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Membrane protein transporters alternate their substrate-binding sites between the extracellular
and cytosolic side of the membrane according to the alternating access mechanism. Inspired by this
intriguing mechanism devised by nature, we study particle transport through a channel coupled with
an energy well that oscillates its position between the two entrances of the channel. We optimize
particle transport across the channel by adjusting the oscillation frequency. At the optimal oscilla-
tion frequency, the translocation rate through the channel is a hundred times higher with respect
to free diffusion across the channel. Our findings reveal the effect of time dependent potentials on
particle transport across a channel and will be relevant for membrane transport and microfluidics
application.

I. INTRODUCTION

Transport proteins are ubiquitously expressed in all
kingdoms of life and allow for the continuous exchange
of ions and nutrients across cell membranes [1]. A fea-
ture common to all transporters is their capability to
bind their substrate. The number, position and strength
of the substrate-binding sites can be optimized in or-
der to maximize substrate exchange across the cell mem-
brane [2]. The physical mechanisms underlying transport
optimization have been extensively investigated experi-
mentally [3–9], by molecular dynamics simulations [10],
and independently rationalized by a continuum diffu-
sion model based on the Smoluchowski equation [11],
a discrete stochastic model [12] and a general kinetic
model [13].

However, these studies do not take into account a fun-
damental hallmark shared by several transporters that is
their capability to alternate their substrate-binding sites
between the extracellular and cytosolic side of the mem-
brane according to the alternating access mechanism pro-
posed fifty years ago [14]. A simplified alternated particle
transport mechanism can be achieved by modulating the
energy landscape in which particles diffuse. Indeed, opti-
cal potentials modulated in time have been employed to
study particle diffusion [15, 16], to induce thermal ratch-
ets [17, 18] to direct [19] and sort Brownian particles [20–
24], to study particle escape and synchronization [25],
to investigate stochastic resonance and resonant activa-
tion [26, 27]. However, to the best of our knowledge,
the effect of oscillating potentials on particle transport
across one-dimensional (1D) channels remains to be in-
vestigated.
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In this letter, inspired by the naturally occurring al-
ternating access mechanism, we use our previously in-
troduced experimental model system [7, 8, 28] to couple
a modulated potential in a quasi 1D microfluidic chan-
nel. Specifically, we use holographic optical tweezers
(HOTs) [29, 30] to create an optical potential that oscil-
lates in time between the two entrances of the channel.
We find that (i) there is an optimal oscillation frequency
that maximizes the particle transport rate through the
channel; (ii) at this oscillation frequency, the particle
transport rate is two orders of magnitude larger with re-
spect to free diffusion; (iii) channel occupancy increases
with oscillation frequency and (iv) the optimal oscillation
frequency is the one that resonates with particle diffusion
across the region between the centres of the energy well
positions.

II. EXPERIMENTAL METHODS

Our microfluidic devices are fabricated as previously
reported [31, 32]. They consist of two 3D reservoirs with
a depth of 12 µm separated by a polydimethylsiloxane
barrier and connected by an array of microfluidic chan-
nels. Each channel has a cross section of around 0.9×0.9
µm2 and a length of 2L = 4.8 µm. The reservoirs
are filled with spherical polystyrene particles of diame-
ter (510±10) nm. We use a laser line trap generated by
HOTs to create an attractive potential well that extends
from the centre of the channel to 1.7 µm in the left reser-
voir (Fig. 1(a), (c) and dotted line in Fig. 1(d)). After a
time interval TΩ, we switch off this laser line and simul-
taneously switch on a second laser line trap that extends,
for a time interval TΩ, from the centre of the channel to
1.7 µm in the right reservoir (solid line in Fig. 1(d)). In
this way, we produce an attractive potential that oscil-
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FIG. 1. (a) Schematics illustrating the oscillation of the po-
sition of a laser line trap between the left and right hand side
of a channel at a frequency f. (b) Bright-field image of a 510
nm polystyrene particle diffusing in a microfluidic channel.
(c) Corresponding dark-field image showing the intensity dis-
tribution of a laser line trap positioned at the left entrance of
the microfluidic channel. The dashed lines highlight the chan-
nel contours. (d) Oscillating energy potential created when
the laser trap is positioned at the left (dotted line) and at the
right channel entrance (solid line). The potential extension,
depth and shape are estimated from the intensity distribu-
tion of the laser traps. The vertical lines indicate the channel
entrances. (e) Schematics illustrating particle return (e) and
translocation (f) events.

lates at frequency f = (2TΩ)−1 between the two channel
entrances (Fig. 1(a,d) and Video 1). We estimate the
extension, depth and shape of the energy wells from the
intensity distribution of the line traps generated by HOTs
(Fig. 1(d)) [33, 34]. The deduced potentials are validated
by measuring the velocity of a particle dragged through
the channels by moving the sample stage at a constant
speed [35]. Experiments are performed over a range of os-
cillation frequencies and particle concentrations c in the
reservoirs.

