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SUMMARY

Design of a motion control system should take into account both the unconstrained motion performed
without interaction with environment or other system, and the constrained motion where system is
in contact with environment or has certain functional interaction with another system. In this paper
control systems design approach, based on siding mode methods, that allows selection of control for
generic tasks as trajectory and/or force tracking as well as for systems that require maintain some
functional relation – like bilateral or multilateral systems, establisment of virtual relation among
mobile robots or control of haptic systems is presented. It is shown that all basic motion control
problems - trajectory tracking, force control, hybrid position/force control scheme and the impedance
control - can be treated in the same way while avoiding the structural change of the controller and
guarantying stable behavior of the system In order to show applicability of the proposed techniques
simulation and experimental results for high precision systems in microsystems assembly tasks and
bilateral control systems are presented. Copyright c© 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern motion control systems are more and more acting as “agents” between skilled human
operator and environment (surgery, microparts handling, teleoperation, etc.), thus design of
control should encompass wide range of very demanding tasks. At the lower level one should
consider tasks of controlling individual systems - like single DOF systems, motor control,
robotic manipulator or mobile robot. On the system level control of bilateral or multilateral
interaction between systems of the same or different nature, the remote control in master-slave
systems, haptics etc. should be considered. Motion control systems such as robots, vehicles and
so on are expected to be applied in environment where presence of humans is natural. Such a
complexity of motion control system functions poses a challenge for control systems designers
due to the diversity of the tasks and changing structure of the system and the interaction
with environment. In general design of motion control system should take into account (i)
unconstrained motion - performed without interaction with environment or other system -
like trajectory tracking, (ii) motion in which system should maintain its trajectory despite
of the interaction with other systems - disturbance rejection tasks, (iii) constrained motion
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where system should modify its behavior due to interaction with environment or another
system and should maintain specified interconnection - virtual or real - with other system and
(iv) in remote operation control system should be able to reflect the sensation of unknown
environment to the human operator.

There are many applications of decentralized control to motion systems, with concepts such
as subsumption architecture [1], multi-agent system [2, 3], cell structure [4], and fault tolerant
systems [5]. Although design methods for decentralized control systems are interesting as
concepts a simple framework in view of controller design is desired to cope with complexity of
systems in interaction. Decomposition block control [6] simplifies the design problem. Arimoto
and Nguyen [7] showed that under certain conditions overall control input can be designed by
linear superposition, Lee and Li proposed a decoupled design method that makes a bilateral
control system behave as a common passive rigid mechanical tool [8]. Tsuji et al. proposed a
framework of controller design based on functionality [9], Onal et al. implemented a bilateral
control using sliding mode control applying functionality [10]. Basic approach in control of
bilateral system widely used in literature [11,12,13,14] is based on the design of the controllers
for the master and the slave side separately and than adding interacting terms in order to
reach the transparency requirements.

The most salient feature of the SMC is a possibility to constrain system motion on the
selected manifold in the state space [15]. In discrete-time this control that enforces sliding
mode is continuous in a sense of the discrete-time systems and the resulting inter-sampling
motion for systems with smooth disturbances is constrained to the o(T 2) vicinity of the sliding
manifold [16,17,18,19,20]. The application of SMC in motion control systems [21,22] range from
control of power converters, electrical machines, robotic manipulators, mobile robots, PZT
based actuators etc In this paper a framework for sliding mode application in motion control
systems with or without contact with environment is presented. The possibility to enforce
certain functional relations between coordinates of one or more motion systems represents
a basis of the proposed algorithm. It will be shown that all basic motion control problems
can be treated in the same way while avoiding the structural change of the controller and
guarantying stable behavior of the system. This framework can be naturally extended to the
control of mechanical systems in interaction, like bilateral or multilateral control.

The organization of the paper is as follows. In Section 2 application of SMC methods to
motion control systems are discussed for n-degrees of freedom (DOF) fully actuated mechanical
system with and/or without motion modification due to interaction with environment. In
Section 3 the problems related to the modification of the systems motion due to the contact
with environment are discussed and a possible solution in the framework of SMC control is
proposed. In Section 4 an extension of the solution presented in Section 3 is applied to motion
control systems in interaction and as one example, the application to bilateral control is shown.

