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Delay Identification in Time-Delay Systems using

Variable Structure Observers

S. V. Drakunov∗, W. Perruquetti, J.-P. Richard †, L. Belkoura‡

Abstract

In this paper we discuss delay estimation in time-delay systems. In

the Introduction a short overview is given of some existing estimation

techniques as well as identifiability studies. In the following sections we

propose several algorithms for the delay identification based on variable

structure observers.

1 Introduction

Numerous researches involve time-delay systems and their applications to mod-
elling and control of concrete systems. To name a few, the two monographs
[16, 23] give examples in biology, chemistry, economics, mechanics, viscoelastic-
ity, physics, physiology, population dynamics, as well as in engineering sciences.
In addition, actuators, sensors, field networks and wireless communications that
are involved in feedback loops usually introduce such delays. As it was noted in
the survey [27], delays are strongly involved in challenging areas of communi-
cation and information technologies: stability of networked controlled systems,
quality of service in MPEG video transmission or high-speed communication
networks, teleoperated systems, parallel computation, computing times in ro-
botics... Finally, besides actual delays, time lags are frequently used to simplify
very high order models.

For the purpose of stability analysis, it is known that necessary and sufficient
conditions can be derived in the case of a known, constant delay h [14, 17]. If the
value h is not available, then guaranteeing the robust stability for h ∈ [hm, hM ]
is convenient but needs more constraining conditions, that can turn out to be
only sufficient. From this point of view, the poorest information correspond to
the most robust case: h ≥ 0. Numerous authors (see references in [23], after
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proposing “independent on delay” stabilization results (assumption h ≥ 0),
concentrated on “delay-dependent” ones: Mainly, with hm = 0, but also with
hm > 0 [15].

Regarding to the delay knowledge, observers as well as predictors probably
constitute the most demanding case of applications. Several authors proposed
observers (or predictors) for linear systems with delays (for the state space
approach, see references in [5] and [3], for the coprime factorization technique
see [40]; for the discrete time, see [37]), as well as the linear stochastic [16] and
nonlinear [13] cases. An overview is given in [30]. In most cases, the value of
the delay (mainly constant) was involved in the realizations, which means that
its measurement was assumed. Note that what is defined as “observers without
internal delay” (see [5, 6, 10]) involves the output knowledge at the present and
delayed instants. This means that the delay is known or, at least, is calculable.
Similarly, [19] designed a finite-dimensional observer (then, without delay) since
it was constructed just for the finite set of unstable or poorly damped modes
of the delay system: however, the determination of these modes, here again,
requires the delay knowledge.

In concrete applications, the delay invariance and delay knowledge remain
assumptions coming more from the identification and analysis limits than from
technical facts. So, the robustness with regard to the delay estimation (and
variation) should receive additional interest.

Works on identification of time delay systems have shown the complexity
of the question [34]. Identifying the delay is not an easy task for systems with
both input and state delays, or when the delay is varying enough to require an
adaptive identifier. Several authors use the relay-based approach initiated by
Astrom and Hagglund [21, 31], which, however, is not a real-time procedure since
it needs to close some switching feedback loop during a preliminary identification
phase. The adaptive control of delay systems is not so much developed either
[2, 12, 35] and the delay is generally assumed to be known. As noted in [7],
the on-line delay estimation has a longstanding issue in signal processing: these
applications [7, 32] however assume that both the present signal u = u(t) and its
delayed value u(t− h) are known and their derivative to be bounded as follows:
0 < α ≤

∣∣ .
u(t)

∣∣ ≤ β.
Another approach to the delay identification [24] is based on a “multi-delay

approach”, which algorithm involves N + 1 delays hi =
[
h0 + i∆

N ,
]

for the
identification of a unique delay h ∈ [h0, h0 + ∆].

Another adaptive delay identification scheme can be found in the book [16]:
if h0 is some approximation of the actual delay value h(t) = h0 +∆h(t) (|∆h| <
h0), then the algorithm requires the measurement of delayed variables x(t−h0)
and

.
x(t− h0) (x(t) denotes the instantaneous state). The results are local (i.e.,

valid for |∆h| small enough) and given without complete proof.
Lastly, let us mention that all these approaches suffer from a long computing

time. The conclusion is that, despite the advantages one can expect from the
delay knowledge, advanced on-line identification methods for delay estimation
are still expected.

The sliding mode control methodology developed for years (see, for example,
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[33], [26], [28] and references therein) allows to design sliding mode observers
([33], [8], [9]), and parameter identifiers including the once for distributed pa-
rameter systems. The developed control algorithms based on sliding modes
have extremely robust behavior with respect to the heated material parameter
variations and external disturbances.

1.1 Identifiability analysis

A standard approach for identification of systems implies that the structure of
the system is known and the problem is in finding the values of parameters
(including the delays) involved in the set of equations describing the process.
The ability to ensure this objective is typically referred to as parameter iden-
tifiability. First results on identifiability for delay differential equations can be
found in [29, 34, 20] and for recent results see also [?] and references therein.
However, many of these results are limited to the homogeneous case (no forc-
ing term) and use a spectral approach involving infinite dimensional spectrum.
The approach used in [18, 1] extends the identifiability analysis to more general
systems described by convolution equations of the form:

R ∗ w = 0, R = [P,−Q] , w =

[
y
u

]
, (1)

where P (n × n) and Q (n × q)) are matrices with entries in the space E ′ of
distributions with compact support. Equation (1) correspond to a behavioral
approach of systems described by convolutional equations (see [36]). Here, R(s),
the Laplace transform of R, provides a kernel representation of the behavior B
which consists in the set w̃ of all admissible trajectories in the space of C∞(R,R)
functions, and w̃ ∈ B = kerE R(s).

The concept of identifiability is based on the comparison of the original
system and its associated reference model governed by (1) and in which R, P ,Q
and y are replaced by R̂, P̂ , Q̂ and ŷ respectively. System (1) is therefore said
to be identifiable if there exists a control u such that the output identity ŷ = y
results in R̂ = R, which means uniqueness of the matrix coefficients as well as
that of the delays.

For most practical cases, and provided a sufficiently rich input signal, iden-
tifiability of (1) reduces to

1. rank R(s) = n, s ∈ C,

2. conv detP = n convR.

where convR denote the smallest closed interval that contains the support of
R (i.e. the convex hull of suppR), and detP is the determinant with respect
to the convolution product. These conditions are closely linked to the property
of approximate controllability in the sense that the reachable space is dense in
the state space [39].
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The following example [1] shows the applicability of the previous result to
systems with distributed delays. Consider the multivariable delay system

ẋ1(t) = x1(t) +
∫ 0

−1
x2(t+ τ)dτ

ẋ2(t) = x1(t− 1) + x2(t) +
∫ 0

−1
u(t+ τ)

(2)

and denote π(t) = H(t) − H(t − 1), with H the Heaviside function. Here,
suppπ = [0, 1] and some simple manipulations show that system (2) admits a
kernel representation R ∗ ω = 0 with ω = (x1, x2, u)

T and

R =
[
P, −Q

]
=

[
δ′ − δ −π
−δ1 δ′ − δ

∣∣∣∣
0
−π

]
(3)

Clearly, convR = [0, 1] while detP = δ”−2δ′ +δ−δ1 ∗π, from which one easily
gets conv detP = [0, 2], so condition (2) of is satisfied. On the other hand,

R(s) =

[
s− 1 −(e−s − 1)/s 0
−e−s s− 1 −(e−s − 1)/s

]
, (4)

and the determinant formed by the second and third column of R(s) is nonzero
for s 6= 0, and for s = 0, the first and second column of R(0) form a non singular
matrix. Hence condition (1) is also satisfied and system (2) is identifiable.

In the case of distributed delays, the major limitation of the previous ap-
proach is the need of the largest delay involved in (1). In return for more
restrictive models with lumped and commensurate delays of the form

ẋ(t) =

r∑

i=0

Ai x(t− i.h) +Bi u(t− i.h), (5)

a simpler identifiability result which no longer requires the assumption of an a
priori known memory length is obtained in [18]. It can be expressed in terms of
weak controllability, concept introduced in [22] for systems over rings, through
the rank condition (over the ring R [∇]):

rank
[
B(∇), . . . , An−1(∇)B(∇)

]
= n, (6)

where

A(∇) =
r∑

i=0

Ai ∇
i, B(∇) =

r∑

i=0

Bi ∇
i. (7)

Note however that all the previous results are limited to linear and time
invariant models. In case of nonlinear delay systems or time dependant delays,
general identifiability results are still expected.

