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Self-assembled fibre optoelectronics with discrete
translational symmetry
Michael Rein1,2,3, Etgar Levy2,3, Alexander Gumennik4, Ayman F. Abouraddy5, John Joannopoulos2,3,6

& Yoel Fink1,2,3

Fibres with electronic and photonic properties are essential building blocks for functional

fabrics with system level attributes. The scalability of thermal fibre drawing approach offers

access to large device quantities, while constraining the devices to be translational sym-

metric. Lifting this symmetry to create discrete devices in fibres will increase their utility.

Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-

contacting continuous domains; a semiconducting glass between two conductors. We then

heat the fibre and generate a capillary fluid instability, resulting in the selective transformation

of the cylindrical semiconducting domain into discrete spheres while keeping the conductive

domains unchanged. The cylindrical-to-spherical expansion bridges the continuous

conducting domains to create B104 self-assembled, electrically contacted and entirely

packaged discrete spherical devices per metre of fibre. The photodetection and Mie

resonance dependent response are measured by illuminating the fibre while connecting its

ends to an electrical readout.
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I
n recent years, multimaterial fibre devices with capabilities
ranging from acoustic sensing to transduction1–4 to
multimodal neural interfaces5 have emerged. These devices

typically contain continuous conductive domains spanned by a
material that responds to a stimulus or excitation. Drawn from a
fluid state, the interfaces between the disparate fibre materials
define a surface tension that renders the continuous internal
domains thermodynamically unstable with respect to their
discrete counterparts6,7.

A fibre with multiple continuous internal fluid domains of
disparate sizes and composition will, in principle, undergo break-
up and form parallel arrays of spheres, each with its own
periodicity, as illustrated by Fig. 1a. However, since the kinetics of
fluid instabilities are dictated not only by surface tension, but also
by the dimensions of the domain and its viscosity, one can
consider the possibility of designing a fibre where a selective
break-up occurs targeting only specific domains, while keeping
others continuous as illustrated in Fig. 1b. By doing so, one could
maintain the electrical transport benefits of the continuous
domains while taking advantage of discrete geometries that offer
differentiated device attributes.

In the following, we report on thermal draw of a macroscopic
preform, which results in a fibre that has three parallel internal

non-contacting continuous domains; a semiconducting glass
between two conductive polymers. We then heat the fibre and
generate a capillary fluid instability, which results in the selective
transformation of the cylindrical semiconducting domain into
discrete spheres while keeping the conductive domains
unchanged. The cylindrical-to-spherical lateral expansion bridges
the continuous conducting buses to create B104 self-assembled,
electrically contacted and entirely packaged discrete spherical
devices per meter of fibre. These results in a photodetecting fibre
devices with spherical active components, whose Mie resonance
dependent wavelength responsivity is measured.

Results
Principles of selective break-up. Fluid instability in fibres can be
described by an instability model for a cylindrical thread of viscous
liquid (core of the fibre) that is surrounded by another viscous
liquid (the cladding of the fibre) as developed by Tomotika8.
According to this model, a sinusoidal perturbation of a wavelength
l grows exponentially with a time constant t given by

t ¼ t0= 1� x2
� �

F x; minner=mcladð Þ
� �

; ð1Þ

where x�2pa/l, a is the radius of the inner fluid, either the
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Figure 1 | The approach towards selective break-up in multicore fibres. (a) Illustration of the break-up process of a fibre that contains three cores when

the heating duration is longer than the capillary break time constant of the three cores. This case corresponds to the area marked as ‘Broken core and

electrodes’ in c. (b) Illustration of the selective break-up process. A semiconducting core fibre that is placed on a hot plate is heated (illustrated by the

yellow area) and the inner core undergoes break-up while the electrodes stay continuous—forming self-assembled spherical photodetectors inside the

fibre. This case corresponds to the area marked as ‘Broken core continuous electrodes’ in c. (c) Fibre inner component ‘phase’ diagram calculated for the

semiconducting core (red) and electrodes (black). Long heating time of the fibre (post draw), at high temperature leads to electrode and core break-up.

