ME(GSN), and the master equations (77) and (78) as ME(H-
ET-AL). Clearly ME(GSN) and ME(H-ET-AL) are different,
and given they purport to describe the same process, they can-
not both be correct. The difference between the two sets of
equations is in how degradation of the bound protein is de-
scribed. In our master equations ME(GSN), which were de-
rived from Eqs. (2) and (3) by use of the key, if the bound
protein is degraded, the system returns to the unbound state,
i.e., that process connects the two conditional probabilities αn

and βn + 1. In ME(H-ET-AL), degradation of the bound pro-
tein keeps the system in the bound state. How is this possible?
Literally, the ME(H-ET-AL) master equations are describing
bound protein degradation as the following composite of pro-
cesses: degradation of the bound protein, with instantaneous
rebinding of a protein to the promoter from the free protein
pool, such that the state βn + 1 transitions to the state βn. This
composite of processes occurs with a constant rate k, inde-
pendent of the number of free proteins. Clearly this compos-
ite of processes is not the intended instantiation of the self-
regulating gene, and furthermore, it is difficult to imagine any
physical process that could operate in this manner. One could
concoct an imaginary process using a Maxwell Demon, a tiny
animated figure, who sits by the promoter with a free protein
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FIG. 3. Comparison of the steady-state probability distributions as predicted by the master equations ME(GSN) (open circles) and ME(H-ET-AL) (solid lines).
The distributions are obtained by numerically integrating the two master equations to obtain P(n) = αn + βn + 1 as a function of n, the number of free proteins.
The binding and unbinding rates of the protein to the promoter region, h and f, respectively, take progressively larger values as we go from (a) to (d), while the
rest of the parameters are fixed. Explicitly, gα , gβ , and k are, in all cases, equal to 80.0, 0.0, and 1.0, respectively, while h = 0.001, and f = 0.1,, where ,
takes the values 0.01 in (a), 1 in (b), 10 in (c), and 100 in (d). Note that the ME(H-ET-AL) predicts a transition from unimodal (a) to bimodal (b) and back to
unimodal probability distribution (c) and (d), while the ME(GSN) predicts a unimodal distribution in all cases. This example shows that the incorrect handling
of bound protein degradation by the ME(H-ET-AL) leads to qualitatively incorrect features of the steady-state probability distribution.

always to hand, to instantaneously latch onto the promoter
should the bound protein be degraded, but such constructions
belong to philosophical discussions of irreversibility, and are
not relevant to the biological question at hand.

One might argue that the manner in which the bound
protein degradation is handled has little bearing on the form
of the distributions. To test this, we used the method ex-
pounded in Sec. V to numerically solve the two master equa-
tions, ME(GSN) and ME(H-ET-AL), in steady-state condi-
tions for four different sets of parameter values. The results
are shown in Fig. 3, where the open circles show the predic-
tions of ME(GSN) while the solid lines show the prediction of
ME(H-ET-AL). The parameters gα , gβ , and k are, in all cases,
equal to 80.0, 0.0, and 1.0, respectively, while h = 0.001,

and f = 0.1,, where , takes the values 0.01 in Fig. 3(a), 1
in Fig. 3(b), 10 in Fig. 3(c), and 100 in Fig. 3(d). Note that
as , is varied from 0.01 to 100, the ME(H-ET-AL) predicts a
transition from unimodal to bimodal probability distribution
and back to unimodal distribution. However, no such transi-
tions are seen in ME(GSN). Note that the case , = 1 in Fig.
3(b) corresponds to the exact set of parameters used in the
case ω = 0.1 in Fig. 1 of the Hornos et al. paper.19 The good
agreement between ME(GSN) and ME(H-ET-AL) for cases
(a) and (d) can be explained as follows. In case (a), the rate

of protein binding to the promoter is very small, the gene is
most of the time in the unbound state and hence bound pro-
tein degradation rarely occurs. In case (d), the gene switches
between the unbound and unbound states very rapidly but
its decay to the unbound state occurs primarily via the re-
action Db −→ Du + P and only occasionally via the reaction
Db −→ Du. In both cases, bound protein degradation is a rare
event compared to the other molecular processes and hence it
follows that the form of the probability distribution is practi-
cally insensitive to whether bound protein degradation is cor-
rectly or incorrectly described. In cases (b) and (c), bound
protein degradation events occur at a frequency comparable
with that of other molecular processes, and hence its correct
description using the ME(GSN) becomes crucial to obtaining
the correct steady-state probability distribution. The discus-
sion on the role of θ , particularly when it approaches unity,
explains why the bimodal distribution is not to be expected in
a correct formulation of this problem.