2. SLIDING MODES IN MOTION CONTROL SYSTEMS

2.1. Control Problem Formulation

For fully actuated mechanical system S being in interaction with environment or another
mechanical system mathematical model may be found in the following form
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S : M(q)q̈ + N (q, q̇) = F− Fext (q,qe) ;

Fext (q,qe) =
{

gie (q,qe)
0

when in contact with environment
without contact with environment

(1)

where q ∈ <n stands for vector of generalized positions, q̇ ∈ <nstands for vector of generalized
velocities, M (q) ∈ <nxn is the generalized positive definite inertia matrix with bounded
parameters hence M− ≤ ‖M (q)‖ ≤ M+, N (q, q̇) ∈ <nx1 represents vector of coupling forces
including gravity and friction and is bounded by ‖N (q, q̇)‖ ≤ N+, F ∈ <nx1 with ‖F‖ ≤ F0

is vector of generalized input forces, Fext ∈ <nx1 with ‖Fext‖ ≤ Fext is vector of interaction
forces being zero when system S is not interacting with environment and qe ∈ <l stands for
the vector of generalized positions of environment. Fext ∈ <nx1M−,M+, N+, F0 and Fext

are known scalars. In system (1) vectors Fext and N (q, q̇) satisfy matching conditions [23].
External force can be treated as an additional input to the system (1) able to modify the
system configuration in the same way as the control input does.

Vector of generalized positions and generalized velocities defines configuration ξ (q, q̇) of a
mechanical system. The control tasks for the system (1) are usually formulated as selection
of the generalized input such that: (i) system executes desired motion specified as position
tracking, (ii) system exerts a defined force while in the contact with environment and
(iii) system reacts as a desired impedance on the external force input or in contact with
environment. In literature these problem are generally treated separately [24, 25] and motion
that requires transition from one to another task is treated in the framework of hybrid control
[26]. The SMC framework can be applied if one defines a sliding mode manifold σ = 0nx1 in
terms of the difference between the desired system configuration (reference) and the actual
system configuration.

Without loss of generality, in this paper, it will be assumed that system configuration can
be expressed as a linear combination of generalized positions and velocities ξ (q, q̇) = Cq+Qq̇
and the sliding mode manifold is described by :

σ
(
ξ (q, q̇) , ξref (t)

)
= ξ (q, q̇)− ξref (t) = Cq + Qq̇− ξref (t) = 0,

σ, ξ, ξref ∈ <nx1;C,Q ∈ <n×n;C,Q > 0, σ = [σ1, σ2, ...., σn]T
(2)

where ξref (t) ∈ <nx1 stands for the reference configuration of the system and is assumed to be
smooth bounded function with a continuous first order time derivative, matrices C,Q ∈ <n×n

have full rank rank (C) = rank (Q) = n. In the sliding mode framework requirement (2) is
equivalent to the enforcing sliding mode on the manifold Sq defined by

Sq =
{
(q, q̇) : Cq + Qq̇− ξref (t) = σ

(
q, q̇, ξref

)
= 0

}
, (3)

Assume that matrices C,Q ∈ <nxn are constant and that inverse
(
QM−1

)−1
exists and

can be expressed as
(
QM−1

)−1
= MQ−1. The application of the equivalent control method

for system (1) with the sliding mode enforced on the manifold (3) leads to the equations of
motion

Mq̈ =
(
QM−1

)−1
(
ξ̇ref (t)−Cq̇

)
= Mq̈des ⇒ q̈ = q̈des

q̈des = Q−1
(
ξ̇ref (t)−Cq̇

) (4)
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The sliding mode motion (4) is equivalent to the acceleration control [25] with desired
acceleration q̈des = Q−1

(
ξ̇ref (t)−Cq̇

)
and the closed loop system behaves as a “nominal

plant” defined by design parameters C and Q. Equations (4) show that in the ideal case
motion of the system will not be modified when it comes in contact with environment. If
closed loop motion (4) should be modified due to the contact with environment than the
reference configuration must depend on the interaction force The structure of the sliding mode
control system is depicted in Fig. 1.