1.2 Sufficiently rich input

In identification procedures the design of a sufficiently rich input which enforces
identifiability is also an important issue. Given a reference model associated

4



to the process under study, one has to know whether equality of the outputs
results in that of the transfer functions. Few results are dealing with such issue
for time delay systems. In [24, 1] the input design is considered in the time
domain rather than the frequency domain and the approaches are mainly based
on the non smoothness of the input. More precisely, if

Λu = {s0, s1, ...., sL, ...} (8)

denote the singular support of u (i.e. the set of points in R having no open
neighborhood to which the restriction of u is a C∞ function), the input is
required to be sufficiently ”discontinuous” in the sense that

rank [U0(D), ..., UL(D)] = q (9)

where the polynomial matrices Ul(D) are formed with the (possible) jump of
u(k)(t) for some k ≥ 0 at t = sl by

Ul(D) =

k∑

i=0

[u(k−i)(sl + 0) − u(k−i)(sl − 0)]Di (10)

On the other hand, ”the discontinuity points” s0, s1, .. should be sufficiently
spaced in the general case of distributed delays, although for lumped delays,
this constraint (which may constitute a serious drawback in situations where on
line procedures are used) can be relaxed using commensurability considerations.

The simplest example consists of a piece-wise constant R
q-valued function

with appropriate discontinuities, although inputs of class Cr for an arbitrary
finite integer r can be formed.

1.3 Parameter identification

Papers dealing with parameter identification of systems with time-delay in the
state variables are not so numerous. Let us mention [25] which concerns parame-
ter identification of time-delay systems with commensurate delays, and [38, 24].
The following algorithm, first presented in [38], allows on-line identification of
linear dynamic systems with finitely many lumped delays in the state vector
and control input. Associated with the model

ẋ(t) =

r∑

i=0

Ai x(t− hi) +Bi u(t− hi) (11)

with unknown matrices Ai and Bi, he considered the identifier system:

˙̂x(t) =

r∑

i=0

Âi(t)x̂(t− hi) + B̂i(t)u(t− hi) −G∆x(t), (12)

where ∆x(t) = x(t) − x̂(t) is the ”state” error, G ∈ R
n×n is a Hurwitz matrix,

and time-varying matrices Âi(t), B̂i(t) satisfying

˙̂
Ai(t) = FiP∆x(t)xT (t− hi), Âi(0) = Â0

i ,
˙̂
Bi(t) = ΦiP∆x(t)uT (t− hi), B̂i(0) = B̂0

i ,
(13)
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with adaptation gain matrices Fi, Φi being positive definite and P the (positive
definite) solution of the Lyapunov equation GTP+PG = −Q for a given positive
definite matrix Q. Under stability and identifiability conditions, and using a
sufficiently rich input signal, it is shown that the state error ∆x(t) converges
asymptotically to 0, and the time-varying matrices Âi(t), B̂i(t) converge towards
the plant parameter matrices Ai, Bi.

1.4 Delay identification

When facing unknown delays, the previous approach [24] may also provide an
estimation of them by considering an identifier with a large number m of ficti-
tious delays

˙̂x(t) =
m∑

j=0

Âj(t)x̂(t− τ j) + B̂j(t)u(t− τ j) −G∆x(t), (14)

and in which, by virtue of the identifiability property, the Âj(t) and B̂j(t)
coefficients tend to zero except for hi ' τ j . However, the accuracy of this
identification depends on the number m of implemented delays and the com-
putational effort strongly increases with m, which might restrain the real-time
identification possibilities.

Another (single) delay estimation technique can be found in [7] where the
present signal u = u(t) and its delayed value, denoted by v(t) = u(t − h) are
supposed to be known and their derivative to be bounded as follows: 0 < α ≤∣∣ .
u(t)

∣∣ ≤ β. The following scheme is used:

.

ĥ = −
p(t)

.
u(t− ĥ)

1 + p(t)
.
u

2
(t− ĥ)

[
u(t− h) − u(t− ĥ)

]
, (15)

.
p(t) =

p2(t)
.
u

2
(t− ĥ)

1 + p(t)
.
u

2
(t− ĥ)

, p(0) = p0 > 0. (16)

It was involved, with simulation, in the speed control system of a direct injected
diesel engine, thus adjusting the gains of a simple PI controller. Note however
that all parameters (but the delay) are supposed to be known.

Let us also mention the adaptive (single) delay identification scheme in the
book [16]: if h0 is some approximation of the actual (time-varying) delay value
h(t) = h0 + ∆h(t), then the algorithm requires the measurement of delayed
variables: x(t−h0) and ẋ(t−h0), together with the assumption |∆h| < h0. The
results are local (i.e., valid for |∆h| small enough) and, here also, the real-time
possibilities are to be checked.

2 Class of systems under consideration

The present paper contributes to this problem via a variable structure identifi-
cation algorithm. This means it combines differential equations with unknown
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delays together with a dynamic system with discontinuous functions in such a
way that some variables of the combined system converge to the delays.

A particular attention is paid to the case of a discrete delay model, which
appears in many applications:

Discrete Delay Linear Model

ẋ(t) =

r∑

i=0

[Aix(t− hi) +Biu(t− hi)] , (17)

where 0 = h0 < h1 < . . . < hr ≤ h are time delays, Ai and Bi are matrices
of appropriate dimensions. As in the general case, we assume that there are
two initial continuous functions xo(t), uo(t) and x(t) ≡ xo(t), u(t) ≡ uo(t) for
t ∈ [−h, 0].

The method, which we develop, can be also applied to systems described by
very general equations with distributed delay:

Distributed Delay Linear Model

ẋ(t) =

∫ h

0

[dµ(ξ)x(t− ξ) + dν(ξ)u(t− ξ)] . (18)

Here x ∈ R
n is a system vector (this is not a state vector), and u ∈ R

p is a
system input, µ(ξ) and ν(ξ) are matrix valued functions of bounded variation1

(V ar(µ) < C, V ar(ν) < C) with corresponding dimensions, or, equivalently,
matrix valued measures (not necessarily positive).
The following assumptions are made regarding µ(ξ) and ν(ξ): for any continu-
ously differentiable functions with compact support φ(ξ), and ψ(ξ) we assume
that

‖

∫ h

h−s

dµ(ξ)φ(ξ) −Aφ(ξ)‖ ≤ γa(s)suph−s≤ξ≤h‖φ(ξ)‖, (19)

and

‖

∫ h

h−s

dν(ξ)ψ(ξ) −Bψ(ξ)‖ ≤ γb(s)suph−s≤ξ≤h‖ψ(ξ)‖, (20)

where
A = µ(h) − µ(h−),

B = ν(h) − ν(h−),

and γa(s),γb(s), (s ≥ 0) are continuous functions such that γa(0) = 0, γb(0) = 0.
From (19), (20) it follows (see, for example, [14]) that a solution of (18)

exists and is unique for u(·) ∈ C[0,∞](R
p) and any continuous initial condition

xo(s) (−h ≤ s ≤ 0), xo(·) ∈ C[−h,0](R
n).

1V ar(µ) , sup0≤t1<...<ti<...≤h

�
i ‖ � ti+1

ti
dµ(ξ)‖, where sup is taken over all finite par-

titions 0 ≤ t1 < ... < ti < ... ≤ h of the interval [0, h].
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We develop a class of identification algorithms to estimate µ(ξ), and ν(ξ),
which are assumed to be unknown2, while x(t), and u(t) are known.

The model (17) is a particular case of 18 for δ-measures3 :

dµ(ξ) =

r∑

i=0

Aiδ(ξ − hi)dξ,

dν(ξ) =
r∑

i=0

Biδ(ξ − hi)dξ.

Considering this model, we concentrate on the case when matrices Ai and Bi

are known, and the main problem is to estimate the delays. Although, a general
algorithm for estimation of the measures µ(ξ), and ν(ξ), allows simultaneous
identification of the delays, and parameters.