Lines correspond to the timescale of break-up (as defined by equation (1)). Selective break-up is achieved in the domain between the red and black curves

(shaded green area). The conditions that were used in our case are denoted by a black circle. Calculation performed for a semiconducting core radius of

50mm and electrode cross section of 90� 190mm.
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semiconducting core or the electrodes; t0 � 2amclad=g, mclad and
minner are the viscosity of the cladding and the inner fibre
component, respectively; g is the interfacial surface tension
between the two liquids, and F is a function defined in ref. 8,
and displayed in Supplementary Note 1.

The fibre was designed such that at a temperature range of
200–300 �C, the capillary break-up timescale of the semiconduct-
ing core would occur over several minutes—an order of
magnitude shorter timescale than that of the conducting domains.

With the above design criteria in mind, the inner core was
chosen from equation (1) to be an amorphous semiconducting
material—As2Se5. The electrodes were chosen to be a carbon
black filled polyethylene matrix (CPE), with lateral dimensions
twofold greater than the semiconducting core. Polycarbonate
(PC) was chosen as the cladding material as it is perfectly
transparent in the visible and near-infrared wavelength domain,
and allows for in-situ optical observation of the break-up process.
The surface tension between As2Se5 and PC is (ref. 9)

114 mJ m� 2, which is significantly higher than that of CPE–PC
interface10—30 mJ m� 2. These surface tension and cross
sectional dimension disparities yield electrode break-up
timescales that are more than one order of magnitude longer
than the core disintegration timescale as shown by the black and
red lines in Fig. 1c. (This figure was derived from data shown in
Supplementary Fig. 1 and Supplementary Table 1).

Fibre draw. The fibres were produced starting with a macroscopic
preform, such that when scaled down through a thermal drawing
method, results in a fibre of the desired cross sectional structure.
Figure 2a,b demonstrate the process of the fibre draw, of a fiber that
contains a central semiconducting core radius of 50mm, flanked by
two electrodes placed in the proximity of the core with a gap to be
bridged by the spheres in the break-up process.

To avoid fibre shrinkage during the subsequent break-up,
the draw was performed at relatively high temperatures

CPE electrodes

As2Se5 core PC cladding

a

c d

b

Figure 2 | Fibre structure and draw. (a) Illustration of the fibre preform structure—chalcogenide glass (As2Se5) (red core) and two carbon black

polyethylene composite (CPE) electrodes (black cores) are inserted into a polycarbonate (PC) cladding. The preform is scaled down in the drawing tower

furnace into a fibre. (b) Optical micrograph of the cross section of the fibre shown in a. The semiconducting core has a radius of 50mm. (Scale bar, 200mm)

(c) The fibre illustrated in a is inserted into another preform with extended electrodes to facilitate connection to the fibre after draw. This preform is drawn

again in order to reduce the size of the chalcogenide core. (d) Optical micrograph of a redrawn fibre with extended electrodes and a chalcogenide core of

5 mm radius; Inset—optical micrograph of the active region of the redrawn fibre. (Top black scale bar, 100 mm; Bottom red scale bar, 20mm).
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(270� 300 �C) to ensure a draw stress below 100 gr mm� 2. It is
worthwhile to note that the drawn structures do not undergo
break-up during the draw process itself as the time the fibre
spends in the hot zone of the furnace is much shorter than the
timescale required for break-up.

To further reduce the radius of the semiconducting cores from
50 to 5mm and 2.5 mm, the 50mm core fibre was inserted into a
core of subsequent preform made of PC and was redrawn.
Extensions to the electrodes were added to the encapsulating
preform at the redraw step to facilitate electrical interfacing to the
redrawn fibre, as shown in Fig. 2c,d. This allowed to reduce the
sphere diameter and hence to achieve spectrally resolvable
resonant light interaction with the spheres. Generally, this
approach allows forming electrical connection to a wide range
of component sizes, demonstrating a hierarchical structure for
electrical connection that produces a macroscopic electrical
connection to microsphere arrays spanning three orders of
magnitude of size difference.