Figure 1. Structure of the SMC motion control system

2.2. Selection of the control input

The simplest and the most direct method is to derive a control, which enforces Lyapunov
stability conditions for solution σ

(
ξ, ξref

)
= 0nx1 on the trajectories of system (1). A Lyapunov

function candidate may be selected as v = 1
2σT σ > 0, v (0) = 0 and one has to design control

that enforces the following structure v̇ = σT σ̇ = −σT Ψ (σ) < 0 of the Lyapunov functions
derivative. For example if . −σT Ψ (σ) = −ρvδ < 0 with ρ > 0 and 1

2 ≤ δ < 1 stability
conditions are satisfied and finite time convergence to the sliding mode manifold is obtained
[27]. (For δ = 1 we can say only that the convergence is not slower than exponential.) From
v̇ = σT σ̇ = −σT Ψ (σ) one can derive σT (σ̇ + Ψ (σ)) = 0. From σ̇ + Ψ (σ)|σ 6=0 = 0 one can
find

F = Feq −
(
QM−1

)−1
Ψ (σ) = Feq −MQ−1Ψ (σ)

Feq = (Fext + N (q, q̇,))− (
QM−1

)−1
(
Cq̇− ξ̇ref (t)

) (5)

For continuous-time systems function Ψ (σ)is most often selected to satisfy −σT Ψ (σ) =
−ρv1/2. The resulting control is discontinuous and in mechanical systems may cause chattering.
There are many possibilities to deal with chattering problem in mechanical systems [28].

Suppose that control can take values within ‖F‖ ≤ F0 and available control resources are
such that ‖Feq‖ ≤ F0 thus the control should be F = sat

(
Feq −MQ−1Ψ (σ)

)
where sat (•)

stands for saturation function with bounds Fb = F0
F
‖F‖ . As shown above for ‖F‖ < F0 the
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sliding mode conditions on manifold (3) are enforced. For ‖F‖ ≥ F0 one can find the derivative
of the sliding mode function as σ̇ =

(
QM−1

)
(Fb − Feq) =

(
QM−1

) (
F0

F
‖F‖ − Feq

)
. By

inserting (5) and taking into account that in this region ‖F‖ = F0 one can find. σ̇ =
−

(
1− F0

‖F‖
)

F0− F0
‖F‖Ψ (σ) hence σ decreases and after finite time region ‖F‖ < F0 is reached.

2.3. Discrete-time implementation of control

The discrete-time implementation of control (5) requires evaluation of the equivalent control
at the end of every sampling interval. The equivalent control is smooth and one can
resort of using its value in t = (k − 1) T instead of the exact value at t = kT . By
evaluating σ̇ = QM−1 (F− Feq) at t = (k − 1)T it is easy to derive Feq (k − 1) =(
F (k − 1)−MQ−1σ̇ (k − 1)

)
. Approximation σ̇ (k − 1) = (σ (k)− σ (k − 1)) /T leads to

Feq (k − 1) =
(
F (k − 1)−MQ−1T−1 (σ (k)− σ (k − 1))

)
with an approximation error of

o(T 2) order. The approximated control input can be expressed as

F (k) ∼= Feq (k − 1)−MQ−1Ψ (σk)
F (k) =

(
F (k − 1)−MQ−1T−1 (σ (k)− σ (k − 1))

)
︸ ︷︷ ︸

Feq(k−1)

−MQ−1Ψ (σ (k)) (6)

By inserting (6) into (1) one can evaluate system dynamics at t = kT as

Mq̈ (k) = Feq (k − 1)−MQ−1Ψ (σ (k))− (Fext (k) + N (q (k) , q̇ (k))) (7)

The error introduced by this approximation of control can be estimated from the following
relation

σ̇ (k) + Ψ (σ (k)) = −QM−1 (Feq (k)− Feq (k − 1)) (8)

The thickness of the boundary layer of the sliding mode manifold can be determined by

evaluating σ (kT + τ)− σ (kT ) = −
kT+τ∫
kT

Ψ (σ (t)) dt + o
(
T 2

)
. From here one can see why the

relay control in discrete-time implementation will result in motion with chattering within a
boundary layer having thickness of the o (T ) order.

2.4. Trajectory tracking and force control

In literature behavior of a motion control system is mostly analyzed in three separated
frameworks: (i) the trajectory tracking, (ii) the force control and (iii) impedance control. Due
to the fact that in fully actuated systems interaction forces and system configuration cannot
be set independently hybrid schemes had been developed to cope with position-force control
tasks and the transitions from one to another [26].