Other important cases also include distributed delay model:

ẋ(t) =

∫ h

0

[A(ξ)x(t− ξ) +B(ξ)u(t− ξ)] dξ, (21)

here A(ξ) and B(ξ) are variable matrices.
This equation is a particular case of (18) for absolutely continuous measures
with densities A(ξ), and B(ξ):

dµ(ξ) = A(ξ)dξ

dν(ξ) = B(ξ)dξ.

Another possible generalization which will be considered is a model with
discrete variable delays:

Discrete Variable Delay Linear Model

ẋ(t) =

r∑

i=0

[Aix(t− hi(t)) +Biu(t− hi(t))] . (22)

In some cases we can even consider a very general nonlinear time-varying
model.

2Since � h

0 dµ(ξ)φ(t − ξ) = � h

0 d �µ(ξ)φ(t − ξ) for �µ − µ = const, in fact, we just find a
representative in an equivalence class.

3We use a standard notation δ(ξ − h)dξ for a discrete measure dµ(ξ) formally defined
through the equality �

φ(ξ)dµ(ξ) = φ(h),

for any function φ(ξ) continuous at h.

8



Distributed Variable Delay Nonlinear Model

ẋ(t) =

∫ h

0

dµ(ξ, t)F (x(t− ξ), u(t− ξ)). (23)

The paper is organized as follows. After introducing some notations in sec-
tion 3, section 4 recalls the main results concerning the general problem of
identifiability. In section 5 to demonstrate our technique we provide three delay
estimation algorithms for the model (17), and prove that they converge as soon
as the initial values of the delay estimates are close enough to the real delays.
In this section we also consider variable delay model (22). In the section (7) we
consider the algorithms for the general distributed delay model (18). Finally, in
section 8 we consider the examples.

3 Notations

The following notations are used:

1. cl(S), conv(S) denotes respectively the closure, and the closure of the con-
vex hull of the set S,

2. for x in a normed vector space X : Bε(x) is the open ball centered at x of
radius ε, this is Bε(x) = {x ∈ X : ‖x‖ < ε}, for a set A ⊂ X : Bε(A) =
{y ∈ X : ∃x ∈ A ∧ y ∈ Bε(x)} =

⋃
x∈A Bε(x),

3. Let V : R
n+1 → R+, (t, x) 7→ V (t, x). When the classical gradient exists,

it is denoted by ∇V (t, x) (gradient of V evaluated at (t, x)). Let Ω be
the union of any set of zero measure with the set where V fails to be
differentiable, then, if V is locally Lipschitz in (t, x), one can defined the
generalized gradient (see [4]) by

∂CV (t, x) = conv

{
lim

(ti,xi)/∈Ω→(t,x)
∇V (ti, xi)

}
, (24)

also called Clarke’s gradient for finite dimensional Banach space in short
generalized gradient,

4. For x = (x1, . . . , xn)
T
∈ R

n, sign(x) is a vector with components

sign(xi) =





1, if xi > 0
0, if xi = 0
−1, if xi < 0

. (25)

5. A function st is such that

st(h) =

{
0, if h ≤ 0
1, if h > 0

. (26)
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6. For h ∈ R, a function spε,h(s) is such that

spε,h(s) =





0, if s ≤ 0, or s ≥ h
1, if ε ≤ s ≤ h− ε

arbitrary, if 0 < s < ε, or h− ε < s < h
, (27)

where ”arbitrary” means any function such that overall the function spε,h(s)
is continuously differentiable everywhere, and bounded together with its
derivative.

7. As dspε,h(s) we denote the derivative of spε(s).

8. For v, w ∈ R
n, 〈v, w〉 will denote the scalar product of v and w.

4 Identifiability conditions

As was mentioned earlier, we develop algorithms of estimating µ, and ν by
observation of x(t), and u(t).

Let us assume that µ1, ν1, and µ2, ν2 satisfy the equations:

ẋ(t) =

∫ h

0

[dµ1(ξ)x(t− ξ) + dν1(ξ)u(t− ξ)] ,

ẋ(t) =

∫ h

0

[dµ2(ξ)x(t− ξ) + dν2(ξ)u(t− ξ)] ,

with the same x(t), and u(t). Subtracting these equations we obtain

∫ h

0

[dµ̄(ξ)x(t− ξ) + dν̄(ξ)u(t− ξ)] = 0, (28)

where µ̄ = µ1 − µ2, ν̄ = ν1 − ν2.
The question arises: When the equation (28) implies that dµ̄ = 0, dν̄ = 0

a.e. (or µ̄ ≡ const, ν̄ ≡ const a.e.) ? Note that, x(t), and u(t) in (28) are
not arbitrary but they satisfy the equation (18). The general answer to this
question is that the initial function xo(t), and/or u(t) should be rich enough.
Different definition of richness result in different conditions.

For a particular case of discrete delays (17) the following definitions and
identifiability from [18] can be used.

We consider two different delay systems of the type (17) with respective
states x and x̂. Does the equality x ≡ x̂ implies that the parameters, including
the delays, are equal? More explicitly, we consider the system:

.

x̂(t) =

m∑

i=0

[
Âix̂(t− ĥi) + B̂iu(t− ĥi)

]
, (29)

x̂ ∈ R
n, 0 ≤ ĥ0 < ĥ1 < . . . < ĥm. (30)
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Definition 1 System (17) is said to be identifiable under arbitrary initial condi-
tions if there exists an input signal u(t) such that the equality x(t) ≡ x̂(t), t ≥ 0

implies r = m, for all i = 0, ...,m, Ai = Âi, Bi = B̂i, hi = ĥi.

If we assume that Ai, Bi are known, a number of sufficient conditions can
be obtained for identifiability with respect to the delay vector H = [h1, ..., hr]

T

for the case of discrete-delay (17), or H = [µ, ν] for the case of distributed delay
(18). Let us introduce the following function

∆(t,H) = ẋ(t) −

r∑

i=0

[Aix(t− hi) +Biu(t− hi)] ,

for the model (17), or

∆(t,H) = ẋ(t) −

∫ h

0

[dµ(ξ)x(t− ξ) + dν(ξ)u(t− ξ)] .

for the model (18).
If the delays H are are not time varying the local identifiability may be

expressed as uniqueness of solution of the equation ∆(t,H) = 0 with respect to
H, for all t ≥ 0.

One example of such sufficient conditions can be developed as follows: let
us consider r moments of time 0 ≤ t1 < ... < tr. To study the identifiability we
introduce the r-dimensional function W (t1, ..., tr,H) = [w(t1,H), ..., w(tr,H)]

T
,

whose components are w(t,H) = ‖∆(t,H)‖
2
. As a norm we can consider the

Euclidian norm: ‖∆(t,H)‖ = 〈∆(t,H),∆(t,H)〉
1/2

. If a Jacobian ∂
∂HW (t1, ..., tr,H) 6=

0 is nonsingular for all H, the map W (t1, ..., tr; ·) : R
r → R

r is an injection.
Therefore, there is only one H satisfying W (t1, ..., tr,H) = 0.

Lemma 1 If x(t), and u(t) are continuously differentiable, the system (17) is
locally identifiable with respect to H if for any 0 ≤ t1 < ... < tr the following
matrix H0 = H0(t1, ..., tr) is nonsingular (det(H0(t1, ..., tr)) 6= 0)

H0 =




H0
11(t1) ... H0

1r(t1)
...

. . .
...

H0
r1(tr) ... H0

rr(tr)


 ,

H0
ij(ti) = 〈[Ajx(ti − hj) +Bju(ti − hj)] , [Aj ẋ(ti − hj) +Bj u̇(ti − hj)]〉

Obviously, this condition depends on the state x and the input u, as well as
their derivatives. Since the derivative of the state can be expressed using system
equations we can obtain a form of the above condition which is a function only
of the system vector x(t), the control u(t), and its derivative u̇(t). However,
this condition is more difficult to verify.

We will be considering our systems on a finite time interval: 0 ≤ t ≤ t1. If
x(t) is twice continuously differentiable, and u(t) is continuously differentiable,
then for some C > 0:

‖∆(t,H) − ∆(t,H′)‖ ≤ C‖H −H′‖,

11



or if ∆(t,H) = 0
‖∆(t,H′)‖ ≤ C‖H −H′‖.