We record videos of particles undergoing Brownian mo-
tion in the channels and reservoirs and extract particle
trajectories [36, 37]. We define an attempt as the event
for which a particle enters into the channel from either
reservoirs and explores it for at least 33 ms, one frame
time of the CCD camera that we use [7]. Once a parti-
cle has entered the channel, it can either go back to the
same reservoir, defined as a return event (Fig. 1(e)), or
translocate through the channel and exit to the opposite
reservoir, defined as a translocation event (Fig. 1(f)). We
determine the attempt rate JA, the translocation rate JT
and the translocation probability PT , defined as JT /JA.
Average rate values for each oscillation frequency are ob-
tained from at least five experiments of one hour duration
each. In order to collect statistically sufficient samples
for the translocation time, we use HOTs for automated
drag-and-release experiments in which we trap a single
particle in one of the two reservoirs and place it in one of
the two channel entrances. At t = 0 s, we release the par-
ticle and simultaneously switch on the oscillating optical

FIG. 2. Dependence of (a) attempt rate JA, (b) translo-
cation probability PT and (c) translocation rate JT on the
potential oscillation frequency with a particle concentration
of 0.07 (circles), 0.22 (triangles) and 1.01 nM (squares) in the
reservoirs. Lines are two-term exponential fitting of the data
and allow identifying the following peak frequencies: 0.05,
0.10 and 0.15 Hz for the translocation probability and 0.14,
0.16 and 0.19 Hz for the translocation rate at c=0.07, 0.22
and 1.01 nM, respectively (fitting details in Appendix C).

potential (sketched in Appendix A and Video 2).

III. RESULTS AND DISCUSSION

A. Dependence of translocation rate and
probability on the frequency of the oscillating

potential

For c = (0.07 ± 0.01) nM, the attempt rate increases
with the oscillation frequency up to (318 ± 30) particles
(h−1) at a frequency of 0.5 Hz (circles in Fig. 2(a)). The
translocation probability instead sharply decreases down
to 0.02 for f = 0.5 Hz (circles in Fig. 2(b)). These two ef-
fects cancel each other and as a consequence the translo-
cation rate has a weak dependence on the oscillation fre-
quency (circles in Fig. 2(c)).

At higher particle concentrations, the frequency of the
oscillating potential strongly affects particle transport
across the channel. For c = (0.22 ± 0.06) nM, the at-
tempt rate increases with frequency up to a maximum
of (1733 ± 163) particles (h−1) for f = 1 Hz (triangles
in Fig. 2(a) and Fig. 3(a)). The translocation probabil-
ity and the translocation rate instead first increase with
frequency and peak at oscillation frequencies of 0.1 Hz
and 0.16 Hz, respectively (triangles in Fig. 2(b,c) and
Fig. 3(b,c)).

At even higher particle concentrations c = (1.01±0.07)
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FIG. 3. Comparison of (a) attempt rate JA, (b) translo-
cation probability PT and (c) translocation rate JT between
the alternating access configuration (triangles), a static po-
tential with two energy wells with the same extension but
42% smaller depth with respect to the oscillating potential
(dotted line) and a channel without optical potential coupled
(dashed line). The reduced depth avoids channel jamming
(Appendix D) in the presence of a static potential.

nM, the attempt rate is not significantly affected by
the frequency of the oscillating potential (squares in
Fig. 2(a)). The translocation probability and rate first
increase with frequency peaking at an optimal oscillation
frequency of 0.15 Hz and 0.19 Hz, respectively, and then
decrease at higher frequencies (squares in Fig. 2(b) and
(c)).

We find that the attempt and translocation rate in-
crease with the concentration of the particles in the reser-
voirs for all tested oscillation frequencies (Fig. 2(a,c)),
but interestingly, this is not the case for the translocation
probability (Fig. 2(b)). Moreover, for c = 0.22 nM the
translocation rate at the optimal oscillation frequency f
= 0.1 Hz is 102 times higher than the one measured in
free diffusion (dashed line in Fig. 3(c) and Appendix B)
and twice the one measured for a static potential con-
stantly switched on (dotted lines in Fig. 3(c)). For c =
1.01 nM at f = 0.1 Hz, the translocation rate (squares
in Fig. 2(c)) is 65 times higher than in free diffusion and
4 times higher than in the presence of the static double
well potential.