In SMC framework the reference configuration for the trajectory tracking should be
selected as ξref

q (t) = −
(
Qq̇ref + Cqref

)
and consequently the sliding mode manifold

becomes Sq =
{
q, q̇ : Qq̇ + Cq−

(
Qq̇ref + Cqref

)
= σq

(
ξ, ξref

)
= 0

}
thus the control (5)

can be directly applied to obtain F = Feq − MQ−1Ψ (σq). For example, if one selects
Ψ (σq) = −Dσq;D > 0 the equations of motion can be determined in the following form
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Q
(
q̈− q̈ref

)
+(C + DQ)

(
q̇− q̇ref

)
+CD

(
q− qref

)
= 0. This can be interpreted as a system

with the mechanical impedance having mass Q, damping (C + DQ) and spring coefficient CD.
If the matrix D is selected diagonal and its elements such that the transient σ̇q + Dσq = 0 is
fast as compared to the sliding mode dynamics (defined by matrices Q and C), after initial
transient the resulting motion remains in the ε- thick boundary layer of σq = 0. This result is
the same as the one obtained by application of the disturbance observer and PD controller as
discussed in [25].

In the force control with the reference Fref (t) the sliding mode manifold can be defined
as SF =

{
(q, q̇) : F (q, q̇)− Fref (t) = σF = 0

}
. If measured force is modeled as F (q, q̇) =

KP ∆q+KD∆q̇, ∆q = q−qe, KP ,KD are diagonal matrices of appropriate dimensions, then
by defining the reference configuration as ξref

F (t) =
(
Fref (t) + KP qe + KDq̇e

)
the sliding

mode manifold becomes SF =
{

(q, q̇) : KP q + KDq̇− ξref
F (t) = σF = 0

}
. This manifold has

the same form as the one derived for the trajectory tracking, thus the structure of the control
input should have the form F = Feq − MK−1

D Ψ (σF ), which is the same as for trajectory
tracking with appropriate changes of the variables.

3. MODIFICATION OF SYSTEM CONFIGURATION IN SMC

3.1. Motion modification due to the interaction force

Assume two mechanical systems Si : Mi(qi)q̈i + Ni (qi, q̇i) = Fi − gij (qi,qj) and Sj :
Mj(qj)q̈j + Nj

(
qj , q̇j

)
= Fj + gij (qi,qj) with reference configurations ξref

iq (t) and ξref
jq (t)

respectively. These interconnected systems may be perceived as mobile robots or robotic arms
in cooperative works. Let the interaction forces between systems Si and Sj be denoted as
gij(qi,qj) ∈ <n×1, which becomes gij(qi,qj) = 0 if systems are not in interaction. This force
can be modeled as gij

(
qi,qj

)
= KPi∆q + KDi∆q̇, ∆q = qi − qj and should be maintained

at the desired value gref
ij (t) while the systems are in interaction. Assume that only system Si

should change its configuration as a result of the interaction. In this arrangement the system Sj

is assumed to be controlled in the trajectory tracking mode and the system Si should modify
its configuration in order to maintain the desired profile of the interaction force. By making
reference configuration of system Si dependent of the desired trajectory ξref

iq (t) and of the
interaction force gij

(
qi,qj

)
one can make motion of the system reacting on both of them.

The modification of the trajectory of the system Si could be selected (i) to be proportional
with the interaction force (so-called compliant motion), (ii) to ensure that the interaction force
tracks its reference (force tracking), and (iii) the combination of the cases (i) and (ii). For all
three cases the sliding mode manifold has the following form

Siq =
{
qi, q̇i : Ciqi + Qiq̇i − ξref

iqF (t) = σiqF = 0
}

(9)

where the configuration of the system Si is selected as ξiq (qi, q̇i) = Ciqi + Qiq̇i. Depending
on the specific task, the reference configuration ξref

qF (t) can take one of the following forms
(i) ξref

iqF (t) = ξref
iq (t)− Γgij (qi,qj) or

(ii) ξref
iqF (t) = ξref

iq (t)− ϑ
(
gref

ij (t) ,gij (qi,qj)
)

or

(iii) ξref
iqF (t) = ξref

iq (t)−
(
ϑ

(
gref

ij (t) ,gij (qi,qj)
)