The inverse of this inequality represents strong identifiability condition which
means not just uniqueness of a solution ∆(t,H) = 0, but also a continuity of a
map inverse to ∆(t; ·) : R

r → ∆(t,Rr), (here ∆(t,Rr) is a set of all functions
{d(t) : ∃H ∈ R

r, d(t) = ∆(t,H)}).
Every time we say that the corresponding system is ”identifiable”, the fol-

lowing local Identifiability Assumptions will be made in all further results:

• For the system (17): ∀t : 0 ≤ t ≤ t1 ∃c1 : c1 > 0 such that ‖H′ −H‖1 ≤
c1‖∆(t,H′)‖1 for all H′ ∈ Bε(H) where Bε(H) is some ball of the radius
ε > 0(∃ε > 0), with the center in H.

• For the system with variable delays (22): ∀t : 0 ≤ t ≤ t1 ∃c1 : c1 > 0 such

that ‖H′(t) − H(t)‖1 ≤ c1‖∆(t,H′(t))‖1 for all H′(·) ∈ B̃ε(H(·)) where

B̃ε(H(·)) is some ball in C1
[−h,+∞] of the radius ε > 0(∃ε > 0), with the

center in H(·).

• For the system (17). If we denote as µ̃ = [µ(ξ), ν(ξ)] a (n × (n + m))-
matrix4. Then the identifiability condition is ∀t : 0 ≤ t ≤ t1 ∃c1 : c1 > 0

such that ‖̂̃µ− µ̃‖1 ≤ c1‖∆(t, ̂̃µ)‖1 for all ̂̃µ ∈ Bε(µ̃) where Bε(µ̃) is some
ball of the radius ε > 0(∃ε > 0), with the center in µ̃.

5 Sliding-mode observers for delay estimation

As was mentioned in the Introduction, in order to demonstrate our technique,
we, first, we consider here the algorithm5 for delay estimation in system (17).

Let us assume at first that the parameters Ai, Bi are known and only the
delays hi need to be estimated. We also assume to know the upper bound h of
the unknown delays

max[h1, ..., hr] ≤ h.

Introducing the delay vector H = [h1, . . . , hr]
T

we are going to design an algo-

rithm for the estimate Ĥ(t) =
[
ĥ1(t), . . . , ĥr(t)

]T
. For this, let us introduce the

4We consider the set of all such �µ as a linear normed space with the norm defined as
| �µ| =

� n
i=1

� n
j=1 V ar(µij(ξ)) +

� n
i=1

� m
j=1 V ar(νij(ξ)) . In fact, elements of this space

are not individual �µ, but equivalent classes of the matrix functions whose difference is a
constant matrix, (since V ar(const) = 0) (see the footnote on the previous pages).

5In our first algorithm, we assume that not only x(t), but also ẋ(t) is measured. To make
the algorithm more robust in practice one can use a shifted value ẋ(t− τ) (with a known fixed
value τ), and consider a system

ẋ(t − τ) =

r�

i=0

[Aix(t − hi − τ) + Biu(t − hi − τ)] , (31)

then the same approach can be worked out.

12



following function

∆(t, Ĥ(t)) = ẋ(t) −

r∑

i=0

fi(t, ĥi(t)), (32)

fi(t, ĥi(t)) = Aix
(
t− ĥi(t)

)
+Biu

(
t− ĥi(t)

)
, (33)

which time derivative6 along the system (17) is

∆̇ = ẍ(t) −
r∑

i=0

gi(t, ĥi(t))

(
1 −

dĥi(t)

dt

)
, (34)

gi(t, ĥi(t)) = Aiẋ
(
t− ĥi(t)

)
+Biu̇

(
t− ĥi(t)

)
. (35)

If Ĥ(t) = H the function ∆ is, obviously, equal to zero (∆(t,H) ≡ 0). The

idea of our approach is to make ∆ equal to zero. Whether this implies Ĥ(t) = H
can be shown from the identifiability property.

Our algorithms are based on the stabilization ∆ to zero, which will result
in conditions of identifiability in convergence of the estimates, as illustrated in
Fig. 1 below

 

))(),(( htuhtxfx −−=�  

))ˆ(),ˆ(( htuhtxfx −−−=∆ �  

Controller 

Delay identification algorithm 

ĥ  

u 

ĥ  x 

System 

System model 

Figure 1: System structure.

5.1 Delay Estimation Algorithm A

We propose the following delay estimator for i = 1, . . . , r :

6Here and further we denote as ∆̇ =
d∆(t,Ĥ(t))

dt
.
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dĥi(t)

dt
= −Li

〈
gi(t, ĥi(t)), sign(∆)

〉
st(ĥi(t)), (36)

where the vector functions gi are defined by (35), and initial condition ĥi(0) ≥ 0.

The following theorem states local convergence of the algorithm (36).

Theorem 2 Let us assume that there exist a finite time t1 > 0 such that the
following holds for 0 ≤ t ≤ t1:

H1: The input u(t) is, at least once, continuously differentiable and have bounded
derivative. The system vector x(t) is, at least, twice continuously differ-
entiable and have bounded derivatives.

H2: The system (17) is identifiable with respect to delay vector for the input
u(t), t ≥ −h, and the initial condition xo(t),−h ≤ t ≤ 0.

H3: There exists δ > 0, that |〈gi(t, hi), β〉| > δ for any vector β = [β1, ..., βn]T ∈
R

n, such that |βj | = 1, for all j = 1, ..., n .

Then, using the delay estimator (36) with initial conditions Ĥ(0) =
[
ĥ1(0), . . . , ĥr(0)

]T

(ĥj(0) ≥ 0,∀j = 1, ..., r), close enough to H = [h1, . . . , hr]
T

(∃ε > 0, Ĥ(0) ∈
Bε(H)) there exist finite gains Li such that after a finite time t0, (0 5 t0 ≤ t1)

we have ĥi(t) ≡ hi for all i = 0, ..., r, t0 ≤ t ≤ t1.

Proof (Algorithm Convergence): I Using ∆̇ given in (34), (36), and sub-
stituting instead of ẍ the derivative of the right hand side of (17) we obtain

∆̇ =

r∑

i=1

Ai

(
ẋ(t− hi) − ẋ(t− ĥi(t))Fi

)

+

r∑

i=1

Bi

(
u̇(t− hi) − u̇(t− ĥi(t))Fi

)
,

where

Fi = 1 + Li

〈
gi(t, ĥi(t)), sign(∆)

〉
st(ĥi(t)).

Due to presence of the ”st” function in the right hand side of (36), and the

assumption that ĥi(0) ≥ 0. the estimate ĥ(t) always stays nonnegative, so in

the last expression st(ĥi(t)) ≡ 1.
Using that, and the definition of gi, the expression for ∆̇ can be written as

∆̇ =

r∑

i=1

[
gi(t, hi) − gi(t, ĥi(t)) − Li

〈
gi(t, ĥi(t)), sign(∆)

〉
gi(t, ĥi(t))

]
.(37)
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Now, let us consider the following nonsmooth Lyapunov function (see, [11],
[33], [?])

V (∆) = ‖∆‖1 = 〈∆, sign(∆)〉 , (38)

Differentiating V in a non smooth context (this is using generalized gradient see
[4])

V̇ ∈ ∪w∈∂CV

{〈
w, ∆̇

〉}
, (39)

this is

V̇ (∆) = Vdot(∆) if for i = 1, ..., n ∆i 6= 0

Vdot(∆) =

r∑

i=0

〈
gi(t, hi) − gi(t, ĥi(t)), sign(∆)

〉

−
r∑

i=0

Li

〈
gi(t, ĥi(t)), sign(∆)

〉2

,

or using a notation α(t, hi, ĥi) = gi(t, hi) − gi(t, ĥi(t)) we have

Vdot(∆) =

r∑

i=0

〈
α(t, hi, ĥi), sign(∆)

〉
(40)

−
r∑

i=0

Li

〈
gi(t, hi(t)) − α(t, hi, ĥi), sign(∆)

〉2

. (41)

Using the assumptions H1, H2 for some constant C we have the following esti-
mate

‖α(t, hi, ĥi)‖ ≤ C‖∆‖1 = CV

which results in

Vdot(∆) ≤ C1V −
r∑

i=0

Li 〈gi(t, hi(t)), sign(∆)〉
2
, (C1 > 0). (42)

Finally, using the assumption H3 we obtain that for some C2 > 0

Vdot(∆) ≤ C1V − C2. (43)

This inequality guarantees that Vdot(∆) is negative for V < C2/C1. Since
V = ‖∆‖1 due to H1, Vdot(∆) is negative for for some ball Bε1

(H) with the
center in H.