Inducing selective break-up. After the draw, the fibres were
heated isothermally on a hot plate at 230 �C, a temperature at
which both the semiconducting core and the polymeric cladding
are in liquid / soft state with a low enough viscosity such that the
break-up happens reasonably fast. This heating was conducted
until the desired structure was achieved as illustrated in Fig. 3a.
Figure 3b–d show the evolution of the fibre structure during the
break-up of a 50mm radius central core fibre. The chalcogenide
core breaks into spheres with periodic pitch, while the electrodes
remain intact (see Supplementary Movie 1). A self-assembled
fibre structure is achieved with a broken translational symmetry
along the fibre axis. This approach is universal, scalable in size
and can be used over a wide set of materials, paving the way for a
new set of hitherto unachievable fibre devices. The sphere size is
relatively uniform, but should be considered polydisperse, with a
standard deviation to mean ratio of 9%. The sphere radius and
subsequent pitch period distribution could be attributed to
distribution of initial perturbation amplitudes, which would result

in a dispersion in sphere radii. Similar results were obtained for
spheres with radii of 5 and 11 mm (see Supplementary Note 2,
Supplementary Figs 2–4 and Supplementary Table 2).

The ratio between the sphere radius, R, and the core radius, a,
can be derived from volume conservation as R=a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lð Þ= 4að Þ3

p
,

where l is the period spacing between the spheres along the fibre
axis. Along with the Rayleigh condition—lZ2pa (refs 11,12), the
resulting sphere radius is larger than the initial core radius. As the
capillary break-up starts from an arbitrary perturbation in the
core radius, it is expected that the distance between two adjacent
spheres should correspond to the perturbation wavelength with
the minimal time constant (or the maximal growth rate). The
perturbation wavelength that is associated with the shortest
growth time constant in our case, according to equation (1) is
l ffi 13:66a. Assuming volume conservation, we get that
R¼ 2.17a. These relations, which are derived by the Tomotika
model8, were found to be in a good agreement with our
experimental results obtained for different core radii (See
Supplementary Note 1, Supplementary Fig. 5, Supplementary
Table 2). We note that the distance between the electrodes and
the semiconducting core in the preform was designed such that it
is approximately equal to (R� a)b, where b is the draw down
ratio.

Photoresponse characterization. The electro-optical behavior of
the fibres post break-up was characterized by illuminating the
fibre structure with a continuous wave Ti:Sapphire laser source
with a wavelength of 760±1 nm, power of 55 mW, through a
spherical lens that resulted in spot full width half maximum
(FWHM) radius of 22 mm. The light was incident with an angle of
90� with regards to the fibre axis, as shown in Fig. 4a. The electric
current was recorded for various forward and reverse voltages,
under dark and with laser illumination conditions.

Figure 4b shows the IV curve of a fibre that contained spheres
with a radius of 11 mm. The current at a given voltage is
considerably higher when it is illuminated—exhibiting a notice-
able photo resistive effect. The theoretical dependence of the

c

a b

d

Figure 3 | Evolution of selective break-up in fibres. (a) Illustration of the selective break-up process in the fibre. (b) Optical micrograph of a fibre with a

semiconducting core radius of 50mm designed to undergo selective break-up—before break-up. (c) Optical micrograph of a fibre during the onset of

break-up process—the inner core develops instability, while the electrodes are kept continuous. (d) Optical micrograph of a fibre after break-up with

chalcogenide glass spheres with a radius of 107 mm, connected to continuous electrodes. (Scale bar, 1 mm).
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current on the applied voltage is described in Supplementary
Note 3, while further experimental results made with 5 mm
spheres are shown in Supplementary Fig. 6.

