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Non reciprocal spin waves have a chiral asymmetry so that their energy is different for two
opposite wave vectors. They are found in atomically thin ferromagnetic overlayers with in plane
magnetization and are linked to the anti-symmetric Dzyaloshinskii-Moriya surface exchange. We
use an itinerant fermion theory based on first principles calculations to predict that non-reciprocal
magnons can occur in Fe3GeTe2, the first stand alone metallic two dimensional crystal with off-plane
magnetization. We find that both the energy and lifetime of magnons are non-reciprocal and we
predict that acoustic magnons can have lifetimes up to hundreds of picoseconds, orders of magnitude
larger than in other conducting magnets.

A defining property of elementary excitations in crys-
tals, such as electrons, excitons, phonons, plasmons
and magnons is their dispersion curve E(�q). In most
cases, the dispersion curves satisfy the reciprocity rela-
tion E(�q) = E(−�q), reflecting the equivalence between
the excitation and its mirror image, i.e., their non-chiral
nature. In condensed matter systems, non-reciprocal en-
ergy dispersions occur under specific circumstances and
elicit great attention. Examples are chiral [1] and he-
lical [2] edge states of topological phases of various ex-
citations, including electrons, photons and magnons, as
well as Rashba split bands in crystals lacking inversion
symmetry and having strong spin orbit coupling [3].

A major driving force for chiral phenomena in mag-
netism [4–6] is the antisymmetric exchange �Dij ·(�Si× �Sj),
proposed by Dzyaloshinskii [7] and Moriya [8] (DM). This
special type of super-exchange is enabled by the com-
bination of spin orbit coupling [8] and the absence of
an inversion center between spins i, j. These conditions
are naturally found in overlayers of atomically thin fer-
romagnets on top of surfaces with high spin orbit cou-
pling. With this background, the existence of non recip-
rocal spin waves was predicted [9, 10], provided that the

DM vector �D is parallel to the magnetization �M . Sym-
metry considerations for this class of systems [11] leads

to the conclusion that the interfacial �D lies in-plane, so
that non-reciprocal spin waves in interfaces can only ex-
ist for ferromagnets with in plane easy axis, consistent
with experimental observations [12, 13]. Logical devices
based on non-reciprocal spin-waves have been recently
proposed [14].

In this work we show that non-reciprocal spin waves
can exist in a newly discovered class of 2D magnets [15],
stand alone two dimensional crystals with off-plane mag-
netization. The survival of magnetism in 2D is definitely
linked to a strong spin orbit coupling, that opens up a
gap in the magnon spectrum, preventing the infrared
catastrophe that destroys long range order in isotropic
2D magnets, as shown by Mermin and Wagner[16], in-

spired [17] by Hohenberg [18].

Here we explore magnons of Fe3GeTe2 for several rea-
sons. First, it has a low symmetry magnetic unit cell,
without an inversion center. Second, the observation
of large Anomalous Hall effect [19], anomalous Nerst ef-
fect [20] and skyrmions [21] in thin films strongly suggests
that intrinsic DM interaction, as opposed to interfacial,
is active in Fe3GeTe2. Third, the system is a conductor,
unlike other widely studied 2D crystals such as CrI3, and
has a large Curie temperature, that can reach room tem-
perature upon gating [22]. Fe3GeTe2 was synthesized for
the first time, in bulk, in 2006 [23]. Only much more
recently, however, high quality few layers samples have
been produced [24]. Monolayers have been obtained by
exfoliation [25].

Because of its conducting nature and high-temperature
ordering, Fe3GeTe2 is closer to technological applica-
tions. On the theory side, modelling magnons in con-
ducting ferromagnets represents a big challenge due to
the non-integer nature of the magnetic moments, the
long-range exchange, and the damping of magnons due
to their coupling to Stoner excitations. A microscopic de-
scription that does not take the itinerant character into
account, such as that provide by spin models, will fail to
describe most of the relevant physics of these systems.

We compute the magnon spectra of a Fe3GeTe2 mono-
layer using the itinerant fermion picture [10, 26]. With
this method we are able to extract magnon energies and
lifetimes from a first principles electronic structure cal-
culation, without the need of building an intervening ef-
fective spin model. We use Density Functional Theory
(DFT) [27, 28] to derive an effective fermionic Hamilto-
nian to describe the spin dynamics of 2D materials. The
unit cell of Fe3GeTe2is shown in Fig. 1. It has three
Fe atoms, occupying two nonequivalent positions, A and
B. We denote them FeA, FeB1 and FeB1 . There is no
inversion center along the lines joining FeA and FeB1,2 .