According to the result which can be found in [11], [33] the negativeness of
the nonsmooth Lyapunov function derivative on the set {∆i 6= 0, i = 1, ..., n}
guarantees that the Filippov definition set in the right hand side of (39) is
located on the negative part of the real axis. It implies the convergence V → 0
everywhere, including along the sets {∆i = 0}, when in sliding mode (see, again
[11], [33]).
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Moreover, from the previous computation if V (0) ≤ C2/C1−α, where α > 0
one gets

Vdot(∆) ≤ −α.

which ensures that V decreases to zero in finite time. Finally, using the in-
equality from the assumption H2: ‖Ĥ−H‖1 ≤ c1‖∆(t, Ĥ)‖1 = V we obtain the
desired proof. J

5.2 Delay Estimation Algorithm B

Let us consider now a version of the Algorithm which requires more restrictive,
but easier to check conditions to converge. In fact, we will consider (17) as a
particular case of a more general situation where delays may be different in each
equation of the system:

ẋj(t) =

r∑

i=0

[Aix(t− hij) +Biu(t− hij)]j , (44)

where j = 1, ..., n, and we denote as [...]j the jth component of a vector.
We design an estimation algorithm for a r × n matrix of delays H = [hij ],

and prove its convergence in the assumption that the system is identifiable.
Obviously, such algorithm should also converge if the delays hij do not depend
on the component number j since this is just a particular case.

For this, let us introduce the following function ∆ = [∆1, ...,∆n]T , where

∆j = ẋj(t) −

r∑

i=0

fij(t, ĥij(t)), (45)

fij(t, ĥij(t)) =
[
Aix

(
t− ĥij(t)

)
+Biu

(
t− ĥij(t)

)]
j
, (46)

The time derivative of each ∆j along the system (17) is

∆̇j = ẍj(t) −
r∑

i=0

gij(t, ĥij(t))

(
1 −

dĥij(t)

dt

)
, (47)

gij(t, ĥij(t)) =
[
Aiẋ

(
t− ĥij(t)

)
+Biu̇

(
t− ĥij(t)

)]
j
. (48)

The following delay estimator can be used for i = 1, . . . , r :; j = 1, . . . , n

dĥij(t)

dt
= −Ligij(t, ĥij(t)) sign(∆j) st(ĥij(t)) (49)

.

Theorem 3 Let us assume that there exist a finite time t1 > 0 such that the
following holds for 0 ≤ t ≤ t1:
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H1: The input u(t) is, at least once, continuously differentiable and have bounded
derivative.The system vector x(t) is, at least, twice continuously differen-
tiable and have bounded derivatives.

H2: For given x(t), and u(t), the system (44) is identifiable with respect to
unknown delay matrix H = [hij ] for the input u(t), t ≥ −h, and the initial
condition xo(t),−h ≤ t ≤ 0.

H3: There exists δ > 0, that for any j = 1, ..., n, there exists at least one
i = 1, ..., r such that |gij(t, hij)| > δ.

Then, using the delay estimator (49) with initial conditions Ĥ(0) =
[
ĥij(0)

]

(ĥij(0) ≥ 0,∀j = 1, ..., r; i = 1, ..., n), close enough to H (∃ε > 0, Ĥ(0) ∈ Bε(H))
there exist finite gains Li such that after a finite time t0, (0 5 t0 ≤ t1) we have

ĥij(t) ≡ hij for all i = 0, ..., r; i = 1, ..., n, t0 ≤ t ≤ t1.

Proof (Algorithm Convergence): I We will just outline the proof since it is
very similar to the proof of the Theorem 2. In this case we can prove separately
sliding mode existence for every scalar sliding surface ∆j = 0. Using ∆̇j given
in (47) we obtain

∆̇j = ẍj(t) −
r∑

i=0

gij(t, ĥij(t))

(
1 −

dĥij(t)

dt

)
, (50)

= −
r∑

i=0

gij(t, ĥij(t))
dĥij(t)

dt
+ Φj(ĥij(t)) (51)

where we denoted as Φj(ĥij(t)) the sum of all terms which do not depend on
d�hij(t)

dt :

Φj(ĥij(t)) = ẍj(t) −

r∑

i=0

gij(t, ĥij(t)), (52)

=
r∑

i=0

gij(t, hij) −
r∑

i=0

gij(t, ĥij(t)) (53)

As in the previous algorithm, the function ”st” in the right hand side of (49),

and the assumption that ĥij(0) ≥ 0 guarantee that the estimate ĥij(t) always

stays nonnegative. So using the algorithm equation (49) for ĥij(t) ≥ 0 we have

∆̇j = −

r∑

i=0

Li

[
gij(t, ĥij(t))

]2
sign(∆j) + Φj(ĥij(t)), (54)

or using a notation αij(t, hij , ĥij(t)) = gij(t, hij) − gij(t, ĥij(t))

∆̇j = −
r∑

i=0

Li

[
gij(t, hij) − αij(t, hij , ĥij(t))

]2
sign(∆j) +

r∑

i=0

αij(t, hij , ĥij(t)).
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From assumption H1 it follows that
∣∣∣αij(t, hij , ĥij(t))

∣∣∣ ≤ c1

∣∣∣hij − ĥij(t)
∣∣∣,

and from assumption H3: |gij(t, hij)| > δ, for at least one i = 1, ..., r.
So, similar as in the proof of the previous Theorem we obtain that sliding

mode occurs on ∆j(t) ≡ 0 for initial conditions of ĥij sufficiently close to hij .
Using the assumption H2 it follows the convergence of the estimate. J

5.3 Delay Estimation Algorithm C

Algorithms A, and B require measurements of the derivatives which can be
obtained via sliding modes, but another version of the algorithm does not require
these derivatives. For this, let:

∆̃(t) = x(t) − x(0) −

r∑

i=0

∫ t

0

fi(ξ, ĥi(t))dξ (55)

where the functions fi are given by (33). We propose the following delay esti-
mator for i = 1, . . . , r :

dĥi(t)

dt
= −Li

〈
f̃i

(
t, ĥi(t)

)
, sign(∆̃)

〉
st(ĥi(t)) st(h− ĥi(t)), (56)

where the functions f̃i(t, ĥi) are

f̃i(t, ĥi) = Ai

[
x
(
t− ĥi

)
− x

(
−ĥi

)]
+

Bi

[
u
(
t− ĥi

)
− u

(
−ĥi

)]
= fi(t, ĥi) − fi(0, ĥi). (57)

Here x(−ĥi(t)) = xo(−ĥi(t)), and u(−ĥi(t)) = uo(−ĥi(t)) are using the values
of the initial functions for x, u, and h is the upper limit of the delays h1, ..., hr.
The initial conditions for the estimation algorithm (56) are assumed to be in
the interval 0 ≤ hi(0) ≤ h.

Let’s note here, that the function st(ĥi(t)) st(h − ĥi(t)) in the right-hand

side of (56) guarantees that 0 ≤ ĥi(t) ≤ h for all t ≥ 0, so the values x(−ĥi(t)),

and u(−ĥi(t)) are well defined.

Differentiating ∆̃, and using notations fi,gi (see (33), (35)), we obtain

˙̃
∆(t) = ẋ(t) −

r∑

i=0

fi(t, ĥi(t)) +

r∑

i=0

∫ t

0

gi(ξ, ĥi(t))dξ
dĥi(t)

dt
. (58)

Using the fact that

∫ t

0

gi(ξ, ĥi(t))dξ = fi(t, ĥi(t)) − fi(0, ĥi(t)) = f̃i

(
t, ĥi(t)

)
,

similarly, to the case of the Algorithm A we obtain the convergence proof based

on the use of the Lyapunov function V (∆̃) = ‖∆̃‖1 =
〈
∆̃, sign(∆̃)

〉
.