The self-assembled structure has photodetecting properties,
and it is the first photodetecting structure obtained through
selective break-up in fibres. This result demonstrates the ability to
integrate electronic devices in two steps—fibre draw and
subsequent heat treatment. The photoresistive behavior of
these fibres is similar, in principle, to previously demonstrated
fibres13–15 that contained continuous semiconducting core and
conductors in contact, although a different semiconducting
material was used. The measured dark and photo currents in
the spherical semiconducting fibres depend on the geometrical

dimensions of the devices, such as the small contact area between
the electrodes and the core, which influence the absolute value of
both currents, together with the excitation wavelength and the
laser power (as fully described in Supplementary Note 3 and
Supplementary Tables 3–6).

Resonative photoresponse characterization. Spherically shaped
structures are perfect candidates for resonant light coupling, and
are extensively used as optical filters or gain media16,17.
Chalcogenide glass resonators were fabricated previously using
a multitude of approaches18–21. The majority characterization
attempts of the resulting devices have focused on the optical
properties of a single sphere, manipulated individually and
evanescently coupled to a tapered fibre or a waveguide.
Using the approach mentioned above, we were able to obtain a
large amount of in-fibre integrated chalcogenide spheres
contacted by continuous electrodes in parallel. Optical
resonances in this configuration can be directly coupled to
photodetection, which results in increased photoconduction, that
is directly registered by electronics interfaced to the device
electrodes. This modality was not previously achievable with
photodetecting fibres13–15 as the core shape was cylindrical,
whereas, with spherical semiconducting core, photoelectric
resonances become available.

Such photoelectric resonances in a single sphere were recently
reported22. Mie’s theory23,24 is used here to explain the resulting
resonant behavior of our fibre devices. The resonances were
characterized using an experimental set-up illustrated in Fig. 4a.
The fibre was illuminated with a continuous wave radiation of a
Ti:Sapphire laser with a spectral width (FWHM) below 1 nm.
This laser source was chosen since it delivers up to 100 mW
narrow band radiation at the desired wavelength range of 750 to
900 nm—near the absorption edge of As2Se5. Two different
modes of illumination were investigated: a single sphere
excitation—by focusing the light through a spherical lens as
shown in Fig. 5a (FWHM of 22 mm), and a multi-sphere
excitation—by illumination through a cylindrical lens, as shown
in Fig. 5b (two-dimensional Gaussian beam with a FWHM of
462� 180 mm), to produce an elliptical light spot. For a given
sphere radius, the photocurrent was mapped as a function of
wavelength while the laser wavelength and the power were
concurrently monitored. The photoelectric responsivity, rm, (as
defined in Supplementary Note 3, Supplementary Equation 17),
was measured as a function of wavelength, and is shown in Fig. 5c
for a 5 mm sphere radius in the case of single-sphere excitation,
while Fig. 5d shows results for multi-sphere excitation. The
theoretical prediction based on Mie theory, both for single and
multi-sphere excitation was calculated and is expressed in terms
of the calculated responsivity, which was shown to be
proportional to the normalized absorption cross section �Qabs.
(See Supplementary Notes 3,4, Supplementary Figs 7 and 8).

The results in Fig. 5c,d suggest that both the measured and the
theoretically calculated responsivity contain resonant, periodic
features. Due to sphere polydispersity, Mie resonances are less
pronounced in the case of multiple sphere excitation, consistent
with previous findings25,26. The polydispersity was taken into
account (see Supplementary Note 4) when estimating the
theoretical responsivity for multi-sphere excitation. This was
performed by randomly drawing a finite number (equal to the
number of illuminated spheres) of sphere radii out of a normal
distribution with the measured radius mean and corresponding
s.d. The responsivity was calculated for every sphere, and then the
total responsivity was computed by averaging the individual
contributions of each sphere, which is shown by the red curve in
Fig. 5d.
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Figure 4 | Photodetection measurement set-up and photoresistance