The DFT calculations were performed using the plane
waves code Quantum Espresso [29]. The electronic
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FIG. 1: Top (a) and side (b) views of the lattice structure,
showing the unit cell (marked by the dashed red line in a) and
the two nonequivalent Fe sites in (b). In (c) we show the band
structure along high symmetry points in the 2D Brillouin zone
(depicted in the inset of fig. 3a). The color code shows the
projection of the electronic eigenvectors on the eigenstates of
Sz.

exchange-correlation is described by the generalized gra-
dient approximation (GGA) within the Perdew-Burke-
Ernzerhof (PBE) functional [30]. Ionic cores are de-
scribed using projector augmented wave (PAW) pseu-
dopotentials [31]. The local effective paramagnetic
Hamiltonian is obtained using a direct projection of the
Kohn-Sham states onto pseudo-atomic orbital (PAO) ba-
sis [32], as implemented in the Paoflow code [33].
The PAO tight-binding Hamiltonian is constructed us-

ing a spd basis for Fe, Ge and Te atoms. We then add
local spin-orbit coupling and intra-atomic Coulomb re-
pulsion [34]. The spin-orbit coupling strengths of Fe,
Ge and Te are λFe = 50 meV, λGe = 200 meV, λTe =
600 meV [35]. The mean-field self-consistent ground state
is obtained [26, 36] by treating every component of the
spin moment in each Fe atom as an independent variable.
The resulting band structure, shown in figure 1, features
several spin polarized bands at the Fermi energy, por-
traying Fe3GeTe2 as a ferromagnetic conductor.
We find that the mean-field spin moments are sB1

=
sB2 = 2.56μB and sA = 1.52μB, all of them along the off-
plane axis. These values are in excellent agreement with
the DFT results, sB1

= sB2
= 2.54μB and sA = 1.52μB.

The spin moments of Te and Ge are negligible. We
note that, given that the magnetic moments are approxi-
mately twice the spin values, the tentative spin values of
Fe atoms are clearly not quantized as half integers.
The key quantity in the itinerant fermion theory for

spin excitations [10, 26] is the spin-flip spectral density
S(E, �q) ≡ Im[χ⊥(E, �q)], where

χ⊥ll′(E, �q) ≡
∫ ∞

−∞
dte−iE

�
t
{
−iθ(t)

〈
[S+l,�q(t), S

−
l′,−�q(0)]

〉}
,

(1)

FIG. 2: Magnon spectral density projected at the two
nonequivalent Fe sites as a function of energy, for a few se-
lected wave vectors along the Γ−K direction. The sharp peak
at low energies is associated with the “acoustic” magnon and
the broad structure at energies ∼ 300 meV is the (strongly
damped) “non-bonding” magnon.

l, l′ are atomic site indices, E is the excitation energy,
�q is the magnon wave vector, θ(t) is the Heaviside unit
step function and 〈·〉 denotes thermal average. The four
fermion correlator in eq. (1) is computed in the Random
Phase Approximation [10, 26, 37].

The diagonal entries, χ⊥AA(E, �q) and χ⊥B1B1
(E, �q) =

χ⊥B2B2(E, �q) of the spin-flip spectral density are shown in
figure 2 for a few selected wave vectors. For a given value
of �q the spin flip spectral density has, in general, two
types of features. First, symmetric peaks, with a width
ΔE much smaller than peak energy E. These peaks are
not present in the spectral density of the non-interacting
susceptibility. These are magnons modes, featured by all
ferromagnets. Second, broad asymmetric features, that
correspond to the so called Stoner excitations and are
only present in conducting ferromagnets.

Two well defined magnon branches are identified in
Fig. 2. For reasons that will become apparent later, we
refer to the lower energy, narrow peaks as the acoustic
branch and to the higher energy, broader peaks as the
non-bonding branch. When SOC is included, the acous-
tic branch has a gap at the Γ point is ΔΓ = 2.9 meV,
that accounts for the magnetic anisotropy. Its magni-
tude is compatible with existing measurements [38] and
DFT calculations [39]. The acoustic branch has weight
distributed between A and B sublattices, although most
of it lies on the B sites. In contrast, the non-bonding
branch is missing entirely from the A site. A broad fea-
ture appears at higher (� 400 meV), energies, localized
in the A site, whose nature is discussed below.