The following theorem states local convergence of the Algorithm C.
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Theorem 4 Let us assume that there exist a finite time t1 > 0 such that the
following holds for 0 ≤ t ≤ t1:

H1: The input u(t) is continuous and bounded. The system vector x(t) is, at
least, once continuously differentiable and have bounded derivative.

H2: The system (17) is identifiable with respect to delay vector for the input
u(t), t ≥ −h, and the initial condition xo(t),−h ≤ t ≤ 0. In particular,

∀t : 0 < t < t1 ∃c1 : c1 > 0 such that ‖H′ − H‖1 ≤ c1‖∆̃(t,H′)‖1 for all
H′ ∈ Bε(H) where Bε(H) is some ball of the radius ε > 0(∃ε > 0), with
the center in H.

H3: There exists δ > 0, that
∣∣∣
〈
f̃i(t, hi), β

〉∣∣∣ > δ for any vector β = [β1, ..., βn]T ∈

R
n, such that |βj | = 1, for all j = 1, ..., n .

Then, using the delay estimator (36) with initial conditions Ĥ(0) =
[
ĥ1(0), . . . , ĥr(0)

]T

(ĥj(0) ≥ 0,∀j = 1, ..., r), close enough to H = [h1, . . . , hr]
T

(∃ε > 0, Ĥ(0) ∈
Bε(H)) there exist finite gains Li such that after a finite time t0, (0 5 t0 ≤ t1)

we have ĥi(t) ≡ hi for all i = 0, ..., r, t0 ≤ t ≤ t1.

6 Variable delay estimation in linear systems

We’ll show here that the same algorithms A,B, and C without any changes can
be used for estimation of the variable delay in the system (22):

ẋ(t) =
r∑

i=0

[Aix(t− hi(t)) +Biu(t− hi(t))] .

The only distinction between constant and variable delay cases are the condi-
tions for the convergence. Namely, the following theorems are true:

Theorem 5 Let us assume that there exist a finite time t1 > 0 such that the
following holds for 0 ≤ t ≤ t1:

H1: The input u(t) is continuously differentiable and has bounded derivative.
The system vector x(t) is twice continuously differentiable and have bounded
derivatives. The variable delay vector function H(t) = [h1(t), ..., hn(t)]T is
bounded by some h > 0, i.e. 0 ≤ hi(t) ≤ h, for every i = 1, ..., n, and every
hi(t) is continuously differentiable with bounded derivative: 0 ≤ ḣi(t) ≤ h′.

H2: The system (22) is identifiable with respect to delay vector H(t) for the in-
put u(t), t ≥ −h, and the initial condition xo(t),−h ≤ t ≤ 0. In particular,
∀t : 0 ≤ t ≤ t1 ∃c1 : c1 > 0 such that ‖H′(t) −H(t)‖1 ≤ c1‖∆(t,H′(t))‖1

for all H′(·) ∈ B̃ε(H(·)) where B̃ε(H(·)) is some ball in C1
[−h,+∞] of the

radius ε > 0(∃ε > 0), with the center in H(·).
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H3: There exists δ > 0, that |〈gi(t, hi(t)), β〉| > δ for any vector β = [β1, ..., βn]T ∈
R

n, such that |βj | = 1, for all j = 1, ..., n .

Then, using the delay estimator (36) with initial conditions Ĥ(0) =
[
ĥ1(0), . . . , ĥr(0)

]T

(ĥj(0) ≥ 0,∀j = 1, ..., r), close enough to H(0) = [h1(0), . . . , hr(0)]
T

(∃ε >

0, Ĥ(0) ∈ Bε(H(0))) there exist finite gains Li such that after a finite time

t0, (0 5 t0 < t1) we have ĥi(t) ≡ hi(t) for all i = 0, ..., r, t0 ≤ t ≤ t1.

Proof (Algorithm Convergence): I The proof repeats the same steps as
the proof of the Theorem 2 with the following modifications:

• The expression (37) contains additional terms depending on ḣi(t):

∆̇ =

r∑

i=1

[
gi(t, hi(t)) − gi(t, ĥi(t)) + gi(t, hi(t))ḣi(t)

− Li

〈
gi(t, ĥi(t)), sign(∆)

〉
gi(t, ĥi(t))

]
.

• As a result, the expression for Vdot(∆) (41) will include a bounded function
γi(t) = gi(t, hi(t))ḣi(t) (assumption H1)

Vdot(∆) =
r∑

i=0

〈
αi(t, hi, ĥi) + γi(t), sign(∆)

〉

−

r∑

i=0

Li

〈
gi(t, hi(t)) − αi(t, hi, ĥi), sign(∆)

〉2

.

• Using boundedness of γi(t) (42) can be written with an additional constant
C0 > 0 in the right hand side as

Vdot(∆) ≤ C0 + C1V −

r∑

i=0

Li 〈gi(t, hi(t)), sign(∆)〉
2
, (C1 > 0).

• Finally, using the assumption H3 we obtain that:

Vdot(∆) ≤ C0 + C1V − C2,

where C2 > C0 for sufficiently large Li.

The last inequality guarantees that Vdot(∆) < −δ1 for V < (C2−C0−δ1)/C1.
Which as in the Theorem 2 completes the proof. J

Similar proof can be obtained for the variable delay version of the Theorem
3 :

Theorem 6 Let us assume that for the system (44) with variable hij(t) there
exist a finite time t1 > 0 such that the following holds for 0 ≤ t ≤ t1:
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H1: The input u(t) is continuously differentiable and has bounded derivative.
The system vector x(t) is twice continuously differentiable and have bounded
derivatives. Every entry of the variable delay matrix function H(t) =
[hij(t))] is bounded by some h > 0, i.e. 0 ≤ hij(t) ≤ h, for every
i = 1, ..., r, j = 1, ..., n, and every hij(t) is continuously differentiable

with bounded derivative: 0 ≤ ḣij(t) ≤ h′.

H2: The system (44) with variable hij(t) is identifiable with respect to de-
lay matrix H(t) for the input u(t), t ≥ −h, and the initial condition
xo(t),−h ≤ t ≤ 0. In particular, ∀t : 0 ≤ t ≤ t1 ∃c1 : c1 > 0 such

that ‖H′(t) − H(t)‖1 ≤ c1‖∆(t,H′(t))‖1 for all H′(·) ∈ B̃ε(H(·)) where

B̃ε(H(·)) is some ball in C1
[−h,+∞] of the radius ε > 0(∃ε > 0), with the

center in H(·).

H3: There exists δ > 0, that for any j = 1, ..., n, there exists at least one
i = 1, ..., r such that |gij(t, hij(t))| > δ for all 0 ≤ t ≤ t1 .

Then, using the delay estimator (49) with initial conditions Ĥ(0) =
[
ĥij(0)

]

(ĥij(0) ≥ 0,∀j = 1, ..., r; i = 1, ..., n), close enough to H(0) (∃ε > 0, Ĥ(0) ∈
Bε(H(0))) there exist finite gains Li such that after a finite time t0, (0 5 t0 ≤ t1)

we have ĥij(t) ≡ hij(t) for all i = 0, ..., r; i = 1, ..., n, t0 ≤ t ≤ t1.

The following theorem states local convergence of the Algorithm C for a time
varying case .

Theorem 7 Let us assume that for the system (22) there exist a finite time
t1 > 0 such that the following holds for 0 ≤ t ≤ t1:

H1: The input u(t) is continuous and bounded. The system vector x(t) is, at
least, once continuously differentiable and have bounded derivative. Every
entry of the variable delay vector function H(t) = [h1(t), ..., hr(t))]

T is
bounded by some h > 0, i.e. 0 ≤ hi(t) ≤ h, for every i = 1, ..., r, and every
hi(t) is continuously differentiable with bounded derivative: 0 ≤ ḣi(t) ≤ h′.

H2: The system (22) is identifiable with respect to delay vector H(t) for the
input u(t), t ≥ −h, and the initial condition xo(t),−h ≤ t ≤ 0.

H3: There exists δ > 0, that
∣∣∣
〈
f̃i(t, hi(t)), β

〉∣∣∣ > δ for any vector β = [β1, ..., βn]T ∈

R
n, such that |βj | = 1, for all j = 1, ..., n .