characterization. (a) Schematic representation of the experimental set-up

used to characterize photodetection and resonative photoresponse of

selectively broken fibres. The fibres are illuminated with a Ti:Sapphire laser

(operated at a wavelength of 760±1 nm, and power of 55 mW), while the

laser power, spectrum and fibre photoresponse is being recorded

simultaneously. (b) Main figure—measured current versus voltage curve of

the photodetecting fibre with spheres with an average radius of 11mm under

laser illumination (green), compared with the dark current (black). The set-

up shown in a was used, while illuminating a single sphere; Inset—IV curve

obtained in the dark (black), the dark current of the fibres prior to break-up

(dashed red line)—shows no measurable current due to lack of contact

between the semiconducting core and the electrodes.
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Figure 5 | Resonative photodetection characterization. (a) Illustration of the fibre characterization area where only one sphere is excited by the laser

(through a spherical lens). The laser wavelength was tuned continuously. The measurements of the current, wavelength and the laser power were

recorded, as shown in Fig. 4a. (b) Illustration of the fibre characterization area where several spheres are excited by the laser (through a cylindrical

lens). (c) Experimentally measured responsivity (black) compared with theoretically calculated responsivity (red) as a function of wavelength for a fibre

with a sphere radius of 5 mm. The fibre was illuminated by a spherical lens in a single sphere excitation as described in a. (d) Experimentally measured

responsivity (black) compared with theoretically calculated responsivity (dashed red) as a function of wavelength for a fibre with a sphere radius of

5 mm. The fibre was illuminated by a cylindrical lens in a multiple sphere excitation as described in b. Here the polydispersity of the spheres was taken

into account (see Supplementary Note 4). The resonant peaks are less pronounced due to polydispersity of the spheres. (e) The FFT density of the

experimental responsivity (black) and the theoretical responsivity (red) as a function of wavelength between two adjacent resonant peaks are

described in the upper and the lower graphs, respectively, calculated for a single sphere excitation. The location of the first order peak in the

experimental and the theoretical results is Dlpeak¼8.5±0.5 nm and Dlpeak¼8.8 nm, respectively (marked by an arrow). (f) Comparison between the

theoretical peak location of the FFT density as a function of sphere radius (red dashed-line), for the case of single sphere and the experimental results

for single- (black circle) and multiple-sphere excitation (blue square) is presented. Error bars correspond to 95% confidence interval, both for the

wavelength peak location and the sphere radii.
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Mie resonances are expected to be periodic in the k-space
(or the frequency domain)24,27, thus to quantitatively characterize
the periodic features recorded in the measurements and obtained
in the calculations, we performed a fast Fourier transform (FFT)
analysis. We first transform the measurements in to an optical
frequency domain (or k-space), we then obtain the FFT and
finally rescale the horizontal axis to wavelength units to highlight
the Mie scattering free spectral range (FSR). Figure 5e describes
the FFT analysis of the measured responsivity and the calculated
theoretical responsivity for a single 5 mm radius sphere excitation
(analysis for other sphere radii and multiple sphere excitation
regime is shown in Supplementary Figs 9–11). Since the sphere
size is much larger than the wavelength used for characterization,
multiple resonant modes are allowed to exist. Thus, we have
focused our efforts on finding the primary mode which has the
largest FSR. A resonance frequency at 8.5±0.5 nm is present for
the measured responsivity of single sphere excitation and is
8.8 nm for the calculated responsivity (marked by arrows),
supporting the claim that resonances were present in the
responsivity of the photodetectors due to the spherical shape of
the detecting elements. This FFT peak is broader for multi-sphere
excitation due to the polydispersity of the spheres
(Supplementary Fig. 11).

The experimental and theoretical dependence of the resonant
peak on the sphere size and excitation regime is summarized in
Fig. 5f. A good agreement is achieved between theory and
experiment. In particular, the experimental results confirm the
theoretically derived inverse proportionality dependence of the
FSR on the sphere radius (see Supplementary Note 4). It is also
shown that both single sphere and multi-sphere excitations
showed very similar FSRs, supporting the prediction that the
resonances are due to intra-sphere light interferences (which are
dominant in our case) as opposed to inter-sphere interactions.
Intra-sphere interactions are most likely dominant due to the
regime of excitation—perpendicular to the fibre axis.