The magnon dispersion relation along high-symmetry
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FIG. 3: Fe3GeTe2 magnon dispersion relation along high sym-
metry lines in the 2D Brillouin zone. The dispersion relation
along Γ-M (a) is reciprocal, whereas along Γ − K (b, black
circles) it shows strong non-reciprocity. In the inset we show a
zoom of the dispersion relation for the acoustic magnon close
to the Γ point, where the magnetocrystalline anisotropy gap
ΔΓ ≡ E(Γ) = 2.93 meV can be clearly seen. For compari-
son, we also show the dispersion relation calculated without
spin-orbit coupling (red squares), which is perfectly reciprocal
and shows no anisotropy gap, as expected. In (c) and (d) we
show the dispersion relations obtained with the localized spins
model, including the second neighbor Dzyaloshinskii-Moriya
coupling. The Brillouin zone is shown in the inset of panel a.

lines in the Brillouin zone is shown in figure 3, calcu-
lated both with and without spin orbit coupling. The
bandwidth of the acoustic magnon (∼ 120 meV) is much
larger than that obtained in other 2D magnets, such as
CrI3 [26], and reflects a large exchange coupling between
the magnetic moments in neighbouring Fe atoms, in line
with the larger Curie temperature of Fe3GeTe2.

Importantly, when the SOC is included in the calcula-
tion, both the acoustic and the non-bonding bands be-
come non-reciprocal in the K−Γ−K ′ direction, but not
on the Γ −M direction. It is noteworthy that the dis-
persion relation of the acoustic mode around the Γ-point
fits almost perfectly to a function of wave vector q of the
form ΔΓ +Dq2, with negligible linear component. This
is in contrast with the behavior of magnons in ultrathin
transition metal films on heavy substrates [10], where a
sizeable linear term is induced by the DM coupling, and
has also been observed in relation to the calculation of
static spin spirals in Fe3GeTe2 [40].

At this point we introduce a model Hamiltonian for
the magnons, in order to gain physical insight on the

origin of the most salient features of the results obtained
with the itinerant model. The departure point is a spin
Hamiltonian

H = HHeis +HDM +Hanis, (2)

composed of an isotropic Heisenberg term HHeis, a
Dzyaloshinskii-Moriya interaction HDM and a single-ion
anisotropy term Hanis. Explicit expressions and fur-
ther detail can be found in the supplemental material
(SM). We build the magnon model using the conven-
tional Holstein-Primakoff linear spin wave theory for a
quantized spin model. The spins live in a decorated hon-
eycomb lattice with three sites per unit cell, A,B1, B2

(see Fig. 1 of the SM), with spins SA and SB .

Given that sites B1 and B2 are equivalent, we can in-
troduce two new modes, symmetric and anti-symmetric
combinations of B1 and B2, so that one of them becomes
effectively decoupled from A. The decoupling naturally
leads to three bands. One is associated with the anti-
symmetric B mode. The other two describe a honeycomb
ferromagnet with broken inversion symmetry, on account
of the different nature of A and B, and are separated by a
gap. The projections of the magnon wave functions over
the different sites (see Fig. 3 in the SM) show that the
spin model naturally accounts for the fact that the acous-
tic branch is predominantly located in the symmetric B
mode, the �k dependence of the weight on the A site, and
the complete localization of non-dispersive band on the
B mode. This behavior is qualitatively identical to that
of the magnon wave functions extracted directly from the
fermionic model (see SM for details).

We are now in position to address the origin of the non-
reciprocal dispersion, obtained with the itinerant model,
using the spin model. The fact that it only arises when
spin orbit coupling is included is a clear indication that
the its origin has to come from the non-Heisenberg terms
in the Hamiltonian. We have considered both first and
second neighbour DM couplings, D

(1)
a,a′ and D

(2)
a,a′ , where

a, a′ label the sites in the unit cell that do not possess
an inversion center. We only consider the DM vector �D
parallel to the magnetization, i.e., in the off-plane direc-
tion.