Then, using the delay estimator (56) with initial conditions Ĥ(0) =
[
ĥ1(0), . . . , ĥr(0)

]T

(ĥj(0) ≥ 0,∀j = 1, ..., r), close enough to H(0) = [h1(0), . . . , hr(0)]
T

(∃ε >

0, Ĥ(0) ∈ Bε(H(0))) there exist finite gains Li such that after a finite time

t0, (0 5 t0 ≤ t1) we have ĥi(t) ≡ hi(t) for all i = 0, ..., r, t0 ≤ t ≤ t1.
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Remark 1 All algorithms described above can be used for the linear systems of
the type (17), (44), (21), (18), with additional known term in the right hand
side, such as, for example W (t) in the variable delay model:

ẋ(t) =

r∑

i=0

[Aix(t− hi(t)) +Biu(t− hi(t))] +W (t),

The corresponding modification of ∆ is

∆ = ẋ(t) −

r∑

i=0

[
Aix(t− ĥi(t)) +Biu(t− ĥi(t))

]
−W (t).

7 Sliding-mode observers for distributed delay

estimation in linear systems

Let us now consider the model (18)

ẋ(t) =

∫ h

0

[dµ(ξ)x(t− ξ) + dν(ξ)u(t− ξ)] ,

where, as was mentioned earlier, µ(ξ) and ν(ξ) are matrix valued functions of
bounded variation, or matrix valued measures (not necessarily positive).

An estimation algorithm, which is an analog of the algorithm (36) is de-
scribed by a functional equation. Namely, for φ(ξ), and ψ(ξ) arbitrary con-
tinuously differentiable functions equal to zero outside the interval [0, h], the
estimates µ̂(ξ, t), and ν̂(ξ, t) satisfy the following equation:

∫ h

0

[dµ̂′
t(ξ, t)φ(ξ) + dν̂′t(ξ, t)ψ(ξ)]

= L1(t)

∫ h

0

[dµ̂(ξ, t)φ′(ξ) + dν̂(ξ, t)ψ′(ξ)]

×

∫ h

0

[ẋT (t− ξ)dµ̂T (ξ, t) + u̇T (t− ξ)dν̂T (ξ, t)]sign[∆(t)]

+L2(t)

∫ h

0

[dµ̂(ξ, t)φ(ξ) + dν̂(ξ, t)ψ(ξ)]

×

∫ h

0

[xT (t− ξ)dµ̂T (ξ, t) + uT (t− ξ)dν̂T (ξ, t)]sign[∆(t)], (59)

where, as µ̂′
t(ξ, t), ν̂

′
t(ξ, t) we denote derivatives of time-varying measures

µ̂(ξ, t), ν̂(ξ, t) with respect to time.
L1(t) > 0, and L2(t) > 0 are the algorithm’s gains.

The function ∆(t, ̂̃µ)) which defines the sliding manifold is

∆ = ẋ(t) −

∫ h

0

[dµ̂(ξ, t)x(t− ξ) + dν̂(ξ, t)u(t− ξ)] . (60)
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Theorem 8 Let us assume that there exist a finite time t1 > 0 such that the
following holds for 0 ≤ t ≤ t1:

H1: The input u(t) is, at least once, continuously differentiable and have bounded
derivative. The system vector x(t) is, at least, twice continuously differ-
entiable and have bounded derivatives.

H2: The system (18) is identifiable with respect to µ̃ for the input u(t), t ≥ −h,
and the initial condition xo(t),−h ≤ t ≤ 0 .

H3 There exist δ > 0 such that
∣∣∣∣∣

〈∫ h

0

[dµ(ξ, t)ẋ(t− ξ) + dν(ξ, t)u̇(t− ξ)], β

〉∣∣∣∣∣ > δ,

or ∣∣∣∣∣

〈∫ h

0

[dµ(ξ, t)x(t− ξ) + dν(ξ, t)u(t− ξ)], β

〉∣∣∣∣∣ > δ,

for any vector β = [β1, ..., βn]T ∈ R
n, such that |βj | = 1, for all j = 1, ..., n

.

Then, using the delay estimator defined by the equation (59) with initial
conditions µ̂(ξ, 0), ν̂(ξ, 0) close enough to µ(ξ), ν(ξ) there exist finite gains Li

such that after a finite time t0, (0 5 t0 ≤ t1) we have t ≥ t2 we have µ̂(ξ, t) ≡
µ(ξ).

Proof (Algorithm (59) Convergence): I Differentiating ∆ given by (60)
with respect to time we obtain

∆̇ = ẍ(t) −

∫ h

0

[dµ̂(ξ, t)ẋ(t− ξ) + dν̂(ξ, t)u̇(t− ξ)]

−

∫ h

0

[
dµ̂′

t(ξ, t)x(t− ξ) + dν̂ ′t(ξ, t)u(t− ξ)
]

= −

∫ h

0

[
dµ̂′

t(ξ, t)x(t− ξ) + dν̂ ′t(ξ, t)u(t− ξ)
]
+ Φ(t, µ̂, ν̂),

where we denoted as Φ the first two terms in the above expression:

Φ(t, µ̂, ν̂) = ẍ(t) −

∫ h

0

[dµ̂(ξ, t)ẋ(t− ξ) + dν̂(ξ, t)u̇(t− ξ)] .

Φ(t, µ̂, ν̂) depends on the measures estimates µ̂, ν̂, such that on the actual mea-
sures its value is zero:

Φ(t, µ, ν) ≡ 0.

since this expression is just the time derivative of the equation (18).
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Now, let us consider, as in the proofs of the above theorems the following
nonsmooth Lyapunov function

V (∆) = ‖∆‖1 = 〈sign(∆),∆〉 , (61)

Differentiating V in a non smooth context as before (this is using generalized
gradient see [4])

V̇ ∈ ∪w∈∂CV

{〈
w, ∆̇

〉}
,

where

V̇ (∆) = Vdot(∆) if ∆i 6= 0, for i = 1, ..., n

Vdot(∆) = −

〈
sign(∆),

∫ h

0

[
dµ̂′

t(ξ, t)x(t− ξ) + dν̂ ′t(ξ, t)u(t− ξ)
]
〉

+ 〈sign(∆),Φ(t, µ̂, ν̂)〉 ,

Let’s fix t, and choose the functions φ(ξ), and ψ(ξ) as

φ(ξ) = x(t− ξ)spε,h(ξ)

ψ(ξ) = u(t− ξ)spε,h(ξ).

This functions are continuously differentiable, and they are identically zero out-
side [0, h].

Since, obviously,

∫ h

0

[
dµ̂′

t(ξ, t)x(t− ξ) + dν̂ ′t(ξ, t)u(t− ξ)
]

=

∫ h

0

[
dµ̂′

t(ξ, t)φ(ξ) + dν̂ ′t(ξ, t)ψ(ξ)
]
+o(ε),

where o(ε) → 0 uniformly with respect to t, when ε→ 0, and φ(ξ), ψ(ξ) satisfy
conditions mentioned after the equation (59). Using this equation we obtain:
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V̇ (∆) = Vdot(∆) if ∆i 6= 0, for i = 1, ..., n

Vdot(∆) = −

〈
sign(∆),

∫ h

0

[
dµ̂′

t(ξ, t)φ(ξ) + dν̂ ′t(ξ, t)ψ(ξ)
]
〉

+ 〈sign(∆),Φ(t, µ̂, ν̂)〉 + o(ε)

= −

〈
sign(∆), L1(t)

∫ h

0

[dµ̂(ξ, t)φ′(ξ) + dν̂(ξ, t)ψ′(ξ)]×

×

∫ h

0

[ẋT (t− ξ)dµ̂T (ξ, t) + u̇T (t− ξ)dν̂T (ξ, t)] sign(∆)

〉

−

〈
sign(∆), L2(t)

∫ h

0

[dµ̂(ξ, t)φ(ξ) + dν̂(ξ, t)ψ(ξ)]×

×

∫ h

0

[xT (t− ξ)dµ̂T (ξ, t) + uT (t− ξ)dν̂T (ξ, t)] sign(∆)