+ Γgij (qi,qj)
)
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where the reference configuration for position tracking task is selected as ξref
iq = Ciq

ref
i +

Qiq̇
ref
i , matrix Γ is the diagonal compliance matrix with elements different from zero

in the directions in which compliance is to be maintained, and zero in the directions in
which either contact force or trajectory tracking should be maintained. The output of
the force tracking controller ϑ

(
gref

ij ,gij

)
enforces sliding mode on the manifold SijF ={

(qi, q̇i) : KPiqi + KDiq̇i − ξref
F (t) = σFij = 0

}
with the reference configuration defied by

ξref
F (t) =

(
gref

ij (t) + KPiqj + KDiq̇j

)
and is determined as ϑ = ϑeq −MiK−1

DiΨ (σFij) when

systems are in interaction and ϑ
(
gref

ij ,gij

)
= 0 when systems are not in interaction.

The control input that enforces sliding mode on the manifold (9) has structure as defined in
(5) with appropriate changes of variables and can be written as Fi = Feqi −MiQ−1

i Ψ (σiqF ).
The equivalent control can be expressed in the following form Feqi = (Fexti + Ni) −(
MiQ−1

i

) (
Ciq̇i −

(
ξref
iq + ϑ̇− Γgij

))
. The structure of the control system is depicted in Fig.

2

Figure 2. Structure of the control system with modification of the configuration due to the interaction
with another system

3.2. Examples

In order to illustrate above results, motion of single DOF system in contact with moving
obstacle is simulated

ẋ = v
mv̇ = Ktu− Fdis

(10)

The parameters of the system (10) were selected as follows: the mass m =
0.1 (1 + 0.25 cos (64.28t)), the gain Kt = 0.64 (1 + 0.2 cos (128.28t)) and the nonlinear
disturbance Fdis = 15 (1 + cos (4πt) + sin (12πt)) with the stiction force modeled as
{Fr (t) = Ktu − Fdis − 0.5v if

{|v| < 1e−10& |Ktu− Fdis − 0.5v| < 15
}

and Fr (t) =(
11.25 + 3.75e−5|v|F0

)
sign (v) otherwise.}
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Controller was selected as u (k) = sat (u (k − 1) + η ((1−DT ) σ (k)− σ (k − 1))) , with
−100 < u (k) < 100. Parameters D = 250 and η = 120 and sampling interval T =
0, 0001 [s] are kept constant for all experiments. Sliding mode manifold is selected as σ =
C∆x + ∆v − ϑ∆F − αFe with reference trajectory xref (t) = 0.35 sin (2πt) and C = 100.
The experiments are simulated with α = 0.25 and no force limit, and with the reaction force
limited by F ref

e (t) = F0 (1 + 0.25 sin (10πt)) with F0 = 40 , F0 = 12 respectively. A moving
obstacle with position set as xe (t) = 0.15 (1 + 0.3sin (8πt)) is modeled. The interaction force is
modeled as Fe (x) = 1000 (x− xe) + 5 (ẋ− ẋe) and the interaction force controller is selected
as ϑ∆F (k) = sat (ϑ∆F (k − 1) + ηF ((1−DF T )σF (k)− σF (k − 1))) , with σF = Fe − F ref

e ,
DF = 100, ηF = 0.1. Results are depicted in Fig. 3. The modification of the system behavior
due to the interaction with environment shows capability of the proposed control structure to
keep stability of the system under different control tasks and smooth transition between them.

Despite large changes of the system parameters and disturbance, the motion of the system
is tracking the reference and modulation of the system motion is fully confirmed. In contact
with environment the controlled system reacts as a virtual impedance creating the force Fe

due to the contact.
Experimental verification of the above results is performed on the nonlinear system which

consists of the Piezomechanik’s PSt150/5/60 stack actuator (xmax = 60µm, Fmax = 800N,
vmax = 150Volt) connected to SVR150/3 low-voltage, low-power amplifier. Force measurement
is accomplished by a load cell placed against the actuator. The entire setup is connected
to dSPACE r© DS1103module hosted in a PC. In experiments the parameters of the sliding
mode manifold is σ = C∆x + ∆ẋ − ϑ∆F and controller parameters D = 2500 ,C = 800.
and the interaction force controller parameters are selected as DF = 1900, ηF = 0.25 and
σF = Fe − Fr. The peculiarity of the PZT actuator is related to the hysteresis characteristics
of the system gain [22, 29] what normally requires a nonlinear compensation. Experiments
depict the trajectory tracking and force control while in contact with environment. Structure
of the experimental setup is depicted in Fig. 4. and experimental results in Fig. 5. The position
reference is xr = 20 + cos (0.5t) micrometers and the force reference is either 11,5 or 21,5 N.
The transitions from position tracking to force tracking and vice versa are clearly shown in
figures. In all situations systems behaves as predicted.