We find that first and second neighbour DM coupling
yield non-reciprocal dispersions. However, only a finite
D(2) coupling for the B sublattice gives a non-reciprocal
dispersion in the K − Γ − K ′ line, and reciprocal dis-
persion along the Γ −M direction. Therefore, the non-
reciprocal dispersion is consistent with a second neigh-
bour DM interaction in the B sublattice, for which the
super-exchange pathways occurs via Tellurium atoms,
the ones with the largest SOC in the crystal.

We now shift our attention to one of the hallmarks of
itinerant magnetism: the fact that magnons have finite
lifetimes, because of their coupling with the continuum
of uncorrelated electron-hole excitations known as the
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FIG. 4: a: Magnon lifetimes as a function of wave vector. b:
Spectral density of Stoner modes as a function of energy for
three different wave vectors along the Γ−K line. The shaded
regions mark the bandwidths of the acoustic and non-bonding
magnons.

Stoner continuum. In figure 4a we show the magnon life-
times as a function of wave vector. The lifetime is related
to the linewidth of the spectral density via τ ≡ 2�

ΔE . Re-
markably, the acoustic magnons close to the Γ point have
very long lifetimes (∼ 100 ps), given that the longest life-
times measured in ultrathin conducting magnets [41] are
∼ 0.4 ps. A long magnon lifetime is a very important
figure of merit for potential applications of magnons as
carriers of information, for example.

The lifetime of a magnon with energy E and wave vec-
tor �q scales inversely with the weight of the Stoner spec-
tral density at the same energy and wave vector. Due to
the spin polarization of the d bands, the density of Stoner
modes is very small for energies much smaller than the
exchange splitting (roughly proportional to magnetiza-
tion and the intra-atomic Coulomb repulsion strength).
It grows abruptly as the excitation energy approaches
the exchange splitting, as seen in fig. 4b. For Fe3GeTe2,
the energies of acoustic magnons lie in the region of
small density of Stoner modes, whereas the non-bonding
magnons live in the energy range where the Stoner spec-
tral density is considerable. This is the origin of the large
difference between acoustic and non-bonding magnons
lifetimes.

In this context, we can understand why the itiner-
ant picture leads to only two magnon modes, whereas
the localized spins model has three. Basically, the third
magnon band, still higher in energy than the second, is
degenerate with the continuum of Stoner spin flip ex-
citations. As a result, the spectral weight of the high
energy optical magnon mode is transferred to the in-
coherent features predominantly localized in the A site,
shown in Fig. 2. The difference between the two theories
highlights the limitations of the spin Hamiltonian, most
notably in the case of itinerant magnets.

The acoustic magnon lifetimes are also non-reciprocal.
This effect is not exclusively related to the the non-

reciprocity of the energy dispersion: lifetimes are shorter
in general for higher energy states. We find that, al-
though magnons around the K point have both energies
and lifetimes larger than those at K ′. The ultimate rea-
son of this non-reciprocal lifetimes stems from the fact
that the density of Stoner modes in Fe3GeTe2 is also
non-reciprocal.

Besides endowing magnons with finite lifetimes, the
Stoner continuum renormalizes the magnon energies,
much like friction changes the natural frequency of an
harmonic oscillator. This is the origin of the oscillations
in the dispersion relation of the non-bonding magnons,
seen in figure 3c. The dispersion relation of the acoustic
magnons close to the K point also display some oscilla-
tions of the same origin.

In conclusion, we have calculated magnons in mono-
layer Fe3GeTe2 using an itinerant fermion description
derived from first principles calculations, and we have
compared those results with the simple magnon theory
for a spin model Hamiltonian for a decorated honeycomb
lattice with three spins per unit cell. Due to broken
mirror symmetry and spin-orbit coupling, magnons’ en-
ergies and lifetimes show non-reciprocal behavior along
the Γ −K direction. Our findings are consistent with a
second neighbour DM coupling in the B sublattice, but
this deserves further attention. The coupling of magnons
to Stoner excitations results in a intrinsic broadening of
the two lowest energy magnon branches, and the melt-
ing of the optical mode, expected in the spin model, into
a broad spectral feature at high energies. From our re-
sults we infer a value for the exchange stiffness that is
compatible with the large magnetic transition tempera-
tures observed experimentally. Furthermore, we find that
the acoustic magnons are extremely long-lived for a con-
ducting two-dimensional ferromagnet (τ ∼ 100 ps at the
Γ point), which make this material potentially very use-
ful for magnonics and spintronics applications. Our work
shows that non-reciprocal magnons can exist in 2D crys-
tals with off-plane magnetization due to their intrinsic
DM interaction and suggest that Fe3GeTe2 is a very in-
teresting material to explore non-trivial magnon effects.
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THE SPIN MODEL