It is worth mentioning that a cursory comparison of our
results with those of Hornos et al. indicates some similari-
ties, which are in some cases superficial. For example, Hornos
et al. find Kummer function solutions for the generating func-
tions. Note, in the solution of ME(H-ET-AL), it is the gener-
ating function conditioned on the unbound promoter (G0 in
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our notation) which is expressed in terms of a single Kum-
mer function, while the generating function conditioned on
the bound promoter (G1 in our notation) is expressed in terms
of a sum of Kummer functions. In our exact solution of the
correct master equation ME(GSN) we find that G1 is the gen-
erating function which has the simple form in terms of a single
Kummer function, as shown in Eq. (23), while G0 involves
integrals of Kummer functions, and does not have a simple
closed form expression. We also note that Figure 2 of Hornos
et al. shows a plot of foff versus 〈n〉, which indeed continu-
ously varies from the Hill form to a linear piecewise form as
σ b is decreased, similar to our result shown in Figure 1. In
the caption of Figure 2 of their paper, the curious relation be-
tween foff and 〈n〉0 is noted, similar to our Eq. (53), although
the combination (θ + σ u)/σ b in our equation is replaced by
σ u/σ b in theirs, indicating again the incorrect handling of pro-
tein degradation in that work.

Qian et al.23 studied the case where the bound protein
does not degrade (i.e., θ = 0). The coupled master equations,
Eqs. (17)(a)– (17)(b) in their paper, are the same as our mas-
ter equations, Eqs. (73) and (74), with kb = 0. Hence, their
master equations are correct for this special case. However,
they do not solve these equations exactly. Rather they derive
an approximative solution in the limit that the gene switches
between the Du and Db states very rapidly and in the limit that
the switching occurs very slowly. In the latter limit, i.e., the
limit of small protein binding and unbinding rates to the pro-
moter, they show that the probability distribution is bimodal
if the production rates of the gene in the bound and unbound
states are sufficiently different. This is confirmed by our exact
solution, see the case θ = 0 in Figs. 2(a) and 2(b). We find that
this bimodal behavior disappears when θ is increased from 0
to 1 (see Fig. 2(a)).

VII. CONCLUSIONS

In this paper we have presented an exact solution for the
simplest model of a self-regulating gene. Our solution is valid
for an arbitrary degradation rate of the bound protein, which
we have denoted throughout the paper by the parameter θ in
dimensionless units. The explicit solution for the probability
distributions for the number of free proteins, conditioned on
the gene’s promoter being bound or unbound, are given by
Eqs. (26) and (27), respectively. It is interesting that an ex-
act solution for this general case can be found given that the
model breaks detailed balance and includes a bimolecular re-
action step, features not typical of the exact solutions reported
in the literature.4–9, 11 In particular, to the best of our knowl-
edge, our exact solution is a first for a gene regulatory net-
work with a feedback loop. As we have shown, the previous
exact solution claimed by Hornos et al.19 for the special case
in which bound and free protein degradation are equal is in-
correct because it is based on master equations which possess
no coherent physical interpretation.11

We anticipate that our exact solution will be useful to ex-
plore the dependence of common experimental measures of
noise intensity, e.g., the coefficient of variation32 and Fano
factors,33 on various parameter values and on the nature of
the feedback loop (repressing or activating). This may lead to

insights into the mechanisms used by cells to regulate fluctu-
ations in the protein concentrations, a topic of intense current
research.34, 35 Other interesting avenues of research, which we
have briefly touched upon in this paper, are the investigation
of the transition from unimodal to bimodal protein distribu-
tions, and of deviations from the Hill function describing ac-
tivation or repression of the gene. Our exact solution will en-
able a more thorough analysis of these topics which could
previously only be investigated by means of approximation
methods in some restricted parameter regimes.

For chemical systems involving bimolecular reactions,
the moment equations obtained from the master equation
cannot generally be solved in closed form, and thus vari-
ous approximations of the master equation have been de-
veloped. In particular for systems composed of unimolec-
ular and bimolecular reactions, the time-evolution equation
of the Mth central moment of the probability density func-
tion solution of the master equation is generally a func-
tion of the (M + 1)th central moment. This implies an infi-
nite hierarchy of coupled equations which cannot be gener-
ally solved,36 although see Ref. 37 for an exception. In the
limit of intermediate or large numbers of molecules, various
methods have been developed to obtain approximate expres-
sions for the moments (examples of two widely used meth-
ods are the system-size expansion26, 38–42 and moment-closure
approximations36, 43–46). However, the reliability and accuracy
of these methods when applied to systems characterized by
low copy number of molecules and bimolecular reaction steps
has remained an outstanding question of practical interest.
Hence, we anticipate that our exact solution will also provide
a useful benchmark with which to compare the gamut of ap-
proximation methods used to estimate the effect of noise in
biochemical systems.
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APPENDIX A: THE CASE R = 0