3.3. Extension to the General Systems in Interactions

For motion control systems of particular interest is to maintain desired functional relation
between subsystems (for example bilateral control or cooperating robots etc.) by acting on
all of the subsystems. Assume a set of n single DOF motion systems each described by
Si : mi(qi)q̈i + ni (qi, q̇i) = fi − giext i = 1, 2, ..., n interconnected in such a way so the
motion of the overall system can be described by the following model

S : M(q)q̈ + N (q, q̇) = BF−Bgij (11)

where q ∈ <n, rankB = rankM = n, vectors N and Bgij satisfy matching conditions.
Assume also that the required role Φ ∈ <m may be represented as a set of smooth linearly
independent functions ζ1 (q) , ζ2 (q) , ..., ζn (q). . Consider a problem of designing control for
system S such that the role vector ΦT =

[
ζ1 (q) ... ζn (q)

]
tracks its smooth reference

Φref . By differentiating the first time derivative of the role vector Φ̇ =
[

∂Φ
∂q

]
q̇ = JΦq̇ one can
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Figure 3. The trajectory tracking and force control in contact with unknown obstacle

Figure 4. The structure of the experimental setup for PZT actuator control

determine the change of the role vector as

Φ̈ = JΦM−1BF− JΦM−1
(
Bgij + N

)
+ J̇Φq̇ (12)

A more compact form can be derived by denoting the control vector as FΦ = BΦF =
JΦM−1B and the disturbance vector as dΦ = JΦM−1

(
Bgij + N

)
+ J̇Φq̇.

Φ̈ = FΦ − dΦ (13)

From (13) one can select control F=
ΦF∗Φ sach that the role vector tracks its reference and than,
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Figure 5. The experimental behavior of the PZT actuator with SMC control

if (BΦ)−1 exists determine the original control input as F = (BΦ)−1 F∗Φ =
(
JΦM−1B

)−1
F∗Φ.

In the general case one has to ensure the existence of the inverse for matrix BΦ by properly
selecting matrix JΦ. Similar situation had been examined in so-called “function control”
framework [30,31,32], There it was assumed that B = I and JΦ was selected as a Hadamard
matrix along with the compensation of the disturbances gij and N on the plant level. This
way control design is greatly simplified and one deals with simple double integrator plants
without disturbance.

The same problem can be treated in the SMC framework by selecting the sliding mode
manifold σΦ ∈ <n with the system configuration ξΦ

(
Φ, Φ̇

)
and the reference configuration

ξref
Φ (t). Assume that the configuration is expressed as a linear combination of the function

vector and its derivative ξ
(
Φ, Φ̇

)
= CΦΦ + QΦΦ̇. Then the sliding mode manifold becomes

SΦ =
{

(q, q̇) : CΦΦ + QΦΦ̇− ξref
Φ (t) = σΦ = 0

}
: (14)

By applying procedure discussed in Section 2.2, and assuming that Q−1
Φ exists, the control

input enforcing sliding mode on the manifold (14) can be determined as

F∗Φ = FΦeq −Q−1
Φ Ψ (σΦ)

FΦeq = dΦ −Q−1
Φ

(
CΦΦ̇− ξ̇ref

Φ (t)
) (15)

Inverse transformation F =
(
JΦM−1B

)−1
F∗Φ gives control in the original state space.