We derive here the magnon Hamiltonian for a quantum
spin model defined on a decorated honeycomb lattice. We
consider a unit cell with 3 atoms, A, B1 and B2, depicted
in fig. 1. Atoms B1 and B2 are stacked vertically on top
of each other. When seen from the top, the decorated
honeycomb lattice looks like a regular honeycomb lattice,
as atoms B1 and B2 are aligned.
We shall consider a Hamiltonian with three types of

coupling: Heisenberg, Dzyaloshinskii-Moriya (DM) and
single ion anisotropy,

H = HHeis +HDM +Hanis (1)

In order to expedite the derivation of the spin wave the-
ory taking advantage of the crystal translational invari-
ance, we write the spin Hamiltonian making explicit the
unit cell index �R an the intra cell label a = A,B1, B2.
The Heisenberg coupling reads,

HHeis =
∑

�R,�R′,a,a′

Ja,a′(�R− �R′)�S(�R, a) · �S(�R′, a′) (2)

Below we consider up to second neighbor exchange.
Taking into account only the z component of the

Dzyaloshinskii-Moriya vector, the DM term reads,

HDM = −
∑

�R,�R′,a,a′

Da,a′(�R− �R′)

[
Sx(�R, a)Sy(�R

′, a′)− Sy(�R, a)Sx(�R
′, a′)

]
. (3)

The single ion anisotropy reads,

Hanis =
∑
a,R

−|Ka|S2z (�R, a). (4)

FIG. 1: Decorated Honeycomb lattice. Left panel: side view,
showing 3 atoms per unit cell. Right panel: Top view, showing
the honyecomb arrangment, and the Brag vectors �a1 and �a2.

LINEAR SPIN WAVE THEORY

We now introduce the standard bosonic Holstein-
Primakoff (HP) representation of the spin operators [1].
We assume that the magnetization of the classical ground
state lies along the ẑ axis and we keep only quadratic
terms in the boson operator, which amounts to ignoring
magnon-magnon interactions. This is the so-called linear
spin wave theory. This is accomplished by expressing the
spin operators in terms of the HP bosons c as

�S(�r) · �Ω(�r) = S − c†(�r)c(�r)

S(+)(�r) �
√
2Sc(�r)

S(−)(�r) �
√
2Sc†(�r), (5)

where �r labels every spin in the crystal. Thus, �r is com-
pletely specified by �R, a. The representation of the S2z
terms we only keep terms quadratic in the c operators,
dropping the for boson operators.

Momentum representation of the magnon
Hamiltonian

After a lengthy but straightforward calculation, we de-
rive the a quadratic Hamiltonian for the HP bosons in the
reciprocal space. For that matter, we represent the 1 us-
ing the 5, keeping only terms bilinear in the HP bosons,
and we define

c�k,a =
1√
N

∑
�R

c�R,ae
−i�k·�R. (6)

We consider Heisenberg and DM coupling between first
and second neighbors. The resulting magnon Hamilto-
nian reads,

H =
∑
�k,a,a′

c†�k,aHa,a′(�k)c�ka′ , (7)

with

Ha,a′(�k) ≡ HHeis
a,a′ +HDM

a,a′ +Hanis
a,a′ . (8)

The wave vector �k spans the Brillouin zone of the trian-
gular lattice.
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Decoupling transformation and analytical
expressions

Explicit expressions are given below. Importantly, the
Hamiltonian has the the form

Ha,a′(�k) ≡

⎛
⎜⎝

hAA(�k) hAB(�k) hAB(�k

hAB(�k)
∗ hBB(�k) h12(�k)

hAB(�k)
∗ h12(�k) hBB(�k)