B. Dependence of channel occupancy on the
frequency of the oscillating potential

In order to gain more insight on the presence of an
optimal oscillation frequency, we measure the channel
occupation probability p(n), which is the probability to

FIG. 4. Dependence of the experimentaly measured prob-
ability to find (a) no particle p(0), (b) one particle p(1) ,
(c) two particles p(2) or (d) more than two colloidal parti-
cles p(≥ 3) on the oscillation potential frequency and particle
concentration. Circles, triangles and squares represent data
for a particle concentration of 0.07 nM, 0.22 nM and 1.01
nM, respectively. Dotted and dashed lines represent data for
a static potential and particle free diffusion in the channel,
respectively.

simultaneously find n particles in the channel. At high
particle concentrations, we measure that the probability
to find one particle in the channel p(1) is at a maxi-
mum for frequencies close to the optimal oscillation fre-
quency (triangles and squares for c = 0.22 and 1.07 nM,
respectively, in Fig. 4(b)). Notably, the channel is pre-
dominantly empty at low frequencies (e.g. p(0)=0.58 for
c = 0.22 nM and f = 0.05 Hz, triangles in Fig. 4(a))
whereas at high frequency and concentration the channel
is crowded (Fig. 4(c,d)), e.g. p(≥ 3) = 0.94 for c = 1.07
nM and f = 1 Hz. Therefore, the optimal oscillation fre-
quency is the one that allows for populating the channel
without overcrowding it [7].

C. Dependence of the channel translocation time
on the frequency of the oscillating potential

We perform drag-and-release experiments to measure
the translocation time of a particle across the channel
(Video 2). This experiment is repeated at least 300 times
for each f and performed at c = 0.01 nM. In free diffusion
the translocation time can be calculated as previously
reported [38]:

Ttr =
2

3

L2

Dc
(1)

where L is half the length of the channel and Dc is
the particle diffusion coefficient. In the presence of an
external potential U(x) in the channel, the translocation
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FIG. 5. (a-e) Histograms reporting the normalized distri-
bution of translocation times measured in drag-and-release
experiments at c = 0.01 nM (red bars) and via Brownian
dynamics simulations (blue bars) for different potential oscil-
lation frequencies f . (f) Experimental (triangles) and sim-
ulated (circles) translocation probability PT normalized to
their maximum values. Experimental PT is the mean of six
sets of 50 independent measurements obtained in drag-and-
release experiments.

time is given by [39]:

Text =
1

Dc

∫ b
a

(
∫ x
a

eβU(y)dy)(
∫ b
x

eβU(y)dy)e−βU(x)dx∫ b
a

eβU(y)dy
(2)

where [a, b] is the transition length, β = 1/(kBT ) with
kB and T denoting the Boltzmann constant and absolute
temperature.

We measure the distribution of translocation times for
each oscillation frequency. We find resonance-like peaks
with the first maximum located at 40.5, 20.5, 10.5 and
4.5 s for f = 0.025, 0.05, 0.1 and 0.33 Hz, respectively
(red bins in Fig. 5(a-e) and Appendix E). Due to the
oscillating nature of our potential, Eq. (1) and Eq. (2) can
not fully describe our experimental data. However, we
performed 1D Brownian dynamics simulations by using
the experimentally measured oscillating potential (details
in Appendix F) and find translocation time values that
favourably compare with the experimental values (Fig. 5
(a-e)). Moreover, our Brownian dynamics simulations
confirm the frequency dependence of the translocation
probability with an optimal oscillation frequency of f =
0.125 Hz close to the experimentally measured one (black
dots and red triangles, respectively, in Fig. 5(f)).

D. Optimal oscillation frequency is defined by
diffusion between potential wells

By measuring the transition times across portions of
the channel, we provide an intuitive explanation of the
optimal oscillation frequency. Firstly, let us consider a
representative translocation from the left to the right

FIG. 6. Schematics illustrating a representative transloca-
tion from left to right in the presence of the oscillating po-
tential. (a) A particle enters the left entrance of the channel
when the laser line is on at the left channel entrance and dif-
fuses through region I to the attractive well energy minimum.
(b) The left laser line is switched off and simultaneously the
right one is switched on, the particle freely diffuses through
region II. (c) The particle diffuses through region III into the
minimum of the right attractive energy well. (d) The laser
line at the right entrance is switched off and the one on the
left switched on and the particle diffuses through region IV
and out of the channel.