3.4. Bilateral control

Behavior of an ideal bilateral system requires the tracking of the master position by the
slave and the forces on master and slave side to be equal but with opposite signs [30,
33] (so-called transparency requirements). Below the application of the method discussed
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in Section 3.3 on bilateral system will be shown. Assume single DOF mechanical systems
Si : miẍi + ni (xi, ẋi) = fi − giext i = m, s playing role of the master system (index m) and
the slave system (index s). The interaction force on slave side is giext. Let α be the position
scaling coefficient and β the force scaling coefficient. The force sensed by a human operator
is Fm = Zmxm = Cmxm + Qmẋm where Zm stands for the human operator impedance. The
coefficients Qm and Cm can be selected so that impedance perceived by the human operator is
shaped in order to give a feeling of a virtual tool in the operator’s hand. Let ΦT

B =
[

ζx ζF

]
be the function vector with ζx standing for position tracking error and ζF standing for
force tracking error. The bilateral system operational conditions can be met if the sliding
mode motion is enforced on manifold SB =

{
(xm,xs) : ξB (ΦB)− ξref

B (t) = σB = 0
}

. The
components of the function vector can be defined as ζx = xm − αxs and ζF = Zmxm + βgsext

and the corresponding sliding mode manifolds can be defined in the following way

Sx =
{

(xm, xs) : Qxξ̇x + Cxξx = σx = 0
}

SF = {(xm, xs) : Zmxm + βgsext = CmεF + Qmε̇F − (Cmxs + Qmẋs − βgsext) = σF = 0}
(16)

where εF = xm + xs stands for the control error. Taking the controls
fx = Qx (fm/mm − αfs/ms)s, fF = Qm (fm/mm + βfs/ms) and the disturbances
dx = (nm/mm − α (ns + gsext)/ms) + Cxε̇x, dF = (nm/mm + (ns + gsext)/ms) +
((Qmẍs + Cmẋs)− ġsext) the projection of the master and the slave systems on the sliding
mode manifolds Sx and SF can be described by

σ̇x = fx − dx

σ̇F = fF − dF
(17)

Equations (17) describe two simple first order systems. The selection of controls fx = f∗x
and fF = f∗F that enforce the sliding mode on each of the sliding mode manifolds Sx and SF

and thus on the intersection SB = Sx∩SF can follow the same steps as discussed in Section 2.4
The controller described by (5) is a suitable solution. Stability of solution σx = 0 and σF = 0
will guaranty the fulfillment of the requirements for bilateral system. The control inputs for
master and slave systems can then be determined from

fm = mm

α+β

(
β

Qx
f∗x + α

Qm
f∗F

)

fs = ms

α+β

(
1

Qm
f∗F − 1

Qx
f∗x

) (18)

For verification of the proposed approach the experimental system consisting of: two 400
W 3-phase Maxon brushless motors (J=831 g/cm2,KT = 85 mNm/A, Maxon 4-Q-EC servo
amplifier DES 70/10) in current regulation mode; 10.000 ppr encoders; a dSPACE r© 1103
real-time controller with 100 µsec measurement sampling rate and a 1 msec control output
sampling rate is used. Structure of the overall system is depicted in Fig. 6. One of the motors
is used by the human operator – master system, and the other one is used as a slave system.
In order to make contact with different environment the obstacles are put on the right side -
hard – steal rode, and on the left side – a sponge. This way experiments related to contact
with very different environment are available.
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Figure 6. Experimental system for bilateral operation

Figure 7. Transients in bilateral control system (a) position response of master and slave sides, (b)
forces of master and slave side

Results depicted in Fig. 7., show that the system controller is capable of handling both,
contact with soft and contact with hard environments on the slave side. The proposed structure
guaranties the functional relation between master and slave system (equality of positions and
forces) but it does not influence amplitude for any of these variables. The additional loops
(possibly in SMC framework as discussed in this section) are needed for the slave side force
limit as discussed in [22].
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4. CONCLUSIONS

In this paper application of the sliding mode control framework in motion control systems is
discussed. The approach is applicable for systems with and without contact with environment
that leads to unified formulation of the control tasks. It has been shown that the same
approach can be used in controlling systems in interaction and establishing desired functional
relation between systems and allowing application of the same framework to bilateral and
“function control” systems. All tasks are basically realized by modulating the reference system
configuration in such a way that interaction (virtual or real) is maintained. This allows using
the same structure of the controller for all tasks. The structure of the controller is selected
to fulfill Lyapunov stability criteria and enforce the sliding mode motion on the sliding mode
manifold. The realization of the sliding mode control in the discrete-time framework is discussed
and it is shown that under proposed control the motion of the system remains within boundary
layer of the o(T 2) order. Experiments on high precision PZT based system with a nonlinear
gain and on the bilateral control system confirm all theoretical predictions.
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