⎞
⎟⎠ , (9)

reflecting the equivalence of sites B1 and B2. By in-
troducing a change of basis for the B1 and B2 sites,
that defines the symmetric and antisymmetric modes,

c�k,± = 1√
2

(
c�k,B1 ± c�k,B2

)
, we can write the magnon

Hamiltonian matrix, in the A,+,− basis as,

Ha,a′(�k) ≡
⎛
⎝ hAA

√
2hAB 0√

2h∗AB hBB + h12 0
0 0 hBB − h12

⎞
⎠ (10)

where we have used that h12 is real and we have removed
the explitit dependence on �k to simplify the notation.
This equation shows that the antisymmetric (−) mode is
decoupled from the other two.
The remaining coupled modes, A and B+, are isomor-

phic to quasiparticles in a honeycomb lattice with bro-
ken inversion symmetry, on account of the different cou-
plings and spins of A and B sites. The decoupled expres-
sion (10) permits to obtain analytical expressions for the
magnon bands,

Eac(�k) = ε0(�k)−
√
ε1(�k)2 + 2|hAB(�k)|2,

Eop(�k) = ε0(�k) +

√
ε1(�k)2 + 2|hAB(�k)|2,

Enon−bonding(�k) = hBB(�k)− h12(�k), (11)

where we have defined

ε0(�k) =
hAA(�k) + hBB(�k) + h12(�k)

2
,

ε1(�k) =
hAA(�k)− hBB(�k)− h12(�k)

2
. (12)

The acoustic and optical bands Eac(�k), Eop(�k) are associ-
ated to magnons that live both in the A and B sublattice,
with the B modes in phase, whereas Enon−bonding(�k) is
sublattice polarized.
In the following we derive explicit expressions of

the magnon bands in terms of the exchange, DM and
anisotropy terms, and derive their values so that the sim-
ple model agrees with the magnon bands obtained with
the itinerant fermion picture.

Magnon bands for the isotropic case

We consider first the case only symmetric exchange
interactions are included. This permits to compare with
the calculations without SOC.

We introduce the first neighbor exchange coupling con-

stants, J
(1)
AB and J

(1)
BB as well as the second neighbour ex-

change for the A sublattice, J
(2)
AA, and the intralayer (or

direct) and interlayer (or crossed) for the B sublattices

J
(2)
BB,2d, J

(2)
BB,2c.

First neighbour approximation

We now keep only the first neighbour interaction. In-
troducing the notation φn = �k ·�an, with n = 1, 2, we can
write

hAB(�k) = −
√

SASBJ
(1)
AB(1 + eiφ1 + eiφ2)

hAA = 6J
(1)
ABSB

hBB = 3J
(1)
ABSA + J

(1)
BBSB

h12 = −J (1)BBSB (13)

Here the factors 6 and 3 reflect the number of first neigh-
bours of the A and B sublattice that are connected via
the J

(1)
AB . We obtain:

ε0(�k) =
3J

(1)
AB

2
(2SB + SA)

and

ε1(�k) =
3J

(1)
AB

2
(2SB − SA).

We now obtain the magnon energies at the high sym-
metry points. At Γ and K we have f(Γ) = 3 and
f(K) = f(K ′) = 0. We thus have:

Eac(Γ) = 0 Eac(K) = 3J
(1)
ABSA

Eop(Γ) = 3J
(1)
AB (2SB + SA) Eop(K) = 6J

(1)
ABSB

whereas the non-bonding state is dispersion less:

Enon−bonding = Eac(K) + 2J
(1)
BBSB .

From these equations we see that the gap between the
optical and acoustic branch is due both to the different
inter-sublattice coordination of A (6) and B (3) sites and
their different spin SA �= SB . We also see that the non-

bonding state is inside the gap, as long as 2J
(1)
BBSB <

3J
(1)
AB(2SB − SA).
We now use these results to obtain a rough estimate

of the first neighbour exchange constants. At this level
of the theory, the values of SA and SB do not need to
be integer or half-integer, and we take we take SA =
MA/2 = 0.76 and SB = MB/2 = 1.26. The value of the

acoustic band at the K point permits to estimate J
(1)
AB ,

using 3J
(1)
ABSA � 100 meV. We obtain J

(1)
AB � 44 meV

Given that the band at around 300 meV is exclusively
localized in the B sublattice, we infer that this is the non-

bonding band. We thus have the equation 2J
(1)
BBSB � 200

meV, from which we obtain J
(1)
BB � 80 meV.
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FIG. 2: Top panels: Magnon dispersion relations along high-
symmetry lines in the triangular lattice’s Brillouin zone, com-

puted within the nn approximation. We take J
(1)
AB � 44

meV, J
(1)
BB � 80 meV. Bottom panels: same as above, but

including nnn exchange. We take J
(1)
AB � 65 meV, J

(1)
BB � 80,

J
(2)
BBs = −4.4 meV, J(2)BBd = J

(2)
AAd = 0.