The exact solution presented in Eqs. (19) and (21)–(23)
assumes that the parameter R = ρu − ρb(b is different to
zero. The case R = 0 requires a separate analysis, either by
taking a careful limit of the Kummer function solution (23),
or else by reexamining the second-order differential equation
(14) explicitly for R = 0. For illustrative purposes, we demon-
strate the second method here, and derive an exact expression
for G1(z) and P1(n). These calculations can be extended to
derive the exact form for P0(n), if desired by the reader.
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Starting with Eq. (14) we set R = 0 by writing ρb =
ρu/(b. We make the double transformation

G1(z) = exp(ρu/(b) G̃1(z), (A1)

and

u = (z − 1/(b)1/2, (A2)

to obtain the differential equation for G̃1(u) which has the
form

d2G̃1

du2
+ (2γ + 1)

u

dG̃1

du
− λG̃1 = 0, (A3)

where

γ = θ + σu

(b

+ ρu((b − 1)
(2

b

, (A4)

and

λ = 4ρuσu((b − 1)
(2

b

. (A5)

Equation (A3) can be directly related to the differential equa-
tion for the Bessel function,29 and we have

G̃1(z) = Au−γ Iγ (λ1/2u), (A6)

where A is a normalisation constant and Iγ is the modified
Bessel function. Note, I−γ is an independent solution (for γ

not equal to an integer), but can be discarded, since its asymp-
totic properties lead to a non-normalisable probability distri-
bution.

In order to derive an explicit form for P1(n) we use
Eq. (25), and the differentiation formula29

(
1
v

d

dv

)n

v−γ Iγ (v) = v−γ−nIγ+n(v). (A7)

This provides the final result

P1(n) = A′

n!

n∑

m=0

Cn
m

(
ρu

(b

)n−m (
λ

2

)m

×
(

(b

λ

)(m+γ )/2

Jγ+m

(
(λ/(b)1/2) , (A8)

where A′ is a normalisation constant. The reason the Bessel
function J appears in P1 rather than the modified Bessel
function I is due to the argument of Eq. (A6) becoming
imaginary when z = 0.

APPENDIX B: MEAN-FIELD THEORY

We consider a fictitious experiment in which the cell
membranes of a large number of identical cells enclosed in
some reaction volume 0 are dissolved such that the genes
and proteins from each individual cell can interact with that
from every other cell. The well-mixed dynamics of this re-
action system is deterministic (due to the large number of
cells) and the state of the system at any point in time is de-
scribed by two variables: the concentration of unbound DNA
molecules, φu, and of the protein, φ. Note that the concen-
tration of bound DNA molecules is φb = φT − φu (where
φT is the concentration of bound and unbound DNA) and is

hence not an independent variable. The conventional mass-
action rate equations for the concentrations can be directly
deduced by inspection of the reaction scheme Eq. (1) and are
given by

∂tφu = kb(φT − φu) − kφuφ + su(φT − φu), (B1)

∂tφ = ruφu + rb(φT − φu) − kf φ − kφuφ + su(φT − φu).
(B2)

Note that the bimolecular rate constant k is not sb but rather
is equal to sb0. This is since sb is a transition rate with units
of inverse time and hence is in reality equal to the macro-
scopic rate constant k (with units of volume divided by time)
divided by the reaction volume. Note also that these equations
are based on the implicit assumption that the covariance of
fluctuations in the number of molecules of any pair of species
is zero, i.e., fluctuations are not important.

In order to compare with the single gene results derived
in the main text, we first multiply the above equations by the
reaction volume 0 and then set this volume equal to the cellu-
lar volume, i.e., 0φT = 1, which leads to mean-field equations
for the average molecule numbers of unbound DNA 〈nu〉 and
of protein 〈n〉 in a cell

∂t 〈nu〉 = kb(1 − 〈nu〉) − sb〈nu〉〈n〉 + su(1 − 〈nu〉), (B3)

∂t 〈n〉 = ru〈nu〉 + rb(1 − 〈nu〉) − kf 〈n〉 − sb〈nu〉〈n〉

+ su(1 − 〈nu〉). (B4)

These equations admit a single steady-state solution for 〈nu〉
and 〈n〉 implying that the deterministic model does not predict
bistability.

Within this approach, the quantity 1 − 〈nu〉 can be inter-
preted as the fraction of time that the promoter is bound, foff.
Substituting in the latter equation, the steady-state solution of
Eq. (B3) for 〈nu〉, and using the dimensionless rates as given
by Eq. (6), one obtains the Hill equation

foff = 〈n〉
〈n〉 + θ+σu

σb

. (B5)
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