Discussion
The results mentioned above, demonstrate in-fibre self-assem-
bly of discrete semiconducting micro-spheres with axially
continuous electrodes that form electrical contacts and produce
fully packaged devices along meters of fibre. A fibre containing a
semiconducting core and two conductive domains that are
electrically insulated from each other. Subjected to heating, the
Plateau–Rayleigh effect11,12 results in the formation of linear
array of spheres having a larger radius than that of the initial
semiconducting cylinder, establishing an electrical connection
with the adjacent conductive buses. This approach provides a
pathway to avoid semiconducting material contamination
during prolonged contact at high temperature between
conductors and semiconductors at the fibre draw step13–15,
enabling new fibre architectures and functionalities that were
previously unattainable, all electrically connected and
fully packaged. These results pave the way to numerous
possible fibre based devices such as a fully packaged p-n or
p-i-n photodetectors with a ‘spherical—molecules’ configu-
ration—internal to the fibre, addressable through the
continuous buses. This approach demonstrated how to
achieve novel fibre structures in which components are
brought into contact post draw, through the aforementioned
selective break-up process.

Methods
Chalcogenide rod fabrication. The chalcogenide material (As2Se5, AMTIR4,
amorphous materials) was inserted into a silica ampule with an inner diameter of
4 mm. The ampule was evacuated in vacuum, sealed and placed in a rocking
furnace. It was heated at 650 �C for 10 h and then extracted from the ampule.

Fibre fabrication. The fibres were fabricated by a multistep thermal draw, out of a
macroscopic preform. 75 mm thick PC (Lexan) films were rolled on a teflon lined
mandrel, and then fused in vacuum at 190 �C for 15 min. Two pockets were milled
in the PC and two CPE (carbon black loaded low density polyethylene) electrodes
(7.5� 3� 90 mm) were inserted in these channels, followed by additional layers of
PC which were added to increase the preform diameter to 36 mm. After a second
fusing step (vacuum, 190 �C, 40 min), the inner mandrel was removed and the
chalcogenide rod was inserted to the hollow core of the preform. The preform was
thermally drawn at a temperature of 300 �C, while maintaining a low stress in the
fibre during the draw. The structure was scaled down by a factor of 40.

To further reduce the size of the inner core, additional films of PC were
wrapped around the fibre until a diameter of 20 mm was reached. After a fusing
step, two channels were milled in the cladding until the first fibre electrodes were
exposed, and additional, larger CPE electrodes were inserted. Final layers of PC
were wrapped around the preform until the preform thickness was 30 mm, which
was subsequently fused and drawn down by a factor of 10–20 to achieve fibre core
radii of 5 and 2.5 mm.

Fibre capillary break-up. The drawn fibres were placed on a hot plate (Cole
Parmer, Stable Temp) and heated at a temperature of 230 �C and simultaneously
observed under a stereoscope (Nikon SMZ745T) until the core was broken up into
a series of spheres. The continuous electrodes were exposed from the fibre cladding
and connected to copper wires with a silver paint.

Electrooptical characterization. Nd:YAG pumped Ti:Sapphire laser (Coherent
Mira900) was used to characterize the photodetecting properties. The laser power
and wavelength was sampled by a power meter (Newport 2936-R) and an optical
spectrum analyser (Ando AQ6317B). The laser was focused on the spheres with
spherical or cylindrical lenses with focal length of 50 mm. The laser was operated in
a continuous mode. The current and voltage were measured and supplied by
picoammeter measuring set-up (Kiethley 6487/6517A). All the collected data was
recorded by a Labview software, while the wavelength of the laser was tuned
mechanically with an in-lab installed motor.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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