Next nearest neighbour contribution

In order to obtain a dispersive non-bonding band, still
in the case without SOC, it is necessary to include next
nearest neighbour (nnn) exchange. This includes the AA

nnn exchange J
(2)
AA that will contribute to the acoustic

and optical bands, as well as the BB exchange couplings,

including the same layer J
(2)
B1B1

= J
(2)
B2B2

≡ J
(2)
BBs and the

different layer J
(2)
B1B2

≡ J
(2)
BBd. Unlike the nn, the nnn

gives diagonal contributions both for the Ising and flip-
flop exchange in theAA andBBs channels. We thus have
the following contributions to the Hamiltonian matrix:

h
(2)
AA(

�k) = J
(2)
AASA

[
6− f2(�k)

]

h
(2)
BB(

�k) =
{
J
(2)
BBs

[
6− f2(�k)

]
+ 6J

(2)
BBd

}
SB

h
(2)
12 (

�k) = −SBJ
(2)
BBdf2(

�k) (14)

where

f2(�k) = 2 [(cos(φ1) + cos(φ2) + cos(φ1 − φ2)] . (15)

We thus see that the non-bonding band dispersion, given
by eq. (11), now reads,

Enon−bonding = 3J
(1)
ABSA + J

(1)
BBSB +

+
{
J
(2)
BBs

[
6− f2(�k)

]
+ 6J

(2)
BBd

}
SB + SBJ

(2)
BBdf2(

�k) =

3J
(1)
ABSA + J

(1)
BBSB +

+
[
6(J

(2)
BBd + J

(2)
BBs) + (J

(2)
BBd − J

(2)
BBs)f2(

�k)
]
SB .

(16)

We note that the opposing sign in the amplitude of the
dispersive part of the of the non-bonding part arises from
the antisymmetric nature of this mode.
Given that f2(Γ) = 6 and f2(K) = −3, the fact that

the maximum of the non-bonding band is a the Γ point

indicates that J
(2)
BBd−J (2)BBs is a positive number. Since we

expect that, in absolute value J
(2)
BBd is smaller than J

(2)
BBs,

on account of the larger distance, this probably entails
that second neighbour interactions are AF. For the sake

of simplicity we assume J
(2)
BBd = 0 and we infer J

(2)
BBs =

− W
9SB

, where W is the bandwidth of the non-bonding
band in the Γ − K direction and 9 = f2(Γ) − f2(K).

Since W � 50 meV, we estimate J
(2)
BBs = −4.4 meV.

The second neighbour exchange also affects the band-
width of the acoustic magnon band as well as the center
of mass position of the non-bonding band. As a result,
we need to readjust the values of the first neighbour ex-
change interactions in the model to obtain magnon bands
in agreement with those computed with the itinerant
fermion picture.

Magnon wave functions

In figure 3 we plot the projection of the magnon wave
functions for the three bands over the two modes that
are mixed by the magnon Hamiltonian (10), namely, the
A site and the symmetric B mode. The results of the
figure are computed including the nnn exchange, with
the same parameters than the lower panels of Fig. 2. We
see that the acoustic band is predominantly located on
the B sublattice. The non-bonding band has 100% of the
weight on the anti-symmetric bond. The A − B mixing
on the acoustic and optical magnons is minimal at the
Dirac points, as expected in a honeycomb lattice.

Magnons with DM and anisitropy

We now consider the two terms in the Hamiltonian,
anti-symmetric DM exchange and anisotropy, that can
only be present in the spin Hamiltonian when spin-orbit
interactions are present in the parent fermion Hamilto-
nian.
For the DM term we make the following assumptions.

The first neighbor DM occurs only for the AB dimers,
and the AB1 and AB2 couplings are the sameWe assume
the second neighbor coupling is active only in the B sub-
lattice, is diagonal in the B subspace, and identical for
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FIG. 3: Projection of the magnon wave functions over the A
site (left) and the symmetric mode of the B sublattice (right).

B1 and B2.

