Membrane protein transporters alternate their substrate-binding sites between
the extracellular and cytosolic side of the membrane according to the
alternating access mechanism. Inspired by this intriguing mechanism devised by
nature, we study particle transport through a channel coupled with an energy
well that oscillates its position between the two entrances of the channel. We
optimize particle transport across the channel by adjusting the oscillation
frequency. At the optimal oscillation frequency, the translocation rate through
the channel is a hundred times higher with respect to free diffusion across the
channel. Our findings reveal the effect of time dependent potentials on
particle transport across a channel and will be relevant for membrane transport
and microfluidics application