〉

+ 〈sign(∆),Φ(t, µ̂, ν̂)〉 + o(ε)

= −L1(t)

〈
sign(∆),

∫ h

0

[dµ̂(ξ, t)ẋ(t− ξ) + dν̂(ξ, t)u̇(t− ξ)]

〉2

− L2(t)

〈
sign(∆),

∫ h

0

[dµ̂(ξ, t)x(t− ξ) + dν̂(ξ, t)u(t− ξ)]

〉2

+ 〈sign(∆),Φ(t, µ̂, ν̂)〉 + o(ε)

On the other hand, introducing

α(t) =

∫ h

0

[dµ̂(ξ, t)x(t− ξ) + dν̂(ξ, t)u(t− ξ)]

−

∫ h

0

[dµ(ξ, t)x(t− ξ) + dν(ξ, t)u(t− ξ)]

we obtain

Vdot(∆) = −L1

〈
sign(∆),

∫ h

0

[dµ(ξ, t)ẋ(t− ξ) + dν(ξ, t)u̇(t− ξ)] + Φ(t)

〉2

− L2

〈
sign(∆),

∫ h

0

[dµ(ξ, t)x(t− ξ) + dν(ξ, t)u(t− ξ)] + α(t)

〉2

+ 〈sign(∆),Φ(t)〉 + o(ε)

Using the assumptions H1-H3 we obtain, similar, as in the proof of the
theorem 2, the following estimate:

Vdot(∆) ≤ C0 − C1V + o(ε)
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for the initial estimates sufficiently close to the actual values of µ, and ν in the
sense of a norm described above.

This inequality implies local convergence of the proposed algorithm. J

8 Examples

Example 1

In order to illustrate our approach, as a first example, we consider the fol-
lowing classical first order system without inputs, and with unknown delay:

ẋ(t) = a0x(t) + a1x(t− h). (62)

The delay estimation algorithm has the form:

˙̂
h(t) = −La1ẋ(t− ĥ(t))sign(∆(t))sg(ĥ(t)), (63)

where ∆ = ẋ(t) − a0x(t) − a1x(t − ĥ(t)). We used the following parameters:
a0 = −0.5, a1 = 1.0, and h = 1.0.

The plots below show the simulation experiments with initial value x(0) = 1,
and zero initial function of the delay element (x(τ) = 0 for τ ∈ [−1, 0)). The
observer gain was L = 0.3. The Euler simulation algorithm was used, since,
as it is well known, the simulation of sliding mode algorithms require special
attention. Systems with sliding modes from numerical point of view are ”rigid”
and such methods as Runge-Kutta can run into numerical difficulties. Higher
order Adams methods may be applied for better accuracy.

The plots of ĥ shows that the observer for the delay converges for different
initial conditions, when the initial delay estimates is above (Fig. 3) and below
(Fig. 4) the actual delay. In Fig. 2 we show the plot of the switching function
∆ for the first case.

Example 2

As the second example we consider a first order system with two unknown
delays:

ẋ(t) = ax(t− h1) + bu(t− h2). (64)

The following numerical values were used a = −0.1, b = 1, h1 = 2, h2 = 3. The
simulations were carried out for the initial condition 1 for x on the interval
[−2, 0].

According to our notations the equation (64) should be written as

ẋ(t) =
2∑

i=1

Aix(t− hi) +Biu(t− hi), (65)

26



0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

t

D
el

ta

Figure 2: Example 1. Delta.

where A1 = a, A2 = 0, B1 = 0, and B2 = b. Therefore, the Algorithm A has
the form

˙̂
h1 = −L1g1sign(∆)st(ĥ1)

˙̂
h2 = −L2g2sign(∆)st(ĥ2), (66)

where ∆ = ẋ(t)−ax(t− ĥ1)−bu(t−ĥ2), g1 = aẋ(t−ĥ1), and g2 = bu̇(t−ĥ2). As
the input u we used differentiable randomly chosen input. The plots depicting
the behavior of the delays estimates ĥ1 and ĥ2 and the switching function ∆
are shown in Fig . 5-7.
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Figure 3: Example 1. Plot of ĥ for the initial estimate (0.8) below the actual
delay.

Example 3

As the third example we’ll consider the situation when it is required to
estimate simultaneously parameters and delays of a system distributed over a
network.

One of the practical setups can be described as following: we have a net-
work with three nodes is shown in the Fig. 8 . There is an unknown delay in
information exchange between nodes.

The systems at the second and third nodes (Subsystems II and III) are con-
trolled by the controller located at the first node (Subsystem I). The subsystems
II and III are described by the equations:

ẋ1(t) = A11x1(t) +A12x2(t− h′3) +B1u1(t− h1) (67)

ẋ2(t) = A21x2(t) +A22x1(t− h3) +B2u2(t− h2). (68)

At the first node we can measure the states of subsystems II and III with
the delays

y1(t) = x1(t− h1), (69)

y2(t) = x2(t− h2), (70)

correspondingly. Some (or all) delays and subsystems’ parameters are unknown.
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Figure 4: Example 1. Plot of ĥ for the initial estimate (1.2) above the actual
delay.
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Figure 5: Estimation of delay h1.
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Figure 6: Estimation of delay h2.
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Figure 7: Delta.
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Figure 8: Network example.

As a part of the controller located at the node I, we need an observer which can
estimate the delays and parameters.

Using time scale at the first node, from (67 - 70) we obtain that the measured
variables y1 and y2 satisfy the equations:

ẏ1(t) = A11y1(t) +A12y2(t− h1 − h′3) +B1u1(t− 2h1)

ẏ2(t) = A21y2(t) +A22y1(t− h2 − h3) +B2u2(t− 2h2). (71)

Let us consider a particular example when both subsystems II and III are
described by the first order equations with one unknown parameter a = A11 =
A21 and all unknown transmission delays are equal h1 = h2 = h3 = h′3 = h/2.
Also, for simplicity, we’ll assume that the other parameters are known a12 =
1, a22 = −1, and Bij = 0, (or ui(t) = 0). The more general case can be dealt
with, in a similar manner.

ẏ1(t) = ay1(t) + y2(t− h)

ẏ2(t) = ay2(t) − y1(t− h). (72)

The right hand side of this system can be written in the integral form

ẏ(t) =

∫ h

0

dµ(ξ)y(t− ξ),

where y = [y1, y2]
T , and µ is a corresponding unknown matrix measure

dµ(ξ) =

[
a 0
0 a

]
δ(ξ)dξ +

[
0 1
−1 0

]
δ(ξ − h)dξ.
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Therefore,

dµ̂(t, ξ) =

[
â(t) 0
0 â(t)

]
δ(ξ)dξ +

[
0 1
−1 0

]
δ(ξ − ĥ(t))dξ,

or, equivalently, the corresponding switching functions are

∆1 = ẏ1(t) − â(t)y1(t) − y2(t− ĥ(t))

∆2 = ẏ2(t) − â(t)y2(t) + y1(t− ĥ(t)). (73)

In our simulation experiments we used the values a = −1, h = 1, and zero
initial estimates â(0) = 0, ĥ(0) = 0. The plots of the switching functions ∆1, and
∆2 entering the sliding mode are shown in Fig. 9, Fig. 10, and corresponding
estimates â and ĥ in Fig. 11, Fig. 12.
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Figure 9: The switching function ∆1 .

9 Conclusion

We presented variable structure identification algorithms which allow simulta-
neous delay and parameter estimation. These algorithms are based on the use
of system model as sliding surfaces, where instead of the unknown parameters,
or delays we substitute their corresponding estimates. Then the estimation al-
gorithm (equation for the estimates) is designed in such a way which guarantees
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Figure 10: The switching function ∆2 .

convergence to these sliding surfaces. So, unlike in traditional approaches, where
one designs sliding surfaces for the given system, we used the system model as
the ”sliding surface”, and designed ”the system” (algorithm) where this sliding
mode occurs. The idea of such algorithms can be applied not only to linear time
invariant systems, but more generally to systems of almost any form. In partic-
ular, it can be extended to identification of nonlinear functional equations, and
distributed systems. It is very important to note, that the time convergence of
such algorithms is quite small (theoretically, arbitrary small) compared to other
methods, where the natural limitations for the convergence speed exist (see, for
example [24]).
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