HDM
a,a′ (�k) ≡

⎛
⎜⎝

0 d1(�k) d1(�k)

d∗1(�k) d2(�k) 0

d∗1(�k) 0 d2(�k)

⎞
⎟⎠ , (17)

where d1(�k) = i
√
SASB [f(�k) − 1] and d2(�k) =

2D2SB

[
sin(�k · �a1) + sin(�k · �a2) + sin(�k · (�a1 − �a2))

]
Both d1 and d2 are odd functions of the momentum,

d1(�k) = −(d1(−�k))∗, and d2(�k) = −d2(−�k). However,
they enter in the energy dispersion in different manners.
The nn DM only gives a non-reciprocal dispersion along
the Γ −M direction for the acoustic band, leaving the
non-bonding band unaffected. In contrast, the nnn DM
gives a non-reciprocal dispersion along the K − Γ,K ′

direction, and affects both the acoustic and the non-
bonding bands. The nnn DM coupling enters linearly
in the dispersion of the non-bonding band. As a result,
we can use the valley splitting of the non-bonding band
δ = Enon−bonding(K)− Enon−bonding(K ′) = −4√3D2SB .
Since the valley splitting is δ = 45 meV, we infer D2 =

δ
4
√
3SB

� −5 meV.
This model accounts for the non-reciprocal dispersion

along the K,K ′ direction and the reciprocal dispersion
along the Γ−M direction. However, it also shifts later-
ally the low energy magnon dispersion, in disagreement
with the itinerant fermion results. This matter deserves
further exploration. We also note that the linear contri-
bution makes the energy of the acoustic band negative in
a small range of momenta. This could be easily fixed by
adding the single ion anisotropy terms.

MAGNON WAVE FUNCTIONS FROM THE
FERMIONIC METHOD

Some physical insight about the character of the
magnon modes can be obtained directly from the re-
sults of the fermionic approach. The magnon wave func-

FIG. 4: Complete energy dispersion, including 1st and 2nd
neighbour exchange and second neighbour DM interaction.

We take J
(1)
AB � 65 meV, J

(1)
BB � 80, J

(2)
BBs = −4.4 meV,

J
(2)
BBd = J

(2)
AAd = 0 and D2 = −5 meV. In panel b we draw red

horizontal lines to emphasize the non-reciprocity.

tions can be obtained from the transverse spin suscepti-
bility matrix χ⊥aa′(ω,�k). This object can be interpreted
as the single-particle Green function matrix associated
with the magnons. As such, it shares eigenvectors with
the magnon Hamiltonian (to which we do not have direct
access within the fermionic model). Thus, by diagonaliz-

ing χ⊥aa′(ω,�k) at an (ω,�k) pair where its imaginary part
has a peak, we obtain the eigenvectors associated with
the magnon modes [2, 3]. Of course, in metallic mag-
nets magnons are not true eigenstates of the system’s
hamiltonian, since they hybridize with the Stoner exci-
tations. Nevertheless, the eigenvectors of χ⊥aa′(ω,�k) still
provide useful information, as long as the magnon feature
in the spectral density can be clearly distinguished from
the background of Stoner modes.

As we have shown in the paper, Fe3GeTe2 has only two
well-defined magnon modes. By looking at the dispersion
of the lowest energy mode (fig. 3b of the main paper), it
is clear that it can be identified with the acoustic mode
of the spin model of the previous section. Analysis of its
wave function coefficients, shown in fig. 5 confirms that
identification.

The character of the higher-energy mode is less evi-
dent from the dispersion relations alone, since the spin
model predicts two modes with energies higher than that
of the acoustic magnons. Comparison of the wave func-
tion coefficients obtained in the fermionic method with
those obtained from the spin model indicate that this
mode corresponds to the second mode predicted by the
spin model. This conclusion is supported not only by the
fact that |cA|2 = 0 along the whole Γ −K line, as seen
in figs. 3 and 5, but also by the relative phase of the cB1

and cB2
coefficients, that both methods indicate to be π,

independent of the magnon wave vector.
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FIG. 5: Projections of the magnon wave functions on the A
site (a) and on the symmetric and antisymmetric modes of the
B sublattice (b) along the Γ−K line, extracted directly from
the fermionic method. The orange lines correspond to the
projections of the acoustic mode on A and on the symmetric
B mode. The blue lines are the projections of the non-bonding
mode on A and on the antisymmetric B mode. As discussed
in the text, the third mode, predicted by the spin model,
does not have a clearly identifiable signature in the magnon
spectral density derived from the fermionic approach, due to
strong hybridization with the Stoner continuum.
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