reservoir. Upon entering the channel, the particle may
diffuse to the minimum of the left attractive potential
well, while the left laser line is switched on (Region I in
Fig. 6(a)). The particle is trapped close to this position
until, at TΩ = (2f)−1, the left laser line is switched off
and the right line is turned on. At this time the particle
is free to diffuse either towards the left or right entrance
of the channel. In the most efficient scenario in terms
of particle transport, the particle travels in free diffusion
across region II (Fig. 6(b)) and region III where reaches
the right-hand side potential minimum when the right
laser line is still on (Fig. 6(c)). Finally, when this line is
switched off the particle is free to diffuse through region
IV out of the channel (Fig. 6(d)). We perform drag-and-
release experiments to evaluate the transition time across
each of the four regions above. The particle’s first transi-
tion time by free diffusion in channel portions of different
length is plotted in Fig. 7(a). The first transition time
through region II and III is TII&III = 2.8 s at the oscilla-
tion frequency f = 0 Hz (Fig. 7(b), a particle is released
from the HOTs at the left entrance of the channel with
the right-hand side potential constantly on). TII = 1.61 s
at f = 0 Hz is smaller than the corresponding Ttr = 1.95
s calculated according to Eq. 1 due to the presence of
the external potential. TIII = 1.02 s at f = 0 Hz is in
agreement with the value calculated according to Eq. 2
(Ttr = 1.13 s) by using the experimentally measured po-
tential. TII&III is close to TΩ = 5 s indicating that the
optimal oscillation frequency is the one that matches the
transition time through regions II and III. Notably, for f
higher than the optimal oscillation frequency, particle’s
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transition through regions II and III is interrupted by
the potential oscillation. For f lower than the optimal
oscillation frequency, a particle has a higher chance to
exit the channel through region I resulting in a return
event, although the chance for a particle to be trans-
ported through regions II and II is increased. Overall for
frequencies different from the optimal frequency, particle
diffusion through regions II and III does not synchronize
with the time scale defined by the oscillation frequency.
This explains the observed decrease in translocation rate
and probability at f lower and higher than the optimal
frequency (Fig. 2).

Optical potentials modulated in time have been exten-
sively employed to direct particle motion [15–27], includ-
ing in microfluidic applications [21]. However, these have
yet to be implemented for enhancing particle transport
across a quasi 1D microfluidic channel connecting two
reservoirs. In this paper we create a modulated optical
potential consisting of a laser line that alternates its po-
sition between the two entrances of a microfluidic chan-
nel. We optimize the oscillation frequency (Fig. 2) and
explain the physical mechanism underlying the optimal
oscillation frequency (Fig. 4-7). Particle transport in the
presence of the modulated optical potential is two orders
of magnitudes higher than in free diffusion (Fig. 3).

Our experiment indicates that oscillating potentials
may be an additional avenue for enhancing transport
across synthetic channels or pores. In order to mimic
membrane transport in living cells, we are planning to
scale our synthetic platform down to the nanoscale [40]
where the characteristic diffusion time is closer to the one
observed in protein transporter. Furthermore, it is possi-
ble to explore asymmetric systems with charged particles
only in one of the two reservoirs. Thus our system will be
mimicking electrochemical gradients and even exhibit ef-
fects like charge polarisation under applied external driv-
ing forces. Finally, an avenue with exciting phenomena
will involve mixing several types of particles with dif-
ferent sizes and surface charges, exploring competitive
effects and thus mimicking the mechanisms of secondary
active transporters, where the transport of a substrate is
coupled to the transport of a second substrate.

IV. SUMMARY

We studied the effect of a time dependent potential
on particle transport through a microfluidic channel. In-
spired by the alternating access mechanism, we coupled
an energy well that oscillates between the two entrances
of a microfluidic channel. We found that particle trans-
port through the channel can be maximized by optimiz-
ing the oscillation potential frequency. Importantly, the
optimal oscillation frequency makes the alternating ac-
cess channel more efficient in terms of transport com-
pared to static channels where particles are either in free
diffusion or can simultaneously bind to the ends of the
channel. We found that the optimal frequency is the one

FIG. 7. (a) Transition times of a freely diffusing particle
through portions of the channel of different lengths. The ex-
perimental values (circles) are mean and standard errors of
the values obtained in 200 experiments. The theoretical val-
ues (line) are calculated according to Eq. 1 by using experi-
mentally measured parameters. (b) Distribution of transition
times through regions II and III for f = 0 Hz, measured by
performing drag and release experiments at c = 0.1 nM. The
peak position is obtained by fitting the data with a Gaussian
function.

that allows synchronizing alternating access with particle
diffusion across the region of the channel between the two
oscillating energy well positions. We anticipate that our
findings will stimulate further investigation on mimicking
the functioning of membrane protein transporters [41],
on synchronized oscillations [27, 42–44] and on the use of
modulated potentials for particle control in microfluidics
applications [21].
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Appendix A: Drag and release experiment

FIG. 8. Schematics of the drag-and-release experiment. (a)
A particle is trapped in one of the two reservoirs. (b) The par-
ticle is dragged and positioned at one of the two channel en-
trances. (c) The particle is released from the optical trap and
simultaneously a laser line is switched on at the same chan-
nel entrance. (d) After TΩ this laser line is switched off and a
laser line is switched on at the opposite channel entrance. The
laser line position is oscillated at a frequency f = 1/(2 ∗ TΩ)
until the particle leaves the channel. This experiment is re-
peated at least 300 times for each f and performed at particle
concentration c = 0.01 nM in the reservoirs.

Appendix B: Transport of particles through the
channel in free diffusion

FIG. 9. Dependence of the attempt (triangles) and translo-
cation rate (squares) with respect to particle concentration
for particles in free diffusion through the microfluidic chan-
nel described in the main text. Data and error bars are the
mean and standard deviation of the values measured in five
different one hour long experiments.

Appendix C: Fitting attempt and translocation rate

Attempt rate, translocation rate and translocation
probability in Fig. 2 and 3 are fitted by a two-term ex-
ponential model f(x) = a ∗ exp(b ∗ x) + c ∗ exp(d ∗ x) via
the nonlinear least-squares method, where a, b, c, d are
the fitting parameters. The values for these parameters
estimated by the fitting are reported in Tables I-III.

TABLE I. Fitting of attempt rate data

c (nM) a b c d
0.07 9853436.5 -2.1 -9853424.6 -2.1
0.22 83037687.0 -0.3 -83037511.7 -0.3
1.01 3013.6 0.65 10014.3 -73.7

TABLE II. Fitting of translocation rate data

c (nM) a b c d
0.07 26.7 -1.9 -19.0 -12.7
0.22 77.4 -2.0 -86.7 -14.5
1.01 137.6 -1.0 -187.9 -17.0

TABLE III. Fitting of translocation probability data

c (nM) a b c d
0.07 0.2 -3.9 -0.1 -45.0
0.22 0.2 -3.9 -0.2 -23.9
1.01 0.05 -1.8 -0.1 -20.7

Appendix D: Channel jamming with static double
well potential

FIG. 10. Bright field image of 510 nm polystyrene particles
jamming the entrances of the channel permeated with static
energy wells as deep as the potential wells used for the oscilla-
tion. For this reason in the experiments reported in Fig. 3 and
Fig. 4, for the static potential we used a depth 42% smaller
with respect to the well depth used for the oscillating poten-
tial.

Appendix E: Transition and translocation times

For a particle in free diffusion in the channel the
translocation time calculated according to Eq. 1 using
L = 4.8/2 µm and Dc = 0.25 µm2/s [37] , is 15.36 s.
This is also in agreement with the value obtained via
Brownian simulation (14.99 s).
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FIG. 11. Histograms reporting the measured distributions of
translocation times for f = 0.05 Hz, 0.1 Hz and 1 Hz (from left
to right) and c = 0.07 nM, 0.22 nM and 1.01 nM (from top to
bottom). The distributions are fitted with Gaussian functions
(solid lines) allowing for the extrapolation of harmonic peaks.
The insets report the harmonic peak positions obtained by
fitting Gaussian functions.

Appendix F: Brownian dynamics simulation

We carried out Brownian dynamics simulations in a
1D channel with length L.

Particle trajectories start at −L/2 and are terminated
at their first contact with each of the perfect absorbing
boundaries set at −L/2 and L/2. In simulations we track
the fraction of particles that end at L/2 as well as their
transit time defined as the time that a particle takes to
reach L/2 for the first time.

The actual particle’s position, xn+1, is given by xn+1 =
xn + xran + βDcF∆t, where xn is the previous posi-
tion, xran is a pseudo random number generated with a
Gaussian distribution with average position displacement
µ = 0 and standard deviation σ =

√
2Dc∆t, and Force

F was derived from the potential depicted in Fig. 1(d).
When running simulations we set ∆t = 1 × 10−4 s and
we average over 100 millions random walkers.
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